883 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			883 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
 | |
|  *
 | |
|  * This software is available to you under a choice of one of two
 | |
|  * licenses.  You may choose to be licensed under the terms of the GNU
 | |
|  * General Public License (GPL) Version 2, available from the file
 | |
|  * COPYING in the main directory of this source tree, or the BSD-type
 | |
|  * license below:
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  *      Redistributions of source code must retain the above copyright
 | |
|  *      notice, this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  *      Redistributions in binary form must reproduce the above
 | |
|  *      copyright notice, this list of conditions and the following
 | |
|  *      disclaimer in the documentation and/or other materials provided
 | |
|  *      with the distribution.
 | |
|  *
 | |
|  *      Neither the name of the Network Appliance, Inc. nor the names of
 | |
|  *      its contributors may be used to endorse or promote products
 | |
|  *      derived from this software without specific prior written
 | |
|  *      permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
|  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
|  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
|  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
|  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
|  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
|  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
|  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
|  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
|  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * rpc_rdma.c
 | |
|  *
 | |
|  * This file contains the guts of the RPC RDMA protocol, and
 | |
|  * does marshaling/unmarshaling, etc. It is also where interfacing
 | |
|  * to the Linux RPC framework lives.
 | |
|  */
 | |
| 
 | |
| #include "xprt_rdma.h"
 | |
| 
 | |
| #include <linux/highmem.h>
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| # define RPCDBG_FACILITY	RPCDBG_TRANS
 | |
| #endif
 | |
| 
 | |
| enum rpcrdma_chunktype {
 | |
| 	rpcrdma_noch = 0,
 | |
| 	rpcrdma_readch,
 | |
| 	rpcrdma_areadch,
 | |
| 	rpcrdma_writech,
 | |
| 	rpcrdma_replych
 | |
| };
 | |
| 
 | |
| #ifdef RPC_DEBUG
 | |
| static const char transfertypes[][12] = {
 | |
| 	"pure inline",	/* no chunks */
 | |
| 	" read chunk",	/* some argument via rdma read */
 | |
| 	"*read chunk",	/* entire request via rdma read */
 | |
| 	"write chunk",	/* some result via rdma write */
 | |
| 	"reply chunk"	/* entire reply via rdma write */
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Chunk assembly from upper layer xdr_buf.
 | |
|  *
 | |
|  * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
 | |
|  * elements. Segments are then coalesced when registered, if possible
 | |
|  * within the selected memreg mode.
 | |
|  *
 | |
|  * Note, this routine is never called if the connection's memory
 | |
|  * registration strategy is 0 (bounce buffers).
 | |
|  */
 | |
| 
 | |
| static int
 | |
| rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
 | |
| 	enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
 | |
| {
 | |
| 	int len, n = 0, p;
 | |
| 
 | |
| 	if (pos == 0 && xdrbuf->head[0].iov_len) {
 | |
| 		seg[n].mr_page = NULL;
 | |
| 		seg[n].mr_offset = xdrbuf->head[0].iov_base;
 | |
| 		seg[n].mr_len = xdrbuf->head[0].iov_len;
 | |
| 		++n;
 | |
| 	}
 | |
| 
 | |
| 	if (xdrbuf->page_len && (xdrbuf->pages[0] != NULL)) {
 | |
| 		if (n == nsegs)
 | |
| 			return 0;
 | |
| 		seg[n].mr_page = xdrbuf->pages[0];
 | |
| 		seg[n].mr_offset = (void *)(unsigned long) xdrbuf->page_base;
 | |
| 		seg[n].mr_len = min_t(u32,
 | |
| 			PAGE_SIZE - xdrbuf->page_base, xdrbuf->page_len);
 | |
| 		len = xdrbuf->page_len - seg[n].mr_len;
 | |
| 		++n;
 | |
| 		p = 1;
 | |
| 		while (len > 0) {
 | |
| 			if (n == nsegs)
 | |
| 				return 0;
 | |
| 			seg[n].mr_page = xdrbuf->pages[p];
 | |
| 			seg[n].mr_offset = NULL;
 | |
| 			seg[n].mr_len = min_t(u32, PAGE_SIZE, len);
 | |
| 			len -= seg[n].mr_len;
 | |
| 			++n;
 | |
| 			++p;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (xdrbuf->tail[0].iov_len) {
 | |
| 		/* the rpcrdma protocol allows us to omit any trailing
 | |
| 		 * xdr pad bytes, saving the server an RDMA operation. */
 | |
| 		if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
 | |
| 			return n;
 | |
| 		if (n == nsegs)
 | |
| 			return 0;
 | |
| 		seg[n].mr_page = NULL;
 | |
| 		seg[n].mr_offset = xdrbuf->tail[0].iov_base;
 | |
| 		seg[n].mr_len = xdrbuf->tail[0].iov_len;
 | |
| 		++n;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create read/write chunk lists, and reply chunks, for RDMA
 | |
|  *
 | |
|  *   Assume check against THRESHOLD has been done, and chunks are required.
 | |
|  *   Assume only encoding one list entry for read|write chunks. The NFSv3
 | |
|  *     protocol is simple enough to allow this as it only has a single "bulk
 | |
|  *     result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
 | |
|  *     RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
 | |
|  *
 | |
|  * When used for a single reply chunk (which is a special write
 | |
|  * chunk used for the entire reply, rather than just the data), it
 | |
|  * is used primarily for READDIR and READLINK which would otherwise
 | |
|  * be severely size-limited by a small rdma inline read max. The server
 | |
|  * response will come back as an RDMA Write, followed by a message
 | |
|  * of type RDMA_NOMSG carrying the xid and length. As a result, reply
 | |
|  * chunks do not provide data alignment, however they do not require
 | |
|  * "fixup" (moving the response to the upper layer buffer) either.
 | |
|  *
 | |
|  * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 | |
|  *
 | |
|  *  Read chunklist (a linked list):
 | |
|  *   N elements, position P (same P for all chunks of same arg!):
 | |
|  *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 | |
|  *
 | |
|  *  Write chunklist (a list of (one) counted array):
 | |
|  *   N elements:
 | |
|  *    1 - N - HLOO - HLOO - ... - HLOO - 0
 | |
|  *
 | |
|  *  Reply chunk (a counted array):
 | |
|  *   N elements:
 | |
|  *    1 - N - HLOO - HLOO - ... - HLOO
 | |
|  */
 | |
| 
 | |
| static unsigned int
 | |
| rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
 | |
| 		struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
 | |
| {
 | |
| 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 | |
| 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
 | |
| 	int nsegs, nchunks = 0;
 | |
| 	unsigned int pos;
 | |
| 	struct rpcrdma_mr_seg *seg = req->rl_segments;
 | |
| 	struct rpcrdma_read_chunk *cur_rchunk = NULL;
 | |
| 	struct rpcrdma_write_array *warray = NULL;
 | |
| 	struct rpcrdma_write_chunk *cur_wchunk = NULL;
 | |
| 	__be32 *iptr = headerp->rm_body.rm_chunks;
 | |
| 
 | |
| 	if (type == rpcrdma_readch || type == rpcrdma_areadch) {
 | |
| 		/* a read chunk - server will RDMA Read our memory */
 | |
| 		cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
 | |
| 	} else {
 | |
| 		/* a write or reply chunk - server will RDMA Write our memory */
 | |
| 		*iptr++ = xdr_zero;	/* encode a NULL read chunk list */
 | |
| 		if (type == rpcrdma_replych)
 | |
| 			*iptr++ = xdr_zero;	/* a NULL write chunk list */
 | |
| 		warray = (struct rpcrdma_write_array *) iptr;
 | |
| 		cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
 | |
| 	}
 | |
| 
 | |
| 	if (type == rpcrdma_replych || type == rpcrdma_areadch)
 | |
| 		pos = 0;
 | |
| 	else
 | |
| 		pos = target->head[0].iov_len;
 | |
| 
 | |
| 	nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
 | |
| 	if (nsegs == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		/* bind/register the memory, then build chunk from result. */
 | |
| 		int n = rpcrdma_register_external(seg, nsegs,
 | |
| 						cur_wchunk != NULL, r_xprt);
 | |
| 		if (n <= 0)
 | |
| 			goto out;
 | |
| 		if (cur_rchunk) {	/* read */
 | |
| 			cur_rchunk->rc_discrim = xdr_one;
 | |
| 			/* all read chunks have the same "position" */
 | |
| 			cur_rchunk->rc_position = htonl(pos);
 | |
| 			cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
 | |
| 			cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
 | |
| 			xdr_encode_hyper(
 | |
| 					(__be32 *)&cur_rchunk->rc_target.rs_offset,
 | |
| 					seg->mr_base);
 | |
| 			dprintk("RPC:       %s: read chunk "
 | |
| 				"elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
 | |
| 				seg->mr_len, (unsigned long long)seg->mr_base,
 | |
| 				seg->mr_rkey, pos, n < nsegs ? "more" : "last");
 | |
| 			cur_rchunk++;
 | |
| 			r_xprt->rx_stats.read_chunk_count++;
 | |
| 		} else {		/* write/reply */
 | |
| 			cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
 | |
| 			cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
 | |
| 			xdr_encode_hyper(
 | |
| 					(__be32 *)&cur_wchunk->wc_target.rs_offset,
 | |
| 					seg->mr_base);
 | |
| 			dprintk("RPC:       %s: %s chunk "
 | |
| 				"elem %d@0x%llx:0x%x (%s)\n", __func__,
 | |
| 				(type == rpcrdma_replych) ? "reply" : "write",
 | |
| 				seg->mr_len, (unsigned long long)seg->mr_base,
 | |
| 				seg->mr_rkey, n < nsegs ? "more" : "last");
 | |
| 			cur_wchunk++;
 | |
| 			if (type == rpcrdma_replych)
 | |
| 				r_xprt->rx_stats.reply_chunk_count++;
 | |
| 			else
 | |
| 				r_xprt->rx_stats.write_chunk_count++;
 | |
| 			r_xprt->rx_stats.total_rdma_request += seg->mr_len;
 | |
| 		}
 | |
| 		nchunks++;
 | |
| 		seg   += n;
 | |
| 		nsegs -= n;
 | |
| 	} while (nsegs);
 | |
| 
 | |
| 	/* success. all failures return above */
 | |
| 	req->rl_nchunks = nchunks;
 | |
| 
 | |
| 	BUG_ON(nchunks == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * finish off header. If write, marshal discrim and nchunks.
 | |
| 	 */
 | |
| 	if (cur_rchunk) {
 | |
| 		iptr = (__be32 *) cur_rchunk;
 | |
| 		*iptr++ = xdr_zero;	/* finish the read chunk list */
 | |
| 		*iptr++ = xdr_zero;	/* encode a NULL write chunk list */
 | |
| 		*iptr++ = xdr_zero;	/* encode a NULL reply chunk */
 | |
| 	} else {
 | |
| 		warray->wc_discrim = xdr_one;
 | |
| 		warray->wc_nchunks = htonl(nchunks);
 | |
| 		iptr = (__be32 *) cur_wchunk;
 | |
| 		if (type == rpcrdma_writech) {
 | |
| 			*iptr++ = xdr_zero; /* finish the write chunk list */
 | |
| 			*iptr++ = xdr_zero; /* encode a NULL reply chunk */
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Return header size.
 | |
| 	 */
 | |
| 	return (unsigned char *)iptr - (unsigned char *)headerp;
 | |
| 
 | |
| out:
 | |
| 	for (pos = 0; nchunks--;)
 | |
| 		pos += rpcrdma_deregister_external(
 | |
| 				&req->rl_segments[pos], r_xprt, NULL);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy write data inline.
 | |
|  * This function is used for "small" requests. Data which is passed
 | |
|  * to RPC via iovecs (or page list) is copied directly into the
 | |
|  * pre-registered memory buffer for this request. For small amounts
 | |
|  * of data, this is efficient. The cutoff value is tunable.
 | |
|  */
 | |
| static int
 | |
| rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
 | |
| {
 | |
| 	int i, npages, curlen;
 | |
| 	int copy_len;
 | |
| 	unsigned char *srcp, *destp;
 | |
| 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
 | |
| 
 | |
| 	destp = rqst->rq_svec[0].iov_base;
 | |
| 	curlen = rqst->rq_svec[0].iov_len;
 | |
| 	destp += curlen;
 | |
| 	/*
 | |
| 	 * Do optional padding where it makes sense. Alignment of write
 | |
| 	 * payload can help the server, if our setting is accurate.
 | |
| 	 */
 | |
| 	pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
 | |
| 	if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
 | |
| 		pad = 0;	/* don't pad this request */
 | |
| 
 | |
| 	dprintk("RPC:       %s: pad %d destp 0x%p len %d hdrlen %d\n",
 | |
| 		__func__, pad, destp, rqst->rq_slen, curlen);
 | |
| 
 | |
| 	copy_len = rqst->rq_snd_buf.page_len;
 | |
| 
 | |
| 	if (rqst->rq_snd_buf.tail[0].iov_len) {
 | |
| 		curlen = rqst->rq_snd_buf.tail[0].iov_len;
 | |
| 		if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
 | |
| 			memmove(destp + copy_len,
 | |
| 				rqst->rq_snd_buf.tail[0].iov_base, curlen);
 | |
| 			r_xprt->rx_stats.pullup_copy_count += curlen;
 | |
| 		}
 | |
| 		dprintk("RPC:       %s: tail destp 0x%p len %d\n",
 | |
| 			__func__, destp + copy_len, curlen);
 | |
| 		rqst->rq_svec[0].iov_len += curlen;
 | |
| 	}
 | |
| 
 | |
| 	r_xprt->rx_stats.pullup_copy_count += copy_len;
 | |
| 	npages = PAGE_ALIGN(rqst->rq_snd_buf.page_base+copy_len) >> PAGE_SHIFT;
 | |
| 	for (i = 0; copy_len && i < npages; i++) {
 | |
| 		if (i == 0)
 | |
| 			curlen = PAGE_SIZE - rqst->rq_snd_buf.page_base;
 | |
| 		else
 | |
| 			curlen = PAGE_SIZE;
 | |
| 		if (curlen > copy_len)
 | |
| 			curlen = copy_len;
 | |
| 		dprintk("RPC:       %s: page %d destp 0x%p len %d curlen %d\n",
 | |
| 			__func__, i, destp, copy_len, curlen);
 | |
| 		srcp = kmap_atomic(rqst->rq_snd_buf.pages[i],
 | |
| 					KM_SKB_SUNRPC_DATA);
 | |
| 		if (i == 0)
 | |
| 			memcpy(destp, srcp+rqst->rq_snd_buf.page_base, curlen);
 | |
| 		else
 | |
| 			memcpy(destp, srcp, curlen);
 | |
| 		kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
 | |
| 		rqst->rq_svec[0].iov_len += curlen;
 | |
| 		destp += curlen;
 | |
| 		copy_len -= curlen;
 | |
| 	}
 | |
| 	/* header now contains entire send message */
 | |
| 	return pad;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Marshal a request: the primary job of this routine is to choose
 | |
|  * the transfer modes. See comments below.
 | |
|  *
 | |
|  * Uses multiple RDMA IOVs for a request:
 | |
|  *  [0] -- RPC RDMA header, which uses memory from the *start* of the
 | |
|  *         preregistered buffer that already holds the RPC data in
 | |
|  *         its middle.
 | |
|  *  [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
 | |
|  *  [2] -- optional padding.
 | |
|  *  [3] -- if padded, header only in [1] and data here.
 | |
|  */
 | |
| 
 | |
| int
 | |
| rpcrdma_marshal_req(struct rpc_rqst *rqst)
 | |
| {
 | |
| 	struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
 | |
| 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 | |
| 	struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 | |
| 	char *base;
 | |
| 	size_t hdrlen, rpclen, padlen;
 | |
| 	enum rpcrdma_chunktype rtype, wtype;
 | |
| 	struct rpcrdma_msg *headerp;
 | |
| 
 | |
| 	/*
 | |
| 	 * rpclen gets amount of data in first buffer, which is the
 | |
| 	 * pre-registered buffer.
 | |
| 	 */
 | |
| 	base = rqst->rq_svec[0].iov_base;
 | |
| 	rpclen = rqst->rq_svec[0].iov_len;
 | |
| 
 | |
| 	/* build RDMA header in private area at front */
 | |
| 	headerp = (struct rpcrdma_msg *) req->rl_base;
 | |
| 	/* don't htonl XID, it's already done in request */
 | |
| 	headerp->rm_xid = rqst->rq_xid;
 | |
| 	headerp->rm_vers = xdr_one;
 | |
| 	headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
 | |
| 	headerp->rm_type = htonl(RDMA_MSG);
 | |
| 
 | |
| 	/*
 | |
| 	 * Chunks needed for results?
 | |
| 	 *
 | |
| 	 * o If the expected result is under the inline threshold, all ops
 | |
| 	 *   return as inline (but see later).
 | |
| 	 * o Large non-read ops return as a single reply chunk.
 | |
| 	 * o Large read ops return data as write chunk(s), header as inline.
 | |
| 	 *
 | |
| 	 * Note: the NFS code sending down multiple result segments implies
 | |
| 	 * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * This code can handle read chunks, write chunks OR reply
 | |
| 	 * chunks -- only one type. If the request is too big to fit
 | |
| 	 * inline, then we will choose read chunks. If the request is
 | |
| 	 * a READ, then use write chunks to separate the file data
 | |
| 	 * into pages; otherwise use reply chunks.
 | |
| 	 */
 | |
| 	if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
 | |
| 		wtype = rpcrdma_noch;
 | |
| 	else if (rqst->rq_rcv_buf.page_len == 0)
 | |
| 		wtype = rpcrdma_replych;
 | |
| 	else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
 | |
| 		wtype = rpcrdma_writech;
 | |
| 	else
 | |
| 		wtype = rpcrdma_replych;
 | |
| 
 | |
| 	/*
 | |
| 	 * Chunks needed for arguments?
 | |
| 	 *
 | |
| 	 * o If the total request is under the inline threshold, all ops
 | |
| 	 *   are sent as inline.
 | |
| 	 * o Large non-write ops are sent with the entire message as a
 | |
| 	 *   single read chunk (protocol 0-position special case).
 | |
| 	 * o Large write ops transmit data as read chunk(s), header as
 | |
| 	 *   inline.
 | |
| 	 *
 | |
| 	 * Note: the NFS code sending down multiple argument segments
 | |
| 	 * implies the op is a write.
 | |
| 	 * TBD check NFSv4 setacl
 | |
| 	 */
 | |
| 	if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
 | |
| 		rtype = rpcrdma_noch;
 | |
| 	else if (rqst->rq_snd_buf.page_len == 0)
 | |
| 		rtype = rpcrdma_areadch;
 | |
| 	else
 | |
| 		rtype = rpcrdma_readch;
 | |
| 
 | |
| 	/* The following simplification is not true forever */
 | |
| 	if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
 | |
| 		wtype = rpcrdma_noch;
 | |
| 	BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
 | |
| 
 | |
| 	if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
 | |
| 	    (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
 | |
| 		/* forced to "pure inline"? */
 | |
| 		dprintk("RPC:       %s: too much data (%d/%d) for inline\n",
 | |
| 			__func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	hdrlen = 28; /*sizeof *headerp;*/
 | |
| 	padlen = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pull up any extra send data into the preregistered buffer.
 | |
| 	 * When padding is in use and applies to the transfer, insert
 | |
| 	 * it and change the message type.
 | |
| 	 */
 | |
| 	if (rtype == rpcrdma_noch) {
 | |
| 
 | |
| 		padlen = rpcrdma_inline_pullup(rqst,
 | |
| 						RPCRDMA_INLINE_PAD_VALUE(rqst));
 | |
| 
 | |
| 		if (padlen) {
 | |
| 			headerp->rm_type = htonl(RDMA_MSGP);
 | |
| 			headerp->rm_body.rm_padded.rm_align =
 | |
| 				htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
 | |
| 			headerp->rm_body.rm_padded.rm_thresh =
 | |
| 				htonl(RPCRDMA_INLINE_PAD_THRESH);
 | |
| 			headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
 | |
| 			headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
 | |
| 			headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
 | |
| 			hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
 | |
| 			BUG_ON(wtype != rpcrdma_noch);
 | |
| 
 | |
| 		} else {
 | |
| 			headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
 | |
| 			headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
 | |
| 			headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
 | |
| 			/* new length after pullup */
 | |
| 			rpclen = rqst->rq_svec[0].iov_len;
 | |
| 			/*
 | |
| 			 * Currently we try to not actually use read inline.
 | |
| 			 * Reply chunks have the desirable property that
 | |
| 			 * they land, packed, directly in the target buffers
 | |
| 			 * without headers, so they require no fixup. The
 | |
| 			 * additional RDMA Write op sends the same amount
 | |
| 			 * of data, streams on-the-wire and adds no overhead
 | |
| 			 * on receive. Therefore, we request a reply chunk
 | |
| 			 * for non-writes wherever feasible and efficient.
 | |
| 			 */
 | |
| 			if (wtype == rpcrdma_noch &&
 | |
| 			    r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
 | |
| 				wtype = rpcrdma_replych;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Marshal chunks. This routine will return the header length
 | |
| 	 * consumed by marshaling.
 | |
| 	 */
 | |
| 	if (rtype != rpcrdma_noch) {
 | |
| 		hdrlen = rpcrdma_create_chunks(rqst,
 | |
| 					&rqst->rq_snd_buf, headerp, rtype);
 | |
| 		wtype = rtype;	/* simplify dprintk */
 | |
| 
 | |
| 	} else if (wtype != rpcrdma_noch) {
 | |
| 		hdrlen = rpcrdma_create_chunks(rqst,
 | |
| 					&rqst->rq_rcv_buf, headerp, wtype);
 | |
| 	}
 | |
| 
 | |
| 	if (hdrlen == 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	dprintk("RPC:       %s: %s: hdrlen %zd rpclen %zd padlen %zd"
 | |
| 		" headerp 0x%p base 0x%p lkey 0x%x\n",
 | |
| 		__func__, transfertypes[wtype], hdrlen, rpclen, padlen,
 | |
| 		headerp, base, req->rl_iov.lkey);
 | |
| 
 | |
| 	/*
 | |
| 	 * initialize send_iov's - normally only two: rdma chunk header and
 | |
| 	 * single preregistered RPC header buffer, but if padding is present,
 | |
| 	 * then use a preregistered (and zeroed) pad buffer between the RPC
 | |
| 	 * header and any write data. In all non-rdma cases, any following
 | |
| 	 * data has been copied into the RPC header buffer.
 | |
| 	 */
 | |
| 	req->rl_send_iov[0].addr = req->rl_iov.addr;
 | |
| 	req->rl_send_iov[0].length = hdrlen;
 | |
| 	req->rl_send_iov[0].lkey = req->rl_iov.lkey;
 | |
| 
 | |
| 	req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
 | |
| 	req->rl_send_iov[1].length = rpclen;
 | |
| 	req->rl_send_iov[1].lkey = req->rl_iov.lkey;
 | |
| 
 | |
| 	req->rl_niovs = 2;
 | |
| 
 | |
| 	if (padlen) {
 | |
| 		struct rpcrdma_ep *ep = &r_xprt->rx_ep;
 | |
| 
 | |
| 		req->rl_send_iov[2].addr = ep->rep_pad.addr;
 | |
| 		req->rl_send_iov[2].length = padlen;
 | |
| 		req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
 | |
| 
 | |
| 		req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
 | |
| 		req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
 | |
| 		req->rl_send_iov[3].lkey = req->rl_iov.lkey;
 | |
| 
 | |
| 		req->rl_niovs = 4;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Chase down a received write or reply chunklist to get length
 | |
|  * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
 | |
|  */
 | |
| static int
 | |
| rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
 | |
| {
 | |
| 	unsigned int i, total_len;
 | |
| 	struct rpcrdma_write_chunk *cur_wchunk;
 | |
| 
 | |
| 	i = ntohl(**iptrp);	/* get array count */
 | |
| 	if (i > max)
 | |
| 		return -1;
 | |
| 	cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
 | |
| 	total_len = 0;
 | |
| 	while (i--) {
 | |
| 		struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
 | |
| 		ifdebug(FACILITY) {
 | |
| 			u64 off;
 | |
| 			xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
 | |
| 			dprintk("RPC:       %s: chunk %d@0x%llx:0x%x\n",
 | |
| 				__func__,
 | |
| 				ntohl(seg->rs_length),
 | |
| 				(unsigned long long)off,
 | |
| 				ntohl(seg->rs_handle));
 | |
| 		}
 | |
| 		total_len += ntohl(seg->rs_length);
 | |
| 		++cur_wchunk;
 | |
| 	}
 | |
| 	/* check and adjust for properly terminated write chunk */
 | |
| 	if (wrchunk) {
 | |
| 		__be32 *w = (__be32 *) cur_wchunk;
 | |
| 		if (*w++ != xdr_zero)
 | |
| 			return -1;
 | |
| 		cur_wchunk = (struct rpcrdma_write_chunk *) w;
 | |
| 	}
 | |
| 	if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
 | |
| 		return -1;
 | |
| 
 | |
| 	*iptrp = (__be32 *) cur_wchunk;
 | |
| 	return total_len;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Scatter inline received data back into provided iov's.
 | |
|  */
 | |
| static void
 | |
| rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 | |
| {
 | |
| 	int i, npages, curlen, olen;
 | |
| 	char *destp;
 | |
| 
 | |
| 	curlen = rqst->rq_rcv_buf.head[0].iov_len;
 | |
| 	if (curlen > copy_len) {	/* write chunk header fixup */
 | |
| 		curlen = copy_len;
 | |
| 		rqst->rq_rcv_buf.head[0].iov_len = curlen;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("RPC:       %s: srcp 0x%p len %d hdrlen %d\n",
 | |
| 		__func__, srcp, copy_len, curlen);
 | |
| 
 | |
| 	/* Shift pointer for first receive segment only */
 | |
| 	rqst->rq_rcv_buf.head[0].iov_base = srcp;
 | |
| 	srcp += curlen;
 | |
| 	copy_len -= curlen;
 | |
| 
 | |
| 	olen = copy_len;
 | |
| 	i = 0;
 | |
| 	rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
 | |
| 	if (copy_len && rqst->rq_rcv_buf.page_len) {
 | |
| 		npages = PAGE_ALIGN(rqst->rq_rcv_buf.page_base +
 | |
| 			rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
 | |
| 		for (; i < npages; i++) {
 | |
| 			if (i == 0)
 | |
| 				curlen = PAGE_SIZE - rqst->rq_rcv_buf.page_base;
 | |
| 			else
 | |
| 				curlen = PAGE_SIZE;
 | |
| 			if (curlen > copy_len)
 | |
| 				curlen = copy_len;
 | |
| 			dprintk("RPC:       %s: page %d"
 | |
| 				" srcp 0x%p len %d curlen %d\n",
 | |
| 				__func__, i, srcp, copy_len, curlen);
 | |
| 			destp = kmap_atomic(rqst->rq_rcv_buf.pages[i],
 | |
| 						KM_SKB_SUNRPC_DATA);
 | |
| 			if (i == 0)
 | |
| 				memcpy(destp + rqst->rq_rcv_buf.page_base,
 | |
| 						srcp, curlen);
 | |
| 			else
 | |
| 				memcpy(destp, srcp, curlen);
 | |
| 			flush_dcache_page(rqst->rq_rcv_buf.pages[i]);
 | |
| 			kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
 | |
| 			srcp += curlen;
 | |
| 			copy_len -= curlen;
 | |
| 			if (copy_len == 0)
 | |
| 				break;
 | |
| 		}
 | |
| 		rqst->rq_rcv_buf.page_len = olen - copy_len;
 | |
| 	} else
 | |
| 		rqst->rq_rcv_buf.page_len = 0;
 | |
| 
 | |
| 	if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
 | |
| 		curlen = copy_len;
 | |
| 		if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
 | |
| 			curlen = rqst->rq_rcv_buf.tail[0].iov_len;
 | |
| 		if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
 | |
| 			memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
 | |
| 		dprintk("RPC:       %s: tail srcp 0x%p len %d curlen %d\n",
 | |
| 			__func__, srcp, copy_len, curlen);
 | |
| 		rqst->rq_rcv_buf.tail[0].iov_len = curlen;
 | |
| 		copy_len -= curlen; ++i;
 | |
| 	} else
 | |
| 		rqst->rq_rcv_buf.tail[0].iov_len = 0;
 | |
| 
 | |
| 	if (pad) {
 | |
| 		/* implicit padding on terminal chunk */
 | |
| 		unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
 | |
| 		while (pad--)
 | |
| 			p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (copy_len)
 | |
| 		dprintk("RPC:       %s: %d bytes in"
 | |
| 			" %d extra segments (%d lost)\n",
 | |
| 			__func__, olen, i, copy_len);
 | |
| 
 | |
| 	/* TBD avoid a warning from call_decode() */
 | |
| 	rqst->rq_private_buf = rqst->rq_rcv_buf;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called when an async event is posted to
 | |
|  * the connection which changes the connection state. All it
 | |
|  * does at this point is mark the connection up/down, the rpc
 | |
|  * timers do the rest.
 | |
|  */
 | |
| void
 | |
| rpcrdma_conn_func(struct rpcrdma_ep *ep)
 | |
| {
 | |
| 	struct rpc_xprt *xprt = ep->rep_xprt;
 | |
| 
 | |
| 	spin_lock_bh(&xprt->transport_lock);
 | |
| 	if (++xprt->connect_cookie == 0)	/* maintain a reserved value */
 | |
| 		++xprt->connect_cookie;
 | |
| 	if (ep->rep_connected > 0) {
 | |
| 		if (!xprt_test_and_set_connected(xprt))
 | |
| 			xprt_wake_pending_tasks(xprt, 0);
 | |
| 	} else {
 | |
| 		if (xprt_test_and_clear_connected(xprt))
 | |
| 			xprt_wake_pending_tasks(xprt, -ENOTCONN);
 | |
| 	}
 | |
| 	spin_unlock_bh(&xprt->transport_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called when memory window unbind which we are waiting
 | |
|  * for completes. Just use rr_func (zeroed by upcall) to signal completion.
 | |
|  */
 | |
| static void
 | |
| rpcrdma_unbind_func(struct rpcrdma_rep *rep)
 | |
| {
 | |
| 	wake_up(&rep->rr_unbind);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called as a tasklet to do req/reply match and complete a request
 | |
|  * Errors must result in the RPC task either being awakened, or
 | |
|  * allowed to timeout, to discover the errors at that time.
 | |
|  */
 | |
| void
 | |
| rpcrdma_reply_handler(struct rpcrdma_rep *rep)
 | |
| {
 | |
| 	struct rpcrdma_msg *headerp;
 | |
| 	struct rpcrdma_req *req;
 | |
| 	struct rpc_rqst *rqst;
 | |
| 	struct rpc_xprt *xprt = rep->rr_xprt;
 | |
| 	struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
 | |
| 	__be32 *iptr;
 | |
| 	int i, rdmalen, status;
 | |
| 
 | |
| 	/* Check status. If bad, signal disconnect and return rep to pool */
 | |
| 	if (rep->rr_len == ~0U) {
 | |
| 		rpcrdma_recv_buffer_put(rep);
 | |
| 		if (r_xprt->rx_ep.rep_connected == 1) {
 | |
| 			r_xprt->rx_ep.rep_connected = -EIO;
 | |
| 			rpcrdma_conn_func(&r_xprt->rx_ep);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 	if (rep->rr_len < 28) {
 | |
| 		dprintk("RPC:       %s: short/invalid reply\n", __func__);
 | |
| 		goto repost;
 | |
| 	}
 | |
| 	headerp = (struct rpcrdma_msg *) rep->rr_base;
 | |
| 	if (headerp->rm_vers != xdr_one) {
 | |
| 		dprintk("RPC:       %s: invalid version %d\n",
 | |
| 			__func__, ntohl(headerp->rm_vers));
 | |
| 		goto repost;
 | |
| 	}
 | |
| 
 | |
| 	/* Get XID and try for a match. */
 | |
| 	spin_lock(&xprt->transport_lock);
 | |
| 	rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
 | |
| 	if (rqst == NULL) {
 | |
| 		spin_unlock(&xprt->transport_lock);
 | |
| 		dprintk("RPC:       %s: reply 0x%p failed "
 | |
| 			"to match any request xid 0x%08x len %d\n",
 | |
| 			__func__, rep, headerp->rm_xid, rep->rr_len);
 | |
| repost:
 | |
| 		r_xprt->rx_stats.bad_reply_count++;
 | |
| 		rep->rr_func = rpcrdma_reply_handler;
 | |
| 		if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
 | |
| 			rpcrdma_recv_buffer_put(rep);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* get request object */
 | |
| 	req = rpcr_to_rdmar(rqst);
 | |
| 
 | |
| 	dprintk("RPC:       %s: reply 0x%p completes request 0x%p\n"
 | |
| 		"                   RPC request 0x%p xid 0x%08x\n",
 | |
| 			__func__, rep, req, rqst, headerp->rm_xid);
 | |
| 
 | |
| 	BUG_ON(!req || req->rl_reply);
 | |
| 
 | |
| 	/* from here on, the reply is no longer an orphan */
 | |
| 	req->rl_reply = rep;
 | |
| 
 | |
| 	/* check for expected message types */
 | |
| 	/* The order of some of these tests is important. */
 | |
| 	switch (headerp->rm_type) {
 | |
| 	case htonl(RDMA_MSG):
 | |
| 		/* never expect read chunks */
 | |
| 		/* never expect reply chunks (two ways to check) */
 | |
| 		/* never expect write chunks without having offered RDMA */
 | |
| 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 | |
| 		    (headerp->rm_body.rm_chunks[1] == xdr_zero &&
 | |
| 		     headerp->rm_body.rm_chunks[2] != xdr_zero) ||
 | |
| 		    (headerp->rm_body.rm_chunks[1] != xdr_zero &&
 | |
| 		     req->rl_nchunks == 0))
 | |
| 			goto badheader;
 | |
| 		if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
 | |
| 			/* count any expected write chunks in read reply */
 | |
| 			/* start at write chunk array count */
 | |
| 			iptr = &headerp->rm_body.rm_chunks[2];
 | |
| 			rdmalen = rpcrdma_count_chunks(rep,
 | |
| 						req->rl_nchunks, 1, &iptr);
 | |
| 			/* check for validity, and no reply chunk after */
 | |
| 			if (rdmalen < 0 || *iptr++ != xdr_zero)
 | |
| 				goto badheader;
 | |
| 			rep->rr_len -=
 | |
| 			    ((unsigned char *)iptr - (unsigned char *)headerp);
 | |
| 			status = rep->rr_len + rdmalen;
 | |
| 			r_xprt->rx_stats.total_rdma_reply += rdmalen;
 | |
| 			/* special case - last chunk may omit padding */
 | |
| 			if (rdmalen &= 3) {
 | |
| 				rdmalen = 4 - rdmalen;
 | |
| 				status += rdmalen;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/* else ordinary inline */
 | |
| 			rdmalen = 0;
 | |
| 			iptr = (__be32 *)((unsigned char *)headerp + 28);
 | |
| 			rep->rr_len -= 28; /*sizeof *headerp;*/
 | |
| 			status = rep->rr_len;
 | |
| 		}
 | |
| 		/* Fix up the rpc results for upper layer */
 | |
| 		rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
 | |
| 		break;
 | |
| 
 | |
| 	case htonl(RDMA_NOMSG):
 | |
| 		/* never expect read or write chunks, always reply chunks */
 | |
| 		if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
 | |
| 		    headerp->rm_body.rm_chunks[1] != xdr_zero ||
 | |
| 		    headerp->rm_body.rm_chunks[2] != xdr_one ||
 | |
| 		    req->rl_nchunks == 0)
 | |
| 			goto badheader;
 | |
| 		iptr = (__be32 *)((unsigned char *)headerp + 28);
 | |
| 		rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
 | |
| 		if (rdmalen < 0)
 | |
| 			goto badheader;
 | |
| 		r_xprt->rx_stats.total_rdma_reply += rdmalen;
 | |
| 		/* Reply chunk buffer already is the reply vector - no fixup. */
 | |
| 		status = rdmalen;
 | |
| 		break;
 | |
| 
 | |
| badheader:
 | |
| 	default:
 | |
| 		dprintk("%s: invalid rpcrdma reply header (type %d):"
 | |
| 				" chunks[012] == %d %d %d"
 | |
| 				" expected chunks <= %d\n",
 | |
| 				__func__, ntohl(headerp->rm_type),
 | |
| 				headerp->rm_body.rm_chunks[0],
 | |
| 				headerp->rm_body.rm_chunks[1],
 | |
| 				headerp->rm_body.rm_chunks[2],
 | |
| 				req->rl_nchunks);
 | |
| 		status = -EIO;
 | |
| 		r_xprt->rx_stats.bad_reply_count++;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* If using mw bind, start the deregister process now. */
 | |
| 	/* (Note: if mr_free(), cannot perform it here, in tasklet context) */
 | |
| 	if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
 | |
| 	case RPCRDMA_MEMWINDOWS:
 | |
| 		for (i = 0; req->rl_nchunks-- > 1;)
 | |
| 			i += rpcrdma_deregister_external(
 | |
| 				&req->rl_segments[i], r_xprt, NULL);
 | |
| 		/* Optionally wait (not here) for unbinds to complete */
 | |
| 		rep->rr_func = rpcrdma_unbind_func;
 | |
| 		(void) rpcrdma_deregister_external(&req->rl_segments[i],
 | |
| 						   r_xprt, rep);
 | |
| 		break;
 | |
| 	case RPCRDMA_MEMWINDOWS_ASYNC:
 | |
| 		for (i = 0; req->rl_nchunks--;)
 | |
| 			i += rpcrdma_deregister_external(&req->rl_segments[i],
 | |
| 							 r_xprt, NULL);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("RPC:       %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
 | |
| 			__func__, xprt, rqst, status);
 | |
| 	xprt_complete_rqst(rqst->rq_task, status);
 | |
| 	spin_unlock(&xprt->transport_lock);
 | |
| }
 |