1145 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1145 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * pSeries NUMA support
 | 
						|
 *
 | 
						|
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version
 | 
						|
 * 2 of the License, or (at your option) any later version.
 | 
						|
 */
 | 
						|
#include <linux/threads.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/mmzone.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/nodemask.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/notifier.h>
 | 
						|
#include <linux/lmb.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/pfn.h>
 | 
						|
#include <asm/sparsemem.h>
 | 
						|
#include <asm/prom.h>
 | 
						|
#include <asm/system.h>
 | 
						|
#include <asm/smp.h>
 | 
						|
 | 
						|
static int numa_enabled = 1;
 | 
						|
 | 
						|
static char *cmdline __initdata;
 | 
						|
 | 
						|
static int numa_debug;
 | 
						|
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
 | 
						|
 | 
						|
int numa_cpu_lookup_table[NR_CPUS];
 | 
						|
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 | 
						|
struct pglist_data *node_data[MAX_NUMNODES];
 | 
						|
 | 
						|
EXPORT_SYMBOL(numa_cpu_lookup_table);
 | 
						|
EXPORT_SYMBOL(numa_cpumask_lookup_table);
 | 
						|
EXPORT_SYMBOL(node_data);
 | 
						|
 | 
						|
static int min_common_depth;
 | 
						|
static int n_mem_addr_cells, n_mem_size_cells;
 | 
						|
 | 
						|
static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
 | 
						|
						unsigned int *nid)
 | 
						|
{
 | 
						|
	unsigned long long mem;
 | 
						|
	char *p = cmdline;
 | 
						|
	static unsigned int fake_nid;
 | 
						|
	static unsigned long long curr_boundary;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Modify node id, iff we started creating NUMA nodes
 | 
						|
	 * We want to continue from where we left of the last time
 | 
						|
	 */
 | 
						|
	if (fake_nid)
 | 
						|
		*nid = fake_nid;
 | 
						|
	/*
 | 
						|
	 * In case there are no more arguments to parse, the
 | 
						|
	 * node_id should be the same as the last fake node id
 | 
						|
	 * (we've handled this above).
 | 
						|
	 */
 | 
						|
	if (!p)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	mem = memparse(p, &p);
 | 
						|
	if (!mem)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (mem < curr_boundary)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	curr_boundary = mem;
 | 
						|
 | 
						|
	if ((end_pfn << PAGE_SHIFT) > mem) {
 | 
						|
		/*
 | 
						|
		 * Skip commas and spaces
 | 
						|
		 */
 | 
						|
		while (*p == ',' || *p == ' ' || *p == '\t')
 | 
						|
			p++;
 | 
						|
 | 
						|
		cmdline = p;
 | 
						|
		fake_nid++;
 | 
						|
		*nid = fake_nid;
 | 
						|
		dbg("created new fake_node with id %d\n", fake_nid);
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * get_active_region_work_fn - A helper function for get_node_active_region
 | 
						|
 *	Returns datax set to the start_pfn and end_pfn if they contain
 | 
						|
 *	the initial value of datax->start_pfn between them
 | 
						|
 * @start_pfn: start page(inclusive) of region to check
 | 
						|
 * @end_pfn: end page(exclusive) of region to check
 | 
						|
 * @datax: comes in with ->start_pfn set to value to search for and
 | 
						|
 *	goes out with active range if it contains it
 | 
						|
 * Returns 1 if search value is in range else 0
 | 
						|
 */
 | 
						|
static int __init get_active_region_work_fn(unsigned long start_pfn,
 | 
						|
					unsigned long end_pfn, void *datax)
 | 
						|
{
 | 
						|
	struct node_active_region *data;
 | 
						|
	data = (struct node_active_region *)datax;
 | 
						|
 | 
						|
	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
 | 
						|
		data->start_pfn = start_pfn;
 | 
						|
		data->end_pfn = end_pfn;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * get_node_active_region - Return active region containing start_pfn
 | 
						|
 * Active range returned is empty if none found.
 | 
						|
 * @start_pfn: The page to return the region for.
 | 
						|
 * @node_ar: Returned set to the active region containing start_pfn
 | 
						|
 */
 | 
						|
static void __init get_node_active_region(unsigned long start_pfn,
 | 
						|
		       struct node_active_region *node_ar)
 | 
						|
{
 | 
						|
	int nid = early_pfn_to_nid(start_pfn);
 | 
						|
 | 
						|
	node_ar->nid = nid;
 | 
						|
	node_ar->start_pfn = start_pfn;
 | 
						|
	node_ar->end_pfn = start_pfn;
 | 
						|
	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
 | 
						|
}
 | 
						|
 | 
						|
static void __cpuinit map_cpu_to_node(int cpu, int node)
 | 
						|
{
 | 
						|
	numa_cpu_lookup_table[cpu] = node;
 | 
						|
 | 
						|
	dbg("adding cpu %d to node %d\n", cpu, node);
 | 
						|
 | 
						|
	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
 | 
						|
		cpu_set(cpu, numa_cpumask_lookup_table[node]);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
static void unmap_cpu_from_node(unsigned long cpu)
 | 
						|
{
 | 
						|
	int node = numa_cpu_lookup_table[cpu];
 | 
						|
 | 
						|
	dbg("removing cpu %lu from node %d\n", cpu, node);
 | 
						|
 | 
						|
	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
 | 
						|
		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
 | 
						|
	} else {
 | 
						|
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 | 
						|
		       cpu, node);
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif /* CONFIG_HOTPLUG_CPU */
 | 
						|
 | 
						|
/* must hold reference to node during call */
 | 
						|
static const int *of_get_associativity(struct device_node *dev)
 | 
						|
{
 | 
						|
	return of_get_property(dev, "ibm,associativity", NULL);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the property linux,drconf-usable-memory if
 | 
						|
 * it exists (the property exists only in kexec/kdump kernels,
 | 
						|
 * added by kexec-tools)
 | 
						|
 */
 | 
						|
static const u32 *of_get_usable_memory(struct device_node *memory)
 | 
						|
{
 | 
						|
	const u32 *prop;
 | 
						|
	u32 len;
 | 
						|
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 | 
						|
	if (!prop || len < sizeof(unsigned int))
 | 
						|
		return 0;
 | 
						|
	return prop;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 | 
						|
 * info is found.
 | 
						|
 */
 | 
						|
static int of_node_to_nid_single(struct device_node *device)
 | 
						|
{
 | 
						|
	int nid = -1;
 | 
						|
	const unsigned int *tmp;
 | 
						|
 | 
						|
	if (min_common_depth == -1)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	tmp = of_get_associativity(device);
 | 
						|
	if (!tmp)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (tmp[0] >= min_common_depth)
 | 
						|
		nid = tmp[min_common_depth];
 | 
						|
 | 
						|
	/* POWER4 LPAR uses 0xffff as invalid node */
 | 
						|
	if (nid == 0xffff || nid >= MAX_NUMNODES)
 | 
						|
		nid = -1;
 | 
						|
out:
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/* Walk the device tree upwards, looking for an associativity id */
 | 
						|
int of_node_to_nid(struct device_node *device)
 | 
						|
{
 | 
						|
	struct device_node *tmp;
 | 
						|
	int nid = -1;
 | 
						|
 | 
						|
	of_node_get(device);
 | 
						|
	while (device) {
 | 
						|
		nid = of_node_to_nid_single(device);
 | 
						|
		if (nid != -1)
 | 
						|
			break;
 | 
						|
 | 
						|
	        tmp = device;
 | 
						|
		device = of_get_parent(tmp);
 | 
						|
		of_node_put(tmp);
 | 
						|
	}
 | 
						|
	of_node_put(device);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(of_node_to_nid);
 | 
						|
 | 
						|
/*
 | 
						|
 * In theory, the "ibm,associativity" property may contain multiple
 | 
						|
 * associativity lists because a resource may be multiply connected
 | 
						|
 * into the machine.  This resource then has different associativity
 | 
						|
 * characteristics relative to its multiple connections.  We ignore
 | 
						|
 * this for now.  We also assume that all cpu and memory sets have
 | 
						|
 * their distances represented at a common level.  This won't be
 | 
						|
 * true for hierarchical NUMA.
 | 
						|
 *
 | 
						|
 * In any case the ibm,associativity-reference-points should give
 | 
						|
 * the correct depth for a normal NUMA system.
 | 
						|
 *
 | 
						|
 * - Dave Hansen <haveblue@us.ibm.com>
 | 
						|
 */
 | 
						|
static int __init find_min_common_depth(void)
 | 
						|
{
 | 
						|
	int depth;
 | 
						|
	const unsigned int *ref_points;
 | 
						|
	struct device_node *rtas_root;
 | 
						|
	unsigned int len;
 | 
						|
 | 
						|
	rtas_root = of_find_node_by_path("/rtas");
 | 
						|
 | 
						|
	if (!rtas_root)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * this property is 2 32-bit integers, each representing a level of
 | 
						|
	 * depth in the associativity nodes.  The first is for an SMP
 | 
						|
	 * configuration (should be all 0's) and the second is for a normal
 | 
						|
	 * NUMA configuration.
 | 
						|
	 */
 | 
						|
	ref_points = of_get_property(rtas_root,
 | 
						|
			"ibm,associativity-reference-points", &len);
 | 
						|
 | 
						|
	if ((len >= 2 * sizeof(unsigned int)) && ref_points) {
 | 
						|
		depth = ref_points[1];
 | 
						|
	} else {
 | 
						|
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 | 
						|
		depth = -1;
 | 
						|
	}
 | 
						|
	of_node_put(rtas_root);
 | 
						|
 | 
						|
	return depth;
 | 
						|
}
 | 
						|
 | 
						|
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 | 
						|
{
 | 
						|
	struct device_node *memory = NULL;
 | 
						|
 | 
						|
	memory = of_find_node_by_type(memory, "memory");
 | 
						|
	if (!memory)
 | 
						|
		panic("numa.c: No memory nodes found!");
 | 
						|
 | 
						|
	*n_addr_cells = of_n_addr_cells(memory);
 | 
						|
	*n_size_cells = of_n_size_cells(memory);
 | 
						|
	of_node_put(memory);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
 | 
						|
{
 | 
						|
	unsigned long result = 0;
 | 
						|
 | 
						|
	while (n--) {
 | 
						|
		result = (result << 32) | **buf;
 | 
						|
		(*buf)++;
 | 
						|
	}
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
struct of_drconf_cell {
 | 
						|
	u64	base_addr;
 | 
						|
	u32	drc_index;
 | 
						|
	u32	reserved;
 | 
						|
	u32	aa_index;
 | 
						|
	u32	flags;
 | 
						|
};
 | 
						|
 | 
						|
#define DRCONF_MEM_ASSIGNED	0x00000008
 | 
						|
#define DRCONF_MEM_AI_INVALID	0x00000040
 | 
						|
#define DRCONF_MEM_RESERVED	0x00000080
 | 
						|
 | 
						|
/*
 | 
						|
 * Read the next lmb list entry from the ibm,dynamic-memory property
 | 
						|
 * and return the information in the provided of_drconf_cell structure.
 | 
						|
 */
 | 
						|
static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 | 
						|
{
 | 
						|
	const u32 *cp;
 | 
						|
 | 
						|
	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 | 
						|
 | 
						|
	cp = *cellp;
 | 
						|
	drmem->drc_index = cp[0];
 | 
						|
	drmem->reserved = cp[1];
 | 
						|
	drmem->aa_index = cp[2];
 | 
						|
	drmem->flags = cp[3];
 | 
						|
 | 
						|
	*cellp = cp + 4;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Retreive and validate the ibm,dynamic-memory property of the device tree.
 | 
						|
 *
 | 
						|
 * The layout of the ibm,dynamic-memory property is a number N of lmb
 | 
						|
 * list entries followed by N lmb list entries.  Each lmb list entry
 | 
						|
 * contains information as layed out in the of_drconf_cell struct above.
 | 
						|
 */
 | 
						|
static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 | 
						|
{
 | 
						|
	const u32 *prop;
 | 
						|
	u32 len, entries;
 | 
						|
 | 
						|
	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 | 
						|
	if (!prop || len < sizeof(unsigned int))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	entries = *prop++;
 | 
						|
 | 
						|
	/* Now that we know the number of entries, revalidate the size
 | 
						|
	 * of the property read in to ensure we have everything
 | 
						|
	 */
 | 
						|
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	*dm = prop;
 | 
						|
	return entries;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Retreive and validate the ibm,lmb-size property for drconf memory
 | 
						|
 * from the device tree.
 | 
						|
 */
 | 
						|
static u64 of_get_lmb_size(struct device_node *memory)
 | 
						|
{
 | 
						|
	const u32 *prop;
 | 
						|
	u32 len;
 | 
						|
 | 
						|
	prop = of_get_property(memory, "ibm,lmb-size", &len);
 | 
						|
	if (!prop || len < sizeof(unsigned int))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return read_n_cells(n_mem_size_cells, &prop);
 | 
						|
}
 | 
						|
 | 
						|
struct assoc_arrays {
 | 
						|
	u32	n_arrays;
 | 
						|
	u32	array_sz;
 | 
						|
	const u32 *arrays;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Retreive and validate the list of associativity arrays for drconf
 | 
						|
 * memory from the ibm,associativity-lookup-arrays property of the
 | 
						|
 * device tree..
 | 
						|
 *
 | 
						|
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 | 
						|
 * indicating the number of associativity arrays, followed by a number M
 | 
						|
 * indicating the size of each associativity array, followed by a list
 | 
						|
 * of N associativity arrays.
 | 
						|
 */
 | 
						|
static int of_get_assoc_arrays(struct device_node *memory,
 | 
						|
			       struct assoc_arrays *aa)
 | 
						|
{
 | 
						|
	const u32 *prop;
 | 
						|
	u32 len;
 | 
						|
 | 
						|
	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 | 
						|
	if (!prop || len < 2 * sizeof(unsigned int))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	aa->n_arrays = *prop++;
 | 
						|
	aa->array_sz = *prop++;
 | 
						|
 | 
						|
	/* Now that we know the number of arrrays and size of each array,
 | 
						|
	 * revalidate the size of the property read in.
 | 
						|
	 */
 | 
						|
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	aa->arrays = prop;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is like of_node_to_nid_single() for memory represented in the
 | 
						|
 * ibm,dynamic-reconfiguration-memory node.
 | 
						|
 */
 | 
						|
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 | 
						|
				   struct assoc_arrays *aa)
 | 
						|
{
 | 
						|
	int default_nid = 0;
 | 
						|
	int nid = default_nid;
 | 
						|
	int index;
 | 
						|
 | 
						|
	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 | 
						|
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 | 
						|
	    drmem->aa_index < aa->n_arrays) {
 | 
						|
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 | 
						|
		nid = aa->arrays[index];
 | 
						|
 | 
						|
		if (nid == 0xffff || nid >= MAX_NUMNODES)
 | 
						|
			nid = default_nid;
 | 
						|
	}
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Figure out to which domain a cpu belongs and stick it there.
 | 
						|
 * Return the id of the domain used.
 | 
						|
 */
 | 
						|
static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 | 
						|
{
 | 
						|
	int nid = 0;
 | 
						|
	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 | 
						|
 | 
						|
	if (!cpu) {
 | 
						|
		WARN_ON(1);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	nid = of_node_to_nid_single(cpu);
 | 
						|
 | 
						|
	if (nid < 0 || !node_online(nid))
 | 
						|
		nid = any_online_node(NODE_MASK_ALL);
 | 
						|
out:
 | 
						|
	map_cpu_to_node(lcpu, nid);
 | 
						|
 | 
						|
	of_node_put(cpu);
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 | 
						|
			     unsigned long action,
 | 
						|
			     void *hcpu)
 | 
						|
{
 | 
						|
	unsigned long lcpu = (unsigned long)hcpu;
 | 
						|
	int ret = NOTIFY_DONE;
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
	case CPU_UP_PREPARE:
 | 
						|
	case CPU_UP_PREPARE_FROZEN:
 | 
						|
		numa_setup_cpu(lcpu);
 | 
						|
		ret = NOTIFY_OK;
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
	case CPU_DEAD:
 | 
						|
	case CPU_DEAD_FROZEN:
 | 
						|
	case CPU_UP_CANCELED:
 | 
						|
	case CPU_UP_CANCELED_FROZEN:
 | 
						|
		unmap_cpu_from_node(lcpu);
 | 
						|
		break;
 | 
						|
		ret = NOTIFY_OK;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check and possibly modify a memory region to enforce the memory limit.
 | 
						|
 *
 | 
						|
 * Returns the size the region should have to enforce the memory limit.
 | 
						|
 * This will either be the original value of size, a truncated value,
 | 
						|
 * or zero. If the returned value of size is 0 the region should be
 | 
						|
 * discarded as it lies wholy above the memory limit.
 | 
						|
 */
 | 
						|
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 | 
						|
						      unsigned long size)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
 | 
						|
	 * we've already adjusted it for the limit and it takes care of
 | 
						|
	 * having memory holes below the limit.  Also, in the case of
 | 
						|
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 | 
						|
	 */
 | 
						|
 | 
						|
	if (start + size <= lmb_end_of_DRAM())
 | 
						|
		return size;
 | 
						|
 | 
						|
	if (start >= lmb_end_of_DRAM())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	return lmb_end_of_DRAM() - start;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Reads the counter for a given entry in
 | 
						|
 * linux,drconf-usable-memory property
 | 
						|
 */
 | 
						|
static inline int __init read_usm_ranges(const u32 **usm)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * For each lmb in ibm,dynamic-memory a corresponding
 | 
						|
	 * entry in linux,drconf-usable-memory property contains
 | 
						|
	 * a counter followed by that many (base, size) duple.
 | 
						|
	 * read the counter from linux,drconf-usable-memory
 | 
						|
	 */
 | 
						|
	return read_n_cells(n_mem_size_cells, usm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 | 
						|
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 | 
						|
 */
 | 
						|
static void __init parse_drconf_memory(struct device_node *memory)
 | 
						|
{
 | 
						|
	const u32 *dm, *usm;
 | 
						|
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
 | 
						|
	unsigned long lmb_size, base, size, sz;
 | 
						|
	int nid;
 | 
						|
	struct assoc_arrays aa;
 | 
						|
 | 
						|
	n = of_get_drconf_memory(memory, &dm);
 | 
						|
	if (!n)
 | 
						|
		return;
 | 
						|
 | 
						|
	lmb_size = of_get_lmb_size(memory);
 | 
						|
	if (!lmb_size)
 | 
						|
		return;
 | 
						|
 | 
						|
	rc = of_get_assoc_arrays(memory, &aa);
 | 
						|
	if (rc)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* check if this is a kexec/kdump kernel */
 | 
						|
	usm = of_get_usable_memory(memory);
 | 
						|
	if (usm != NULL)
 | 
						|
		is_kexec_kdump = 1;
 | 
						|
 | 
						|
	for (; n != 0; --n) {
 | 
						|
		struct of_drconf_cell drmem;
 | 
						|
 | 
						|
		read_drconf_cell(&drmem, &dm);
 | 
						|
 | 
						|
		/* skip this block if the reserved bit is set in flags (0x80)
 | 
						|
		   or if the block is not assigned to this partition (0x8) */
 | 
						|
		if ((drmem.flags & DRCONF_MEM_RESERVED)
 | 
						|
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 | 
						|
			continue;
 | 
						|
 | 
						|
		base = drmem.base_addr;
 | 
						|
		size = lmb_size;
 | 
						|
		ranges = 1;
 | 
						|
 | 
						|
		if (is_kexec_kdump) {
 | 
						|
			ranges = read_usm_ranges(&usm);
 | 
						|
			if (!ranges) /* there are no (base, size) duple */
 | 
						|
				continue;
 | 
						|
		}
 | 
						|
		do {
 | 
						|
			if (is_kexec_kdump) {
 | 
						|
				base = read_n_cells(n_mem_addr_cells, &usm);
 | 
						|
				size = read_n_cells(n_mem_size_cells, &usm);
 | 
						|
			}
 | 
						|
			nid = of_drconf_to_nid_single(&drmem, &aa);
 | 
						|
			fake_numa_create_new_node(
 | 
						|
				((base + size) >> PAGE_SHIFT),
 | 
						|
					   &nid);
 | 
						|
			node_set_online(nid);
 | 
						|
			sz = numa_enforce_memory_limit(base, size);
 | 
						|
			if (sz)
 | 
						|
				add_active_range(nid, base >> PAGE_SHIFT,
 | 
						|
						 (base >> PAGE_SHIFT)
 | 
						|
						 + (sz >> PAGE_SHIFT));
 | 
						|
		} while (--ranges);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int __init parse_numa_properties(void)
 | 
						|
{
 | 
						|
	struct device_node *cpu = NULL;
 | 
						|
	struct device_node *memory = NULL;
 | 
						|
	int default_nid = 0;
 | 
						|
	unsigned long i;
 | 
						|
 | 
						|
	if (numa_enabled == 0) {
 | 
						|
		printk(KERN_WARNING "NUMA disabled by user\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	min_common_depth = find_min_common_depth();
 | 
						|
 | 
						|
	if (min_common_depth < 0)
 | 
						|
		return min_common_depth;
 | 
						|
 | 
						|
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Even though we connect cpus to numa domains later in SMP
 | 
						|
	 * init, we need to know the node ids now. This is because
 | 
						|
	 * each node to be onlined must have NODE_DATA etc backing it.
 | 
						|
	 */
 | 
						|
	for_each_present_cpu(i) {
 | 
						|
		int nid;
 | 
						|
 | 
						|
		cpu = of_get_cpu_node(i, NULL);
 | 
						|
		BUG_ON(!cpu);
 | 
						|
		nid = of_node_to_nid_single(cpu);
 | 
						|
		of_node_put(cpu);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Don't fall back to default_nid yet -- we will plug
 | 
						|
		 * cpus into nodes once the memory scan has discovered
 | 
						|
		 * the topology.
 | 
						|
		 */
 | 
						|
		if (nid < 0)
 | 
						|
			continue;
 | 
						|
		node_set_online(nid);
 | 
						|
	}
 | 
						|
 | 
						|
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 | 
						|
	memory = NULL;
 | 
						|
	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 | 
						|
		unsigned long start;
 | 
						|
		unsigned long size;
 | 
						|
		int nid;
 | 
						|
		int ranges;
 | 
						|
		const unsigned int *memcell_buf;
 | 
						|
		unsigned int len;
 | 
						|
 | 
						|
		memcell_buf = of_get_property(memory,
 | 
						|
			"linux,usable-memory", &len);
 | 
						|
		if (!memcell_buf || len <= 0)
 | 
						|
			memcell_buf = of_get_property(memory, "reg", &len);
 | 
						|
		if (!memcell_buf || len <= 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* ranges in cell */
 | 
						|
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | 
						|
new_range:
 | 
						|
		/* these are order-sensitive, and modify the buffer pointer */
 | 
						|
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | 
						|
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Assumption: either all memory nodes or none will
 | 
						|
		 * have associativity properties.  If none, then
 | 
						|
		 * everything goes to default_nid.
 | 
						|
		 */
 | 
						|
		nid = of_node_to_nid_single(memory);
 | 
						|
		if (nid < 0)
 | 
						|
			nid = default_nid;
 | 
						|
 | 
						|
		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 | 
						|
		node_set_online(nid);
 | 
						|
 | 
						|
		if (!(size = numa_enforce_memory_limit(start, size))) {
 | 
						|
			if (--ranges)
 | 
						|
				goto new_range;
 | 
						|
			else
 | 
						|
				continue;
 | 
						|
		}
 | 
						|
 | 
						|
		add_active_range(nid, start >> PAGE_SHIFT,
 | 
						|
				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
 | 
						|
 | 
						|
		if (--ranges)
 | 
						|
			goto new_range;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
 | 
						|
	 * property in the ibm,dynamic-reconfiguration-memory node.
 | 
						|
	 */
 | 
						|
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | 
						|
	if (memory)
 | 
						|
		parse_drconf_memory(memory);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __init setup_nonnuma(void)
 | 
						|
{
 | 
						|
	unsigned long top_of_ram = lmb_end_of_DRAM();
 | 
						|
	unsigned long total_ram = lmb_phys_mem_size();
 | 
						|
	unsigned long start_pfn, end_pfn;
 | 
						|
	unsigned int i, nid = 0;
 | 
						|
 | 
						|
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 | 
						|
	       top_of_ram, total_ram);
 | 
						|
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 | 
						|
	       (top_of_ram - total_ram) >> 20);
 | 
						|
 | 
						|
	for (i = 0; i < lmb.memory.cnt; ++i) {
 | 
						|
		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
 | 
						|
		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
 | 
						|
 | 
						|
		fake_numa_create_new_node(end_pfn, &nid);
 | 
						|
		add_active_range(nid, start_pfn, end_pfn);
 | 
						|
		node_set_online(nid);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void __init dump_numa_cpu_topology(void)
 | 
						|
{
 | 
						|
	unsigned int node;
 | 
						|
	unsigned int cpu, count;
 | 
						|
 | 
						|
	if (min_common_depth == -1 || !numa_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_online_node(node) {
 | 
						|
		printk(KERN_DEBUG "Node %d CPUs:", node);
 | 
						|
 | 
						|
		count = 0;
 | 
						|
		/*
 | 
						|
		 * If we used a CPU iterator here we would miss printing
 | 
						|
		 * the holes in the cpumap.
 | 
						|
		 */
 | 
						|
		for (cpu = 0; cpu < NR_CPUS; cpu++) {
 | 
						|
			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
 | 
						|
				if (count == 0)
 | 
						|
					printk(" %u", cpu);
 | 
						|
				++count;
 | 
						|
			} else {
 | 
						|
				if (count > 1)
 | 
						|
					printk("-%u", cpu - 1);
 | 
						|
				count = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (count > 1)
 | 
						|
			printk("-%u", NR_CPUS - 1);
 | 
						|
		printk("\n");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void __init dump_numa_memory_topology(void)
 | 
						|
{
 | 
						|
	unsigned int node;
 | 
						|
	unsigned int count;
 | 
						|
 | 
						|
	if (min_common_depth == -1 || !numa_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	for_each_online_node(node) {
 | 
						|
		unsigned long i;
 | 
						|
 | 
						|
		printk(KERN_DEBUG "Node %d Memory:", node);
 | 
						|
 | 
						|
		count = 0;
 | 
						|
 | 
						|
		for (i = 0; i < lmb_end_of_DRAM();
 | 
						|
		     i += (1 << SECTION_SIZE_BITS)) {
 | 
						|
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 | 
						|
				if (count == 0)
 | 
						|
					printk(" 0x%lx", i);
 | 
						|
				++count;
 | 
						|
			} else {
 | 
						|
				if (count > 0)
 | 
						|
					printk("-0x%lx", i);
 | 
						|
				count = 0;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (count > 0)
 | 
						|
			printk("-0x%lx", i);
 | 
						|
		printk("\n");
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate some memory, satisfying the lmb or bootmem allocator where
 | 
						|
 * required. nid is the preferred node and end is the physical address of
 | 
						|
 * the highest address in the node.
 | 
						|
 *
 | 
						|
 * Returns the virtual address of the memory.
 | 
						|
 */
 | 
						|
static void __init *careful_zallocation(int nid, unsigned long size,
 | 
						|
				       unsigned long align,
 | 
						|
				       unsigned long end_pfn)
 | 
						|
{
 | 
						|
	void *ret;
 | 
						|
	int new_nid;
 | 
						|
	unsigned long ret_paddr;
 | 
						|
 | 
						|
	ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 | 
						|
 | 
						|
	/* retry over all memory */
 | 
						|
	if (!ret_paddr)
 | 
						|
		ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
 | 
						|
 | 
						|
	if (!ret_paddr)
 | 
						|
		panic("numa.c: cannot allocate %lu bytes for node %d",
 | 
						|
		      size, nid);
 | 
						|
 | 
						|
	ret = __va(ret_paddr);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We initialize the nodes in numeric order: 0, 1, 2...
 | 
						|
	 * and hand over control from the LMB allocator to the
 | 
						|
	 * bootmem allocator.  If this function is called for
 | 
						|
	 * node 5, then we know that all nodes <5 are using the
 | 
						|
	 * bootmem allocator instead of the LMB allocator.
 | 
						|
	 *
 | 
						|
	 * So, check the nid from which this allocation came
 | 
						|
	 * and double check to see if we need to use bootmem
 | 
						|
	 * instead of the LMB.  We don't free the LMB memory
 | 
						|
	 * since it would be useless.
 | 
						|
	 */
 | 
						|
	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 | 
						|
	if (new_nid < nid) {
 | 
						|
		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 | 
						|
				size, align, 0);
 | 
						|
 | 
						|
		dbg("alloc_bootmem %p %lx\n", ret, size);
 | 
						|
	}
 | 
						|
 | 
						|
	memset(ret, 0, size);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 | 
						|
	.notifier_call = cpu_numa_callback,
 | 
						|
	.priority = 1 /* Must run before sched domains notifier. */
 | 
						|
};
 | 
						|
 | 
						|
static void mark_reserved_regions_for_nid(int nid)
 | 
						|
{
 | 
						|
	struct pglist_data *node = NODE_DATA(nid);
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < lmb.reserved.cnt; i++) {
 | 
						|
		unsigned long physbase = lmb.reserved.region[i].base;
 | 
						|
		unsigned long size = lmb.reserved.region[i].size;
 | 
						|
		unsigned long start_pfn = physbase >> PAGE_SHIFT;
 | 
						|
		unsigned long end_pfn = PFN_UP(physbase + size);
 | 
						|
		struct node_active_region node_ar;
 | 
						|
		unsigned long node_end_pfn = node->node_start_pfn +
 | 
						|
					     node->node_spanned_pages;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check to make sure that this lmb.reserved area is
 | 
						|
		 * within the bounds of the node that we care about.
 | 
						|
		 * Checking the nid of the start and end points is not
 | 
						|
		 * sufficient because the reserved area could span the
 | 
						|
		 * entire node.
 | 
						|
		 */
 | 
						|
		if (end_pfn <= node->node_start_pfn ||
 | 
						|
		    start_pfn >= node_end_pfn)
 | 
						|
			continue;
 | 
						|
 | 
						|
		get_node_active_region(start_pfn, &node_ar);
 | 
						|
		while (start_pfn < end_pfn &&
 | 
						|
			node_ar.start_pfn < node_ar.end_pfn) {
 | 
						|
			unsigned long reserve_size = size;
 | 
						|
			/*
 | 
						|
			 * if reserved region extends past active region
 | 
						|
			 * then trim size to active region
 | 
						|
			 */
 | 
						|
			if (end_pfn > node_ar.end_pfn)
 | 
						|
				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 | 
						|
					- physbase;
 | 
						|
			/*
 | 
						|
			 * Only worry about *this* node, others may not
 | 
						|
			 * yet have valid NODE_DATA().
 | 
						|
			 */
 | 
						|
			if (node_ar.nid == nid) {
 | 
						|
				dbg("reserve_bootmem %lx %lx nid=%d\n",
 | 
						|
					physbase, reserve_size, node_ar.nid);
 | 
						|
				reserve_bootmem_node(NODE_DATA(node_ar.nid),
 | 
						|
						physbase, reserve_size,
 | 
						|
						BOOTMEM_DEFAULT);
 | 
						|
			}
 | 
						|
			/*
 | 
						|
			 * if reserved region is contained in the active region
 | 
						|
			 * then done.
 | 
						|
			 */
 | 
						|
			if (end_pfn <= node_ar.end_pfn)
 | 
						|
				break;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * reserved region extends past the active region
 | 
						|
			 *   get next active region that contains this
 | 
						|
			 *   reserved region
 | 
						|
			 */
 | 
						|
			start_pfn = node_ar.end_pfn;
 | 
						|
			physbase = start_pfn << PAGE_SHIFT;
 | 
						|
			size = size - reserve_size;
 | 
						|
			get_node_active_region(start_pfn, &node_ar);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void __init do_init_bootmem(void)
 | 
						|
{
 | 
						|
	int nid;
 | 
						|
 | 
						|
	min_low_pfn = 0;
 | 
						|
	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
 | 
						|
	max_pfn = max_low_pfn;
 | 
						|
 | 
						|
	if (parse_numa_properties())
 | 
						|
		setup_nonnuma();
 | 
						|
	else
 | 
						|
		dump_numa_memory_topology();
 | 
						|
 | 
						|
	register_cpu_notifier(&ppc64_numa_nb);
 | 
						|
	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
 | 
						|
			  (void *)(unsigned long)boot_cpuid);
 | 
						|
 | 
						|
	for_each_online_node(nid) {
 | 
						|
		unsigned long start_pfn, end_pfn;
 | 
						|
		void *bootmem_vaddr;
 | 
						|
		unsigned long bootmap_pages;
 | 
						|
 | 
						|
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Allocate the node structure node local if possible
 | 
						|
		 *
 | 
						|
		 * Be careful moving this around, as it relies on all
 | 
						|
		 * previous nodes' bootmem to be initialized and have
 | 
						|
		 * all reserved areas marked.
 | 
						|
		 */
 | 
						|
		NODE_DATA(nid) = careful_zallocation(nid,
 | 
						|
					sizeof(struct pglist_data),
 | 
						|
					SMP_CACHE_BYTES, end_pfn);
 | 
						|
 | 
						|
  		dbg("node %d\n", nid);
 | 
						|
		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
 | 
						|
 | 
						|
		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 | 
						|
		NODE_DATA(nid)->node_start_pfn = start_pfn;
 | 
						|
		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
 | 
						|
 | 
						|
		if (NODE_DATA(nid)->node_spanned_pages == 0)
 | 
						|
  			continue;
 | 
						|
 | 
						|
  		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
 | 
						|
  		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
 | 
						|
 | 
						|
		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
 | 
						|
		bootmem_vaddr = careful_zallocation(nid,
 | 
						|
					bootmap_pages << PAGE_SHIFT,
 | 
						|
					PAGE_SIZE, end_pfn);
 | 
						|
 | 
						|
		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
 | 
						|
 | 
						|
		init_bootmem_node(NODE_DATA(nid),
 | 
						|
				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
 | 
						|
				  start_pfn, end_pfn);
 | 
						|
 | 
						|
		free_bootmem_with_active_regions(nid, end_pfn);
 | 
						|
		/*
 | 
						|
		 * Be very careful about moving this around.  Future
 | 
						|
		 * calls to careful_zallocation() depend on this getting
 | 
						|
		 * done correctly.
 | 
						|
		 */
 | 
						|
		mark_reserved_regions_for_nid(nid);
 | 
						|
		sparse_memory_present_with_active_regions(nid);
 | 
						|
	}
 | 
						|
 | 
						|
	init_bootmem_done = 1;
 | 
						|
}
 | 
						|
 | 
						|
void __init paging_init(void)
 | 
						|
{
 | 
						|
	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | 
						|
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | 
						|
	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
 | 
						|
	free_area_init_nodes(max_zone_pfns);
 | 
						|
}
 | 
						|
 | 
						|
static int __init early_numa(char *p)
 | 
						|
{
 | 
						|
	if (!p)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (strstr(p, "off"))
 | 
						|
		numa_enabled = 0;
 | 
						|
 | 
						|
	if (strstr(p, "debug"))
 | 
						|
		numa_debug = 1;
 | 
						|
 | 
						|
	p = strstr(p, "fake=");
 | 
						|
	if (p)
 | 
						|
		cmdline = p + strlen("fake=");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("numa", early_numa);
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
/*
 | 
						|
 * Find the node associated with a hot added memory section for
 | 
						|
 * memory represented in the device tree by the property
 | 
						|
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 | 
						|
 */
 | 
						|
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
 | 
						|
				     unsigned long scn_addr)
 | 
						|
{
 | 
						|
	const u32 *dm;
 | 
						|
	unsigned int drconf_cell_cnt, rc;
 | 
						|
	unsigned long lmb_size;
 | 
						|
	struct assoc_arrays aa;
 | 
						|
	int nid = -1;
 | 
						|
 | 
						|
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
 | 
						|
	if (!drconf_cell_cnt)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	lmb_size = of_get_lmb_size(memory);
 | 
						|
	if (!lmb_size)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	rc = of_get_assoc_arrays(memory, &aa);
 | 
						|
	if (rc)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
 | 
						|
		struct of_drconf_cell drmem;
 | 
						|
 | 
						|
		read_drconf_cell(&drmem, &dm);
 | 
						|
 | 
						|
		/* skip this block if it is reserved or not assigned to
 | 
						|
		 * this partition */
 | 
						|
		if ((drmem.flags & DRCONF_MEM_RESERVED)
 | 
						|
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if ((scn_addr < drmem.base_addr)
 | 
						|
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
 | 
						|
			continue;
 | 
						|
 | 
						|
		nid = of_drconf_to_nid_single(&drmem, &aa);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the node associated with a hot added memory section for memory
 | 
						|
 * represented in the device tree as a node (i.e. memory@XXXX) for
 | 
						|
 * each lmb.
 | 
						|
 */
 | 
						|
int hot_add_node_scn_to_nid(unsigned long scn_addr)
 | 
						|
{
 | 
						|
	struct device_node *memory = NULL;
 | 
						|
	int nid = -1;
 | 
						|
 | 
						|
	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 | 
						|
		unsigned long start, size;
 | 
						|
		int ranges;
 | 
						|
		const unsigned int *memcell_buf;
 | 
						|
		unsigned int len;
 | 
						|
 | 
						|
		memcell_buf = of_get_property(memory, "reg", &len);
 | 
						|
		if (!memcell_buf || len <= 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* ranges in cell */
 | 
						|
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | 
						|
 | 
						|
		while (ranges--) {
 | 
						|
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | 
						|
			size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | 
						|
 | 
						|
			if ((scn_addr < start) || (scn_addr >= (start + size)))
 | 
						|
				continue;
 | 
						|
 | 
						|
			nid = of_node_to_nid_single(memory);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		of_node_put(memory);
 | 
						|
		if (nid >= 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find the node associated with a hot added memory section.  Section
 | 
						|
 * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
 | 
						|
 * sections are fully contained within a single LMB.
 | 
						|
 */
 | 
						|
int hot_add_scn_to_nid(unsigned long scn_addr)
 | 
						|
{
 | 
						|
	struct device_node *memory = NULL;
 | 
						|
	int nid, found = 0;
 | 
						|
 | 
						|
	if (!numa_enabled || (min_common_depth < 0))
 | 
						|
		return any_online_node(NODE_MASK_ALL);
 | 
						|
 | 
						|
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | 
						|
	if (memory) {
 | 
						|
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
 | 
						|
		of_node_put(memory);
 | 
						|
	} else {
 | 
						|
		nid = hot_add_node_scn_to_nid(scn_addr);
 | 
						|
	}
 | 
						|
 | 
						|
	if (nid < 0 || !node_online(nid))
 | 
						|
		nid = any_online_node(NODE_MASK_ALL);
 | 
						|
 | 
						|
	if (NODE_DATA(nid)->node_spanned_pages)
 | 
						|
		return nid;
 | 
						|
 | 
						|
	for_each_online_node(nid) {
 | 
						|
		if (NODE_DATA(nid)->node_spanned_pages) {
 | 
						|
			found = 1;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	BUG_ON(!found);
 | 
						|
	return nid;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_MEMORY_HOTPLUG */
 |