1445 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1445 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*
 | |
|  *   (c) 2003-2006 Advanced Micro Devices, Inc.
 | |
|  *  Your use of this code is subject to the terms and conditions of the
 | |
|  *  GNU general public license version 2. See "COPYING" or
 | |
|  *  http://www.gnu.org/licenses/gpl.html
 | |
|  *
 | |
|  *  Support : mark.langsdorf@amd.com
 | |
|  *
 | |
|  *  Based on the powernow-k7.c module written by Dave Jones.
 | |
|  *  (C) 2003 Dave Jones on behalf of SuSE Labs
 | |
|  *  (C) 2004 Dominik Brodowski <linux@brodo.de>
 | |
|  *  (C) 2004 Pavel Machek <pavel@suse.cz>
 | |
|  *  Licensed under the terms of the GNU GPL License version 2.
 | |
|  *  Based upon datasheets & sample CPUs kindly provided by AMD.
 | |
|  *
 | |
|  *  Valuable input gratefully received from Dave Jones, Pavel Machek,
 | |
|  *  Dominik Brodowski, Jacob Shin, and others.
 | |
|  *  Originally developed by Paul Devriendt.
 | |
|  *  Processor information obtained from Chapter 9 (Power and Thermal Management)
 | |
|  *  of the "BIOS and Kernel Developer's Guide for the AMD Athlon 64 and AMD
 | |
|  *  Opteron Processors" available for download from www.amd.com
 | |
|  *
 | |
|  *  Tables for specific CPUs can be inferred from
 | |
|  *     http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/30430.pdf
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/sched.h>	/* for current / set_cpus_allowed() */
 | |
| #include <linux/io.h>
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| #include <asm/msr.h>
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <acpi/processor.h>
 | |
| 
 | |
| #define PFX "powernow-k8: "
 | |
| #define VERSION "version 2.20.00"
 | |
| #include "powernow-k8.h"
 | |
| 
 | |
| /* serialize freq changes  */
 | |
| static DEFINE_MUTEX(fidvid_mutex);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
 | |
| 
 | |
| static int cpu_family = CPU_OPTERON;
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| static inline const struct cpumask *cpu_core_mask(int cpu)
 | |
| {
 | |
| 	return cpumask_of(0);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Return a frequency in MHz, given an input fid */
 | |
| static u32 find_freq_from_fid(u32 fid)
 | |
| {
 | |
| 	return 800 + (fid * 100);
 | |
| }
 | |
| 
 | |
| /* Return a frequency in KHz, given an input fid */
 | |
| static u32 find_khz_freq_from_fid(u32 fid)
 | |
| {
 | |
| 	return 1000 * find_freq_from_fid(fid);
 | |
| }
 | |
| 
 | |
| static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
 | |
| 		u32 pstate)
 | |
| {
 | |
| 	return data[pstate].frequency;
 | |
| }
 | |
| 
 | |
| /* Return the vco fid for an input fid
 | |
|  *
 | |
|  * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
 | |
|  * only from corresponding high fids. This returns "high" fid corresponding to
 | |
|  * "low" one.
 | |
|  */
 | |
| static u32 convert_fid_to_vco_fid(u32 fid)
 | |
| {
 | |
| 	if (fid < HI_FID_TABLE_BOTTOM)
 | |
| 		return 8 + (2 * fid);
 | |
| 	else
 | |
| 		return fid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return 1 if the pending bit is set. Unless we just instructed the processor
 | |
|  * to transition to a new state, seeing this bit set is really bad news.
 | |
|  */
 | |
| static int pending_bit_stuck(void)
 | |
| {
 | |
| 	u32 lo, hi;
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		return 0;
 | |
| 
 | |
| 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 | |
| 	return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update the global current fid / vid values from the status msr.
 | |
|  * Returns 1 on error.
 | |
|  */
 | |
| static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
 | |
| {
 | |
| 	u32 lo, hi;
 | |
| 	u32 i = 0;
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE) {
 | |
| 		rdmsr(MSR_PSTATE_STATUS, lo, hi);
 | |
| 		i = lo & HW_PSTATE_MASK;
 | |
| 		data->currpstate = i;
 | |
| 
 | |
| 		/*
 | |
| 		 * a workaround for family 11h erratum 311 might cause
 | |
| 		 * an "out-of-range Pstate if the core is in Pstate-0
 | |
| 		 */
 | |
| 		if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
 | |
| 			data->currpstate = HW_PSTATE_0;
 | |
| 
 | |
| 		return 0;
 | |
| 	}
 | |
| 	do {
 | |
| 		if (i++ > 10000) {
 | |
| 			dprintk("detected change pending stuck\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 		rdmsr(MSR_FIDVID_STATUS, lo, hi);
 | |
| 	} while (lo & MSR_S_LO_CHANGE_PENDING);
 | |
| 
 | |
| 	data->currvid = hi & MSR_S_HI_CURRENT_VID;
 | |
| 	data->currfid = lo & MSR_S_LO_CURRENT_FID;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* the isochronous relief time */
 | |
| static void count_off_irt(struct powernow_k8_data *data)
 | |
| {
 | |
| 	udelay((1 << data->irt) * 10);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* the voltage stabilization time */
 | |
| static void count_off_vst(struct powernow_k8_data *data)
 | |
| {
 | |
| 	udelay(data->vstable * VST_UNITS_20US);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /* need to init the control msr to a safe value (for each cpu) */
 | |
| static void fidvid_msr_init(void)
 | |
| {
 | |
| 	u32 lo, hi;
 | |
| 	u8 fid, vid;
 | |
| 
 | |
| 	rdmsr(MSR_FIDVID_STATUS, lo, hi);
 | |
| 	vid = hi & MSR_S_HI_CURRENT_VID;
 | |
| 	fid = lo & MSR_S_LO_CURRENT_FID;
 | |
| 	lo = fid | (vid << MSR_C_LO_VID_SHIFT);
 | |
| 	hi = MSR_C_HI_STP_GNT_BENIGN;
 | |
| 	dprintk("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
 | |
| 	wrmsr(MSR_FIDVID_CTL, lo, hi);
 | |
| }
 | |
| 
 | |
| /* write the new fid value along with the other control fields to the msr */
 | |
| static int write_new_fid(struct powernow_k8_data *data, u32 fid)
 | |
| {
 | |
| 	u32 lo;
 | |
| 	u32 savevid = data->currvid;
 | |
| 	u32 i = 0;
 | |
| 
 | |
| 	if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
 | |
| 		printk(KERN_ERR PFX "internal error - overflow on fid write\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	lo = fid;
 | |
| 	lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
 | |
| 	lo |= MSR_C_LO_INIT_FID_VID;
 | |
| 
 | |
| 	dprintk("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
 | |
| 		fid, lo, data->plllock * PLL_LOCK_CONVERSION);
 | |
| 
 | |
| 	do {
 | |
| 		wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
 | |
| 		if (i++ > 100) {
 | |
| 			printk(KERN_ERR PFX
 | |
| 				"Hardware error - pending bit very stuck - "
 | |
| 				"no further pstate changes possible\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} while (query_current_values_with_pending_wait(data));
 | |
| 
 | |
| 	count_off_irt(data);
 | |
| 
 | |
| 	if (savevid != data->currvid) {
 | |
| 		printk(KERN_ERR PFX
 | |
| 			"vid change on fid trans, old 0x%x, new 0x%x\n",
 | |
| 			savevid, data->currvid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (fid != data->currfid) {
 | |
| 		printk(KERN_ERR PFX
 | |
| 			"fid trans failed, fid 0x%x, curr 0x%x\n", fid,
 | |
| 			data->currfid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Write a new vid to the hardware */
 | |
| static int write_new_vid(struct powernow_k8_data *data, u32 vid)
 | |
| {
 | |
| 	u32 lo;
 | |
| 	u32 savefid = data->currfid;
 | |
| 	int i = 0;
 | |
| 
 | |
| 	if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
 | |
| 		printk(KERN_ERR PFX "internal error - overflow on vid write\n");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	lo = data->currfid;
 | |
| 	lo |= (vid << MSR_C_LO_VID_SHIFT);
 | |
| 	lo |= MSR_C_LO_INIT_FID_VID;
 | |
| 
 | |
| 	dprintk("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
 | |
| 		vid, lo, STOP_GRANT_5NS);
 | |
| 
 | |
| 	do {
 | |
| 		wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
 | |
| 		if (i++ > 100) {
 | |
| 			printk(KERN_ERR PFX "internal error - pending bit "
 | |
| 					"very stuck - no further pstate "
 | |
| 					"changes possible\n");
 | |
| 			return 1;
 | |
| 		}
 | |
| 	} while (query_current_values_with_pending_wait(data));
 | |
| 
 | |
| 	if (savefid != data->currfid) {
 | |
| 		printk(KERN_ERR PFX "fid changed on vid trans, old "
 | |
| 			"0x%x new 0x%x\n",
 | |
| 		       savefid, data->currfid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (vid != data->currvid) {
 | |
| 		printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
 | |
| 				"curr 0x%x\n",
 | |
| 				vid, data->currvid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reduce the vid by the max of step or reqvid.
 | |
|  * Decreasing vid codes represent increasing voltages:
 | |
|  * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
 | |
|  */
 | |
| static int decrease_vid_code_by_step(struct powernow_k8_data *data,
 | |
| 		u32 reqvid, u32 step)
 | |
| {
 | |
| 	if ((data->currvid - reqvid) > step)
 | |
| 		reqvid = data->currvid - step;
 | |
| 
 | |
| 	if (write_new_vid(data, reqvid))
 | |
| 		return 1;
 | |
| 
 | |
| 	count_off_vst(data);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Change hardware pstate by single MSR write */
 | |
| static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
 | |
| {
 | |
| 	wrmsr(MSR_PSTATE_CTRL, pstate, 0);
 | |
| 	data->currpstate = pstate;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
 | |
| static int transition_fid_vid(struct powernow_k8_data *data,
 | |
| 		u32 reqfid, u32 reqvid)
 | |
| {
 | |
| 	if (core_voltage_pre_transition(data, reqvid, reqfid))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (core_frequency_transition(data, reqfid))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (core_voltage_post_transition(data, reqvid))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
 | |
| 		printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
 | |
| 				"curr 0x%x 0x%x\n",
 | |
| 				smp_processor_id(),
 | |
| 				reqfid, reqvid, data->currfid, data->currvid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
 | |
| 		smp_processor_id(), data->currfid, data->currvid);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Phase 1 - core voltage transition ... setup voltage */
 | |
| static int core_voltage_pre_transition(struct powernow_k8_data *data,
 | |
| 		u32 reqvid, u32 reqfid)
 | |
| {
 | |
| 	u32 rvosteps = data->rvo;
 | |
| 	u32 savefid = data->currfid;
 | |
| 	u32 maxvid, lo, rvomult = 1;
 | |
| 
 | |
| 	dprintk("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
 | |
| 		"reqvid 0x%x, rvo 0x%x\n",
 | |
| 		smp_processor_id(),
 | |
| 		data->currfid, data->currvid, reqvid, data->rvo);
 | |
| 
 | |
| 	if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
 | |
| 		rvomult = 2;
 | |
| 	rvosteps *= rvomult;
 | |
| 	rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
 | |
| 	maxvid = 0x1f & (maxvid >> 16);
 | |
| 	dprintk("ph1 maxvid=0x%x\n", maxvid);
 | |
| 	if (reqvid < maxvid) /* lower numbers are higher voltages */
 | |
| 		reqvid = maxvid;
 | |
| 
 | |
| 	while (data->currvid > reqvid) {
 | |
| 		dprintk("ph1: curr 0x%x, req vid 0x%x\n",
 | |
| 			data->currvid, reqvid);
 | |
| 		if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	while ((rvosteps > 0) &&
 | |
| 			((rvomult * data->rvo + data->currvid) > reqvid)) {
 | |
| 		if (data->currvid == maxvid) {
 | |
| 			rvosteps = 0;
 | |
| 		} else {
 | |
| 			dprintk("ph1: changing vid for rvo, req 0x%x\n",
 | |
| 				data->currvid - 1);
 | |
| 			if (decrease_vid_code_by_step(data, data->currvid-1, 1))
 | |
| 				return 1;
 | |
| 			rvosteps--;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (savefid != data->currfid) {
 | |
| 		printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
 | |
| 				data->currfid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("ph1 complete, currfid 0x%x, currvid 0x%x\n",
 | |
| 		data->currfid, data->currvid);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Phase 2 - core frequency transition */
 | |
| static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
 | |
| {
 | |
| 	u32 vcoreqfid, vcocurrfid, vcofiddiff;
 | |
| 	u32 fid_interval, savevid = data->currvid;
 | |
| 
 | |
| 	if (data->currfid == reqfid) {
 | |
| 		printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
 | |
| 				data->currfid);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
 | |
| 		"reqfid 0x%x\n",
 | |
| 		smp_processor_id(),
 | |
| 		data->currfid, data->currvid, reqfid);
 | |
| 
 | |
| 	vcoreqfid = convert_fid_to_vco_fid(reqfid);
 | |
| 	vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 | |
| 	vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 | |
| 	    : vcoreqfid - vcocurrfid;
 | |
| 
 | |
| 	if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
 | |
| 		vcofiddiff = 0;
 | |
| 
 | |
| 	while (vcofiddiff > 2) {
 | |
| 		(data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
 | |
| 
 | |
| 		if (reqfid > data->currfid) {
 | |
| 			if (data->currfid > LO_FID_TABLE_TOP) {
 | |
| 				if (write_new_fid(data,
 | |
| 						data->currfid + fid_interval))
 | |
| 					return 1;
 | |
| 			} else {
 | |
| 				if (write_new_fid
 | |
| 				    (data,
 | |
| 				     2 + convert_fid_to_vco_fid(data->currfid)))
 | |
| 					return 1;
 | |
| 			}
 | |
| 		} else {
 | |
| 			if (write_new_fid(data, data->currfid - fid_interval))
 | |
| 				return 1;
 | |
| 		}
 | |
| 
 | |
| 		vcocurrfid = convert_fid_to_vco_fid(data->currfid);
 | |
| 		vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
 | |
| 		    : vcoreqfid - vcocurrfid;
 | |
| 	}
 | |
| 
 | |
| 	if (write_new_fid(data, reqfid))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (data->currfid != reqfid) {
 | |
| 		printk(KERN_ERR PFX
 | |
| 			"ph2: mismatch, failed fid transition, "
 | |
| 			"curr 0x%x, req 0x%x\n",
 | |
| 			data->currfid, reqfid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (savevid != data->currvid) {
 | |
| 		printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
 | |
| 			savevid, data->currvid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("ph2 complete, currfid 0x%x, currvid 0x%x\n",
 | |
| 		data->currfid, data->currvid);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Phase 3 - core voltage transition flow ... jump to the final vid. */
 | |
| static int core_voltage_post_transition(struct powernow_k8_data *data,
 | |
| 		u32 reqvid)
 | |
| {
 | |
| 	u32 savefid = data->currfid;
 | |
| 	u32 savereqvid = reqvid;
 | |
| 
 | |
| 	dprintk("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
 | |
| 		smp_processor_id(),
 | |
| 		data->currfid, data->currvid);
 | |
| 
 | |
| 	if (reqvid != data->currvid) {
 | |
| 		if (write_new_vid(data, reqvid))
 | |
| 			return 1;
 | |
| 
 | |
| 		if (savefid != data->currfid) {
 | |
| 			printk(KERN_ERR PFX
 | |
| 			       "ph3: bad fid change, save 0x%x, curr 0x%x\n",
 | |
| 			       savefid, data->currfid);
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		if (data->currvid != reqvid) {
 | |
| 			printk(KERN_ERR PFX
 | |
| 			       "ph3: failed vid transition\n, "
 | |
| 			       "req 0x%x, curr 0x%x",
 | |
| 			       reqvid, data->currvid);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (savereqvid != data->currvid) {
 | |
| 		dprintk("ph3 failed, currvid 0x%x\n", data->currvid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (savefid != data->currfid) {
 | |
| 		dprintk("ph3 failed, currfid changed 0x%x\n",
 | |
| 			data->currfid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("ph3 complete, currfid 0x%x, currvid 0x%x\n",
 | |
| 		data->currfid, data->currvid);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void check_supported_cpu(void *_rc)
 | |
| {
 | |
| 	u32 eax, ebx, ecx, edx;
 | |
| 	int *rc = _rc;
 | |
| 
 | |
| 	*rc = -ENODEV;
 | |
| 
 | |
| 	if (current_cpu_data.x86_vendor != X86_VENDOR_AMD)
 | |
| 		return;
 | |
| 
 | |
| 	eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 | |
| 	if (((eax & CPUID_XFAM) != CPUID_XFAM_K8) &&
 | |
| 	    ((eax & CPUID_XFAM) < CPUID_XFAM_10H))
 | |
| 		return;
 | |
| 
 | |
| 	if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
 | |
| 		if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
 | |
| 		    ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
 | |
| 			printk(KERN_INFO PFX
 | |
| 				"Processor cpuid %x not supported\n", eax);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
 | |
| 		if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
 | |
| 			printk(KERN_INFO PFX
 | |
| 			       "No frequency change capabilities detected\n");
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 | |
| 		if ((edx & P_STATE_TRANSITION_CAPABLE)
 | |
| 			!= P_STATE_TRANSITION_CAPABLE) {
 | |
| 			printk(KERN_INFO PFX
 | |
| 				"Power state transitions not supported\n");
 | |
| 			return;
 | |
| 		}
 | |
| 	} else { /* must be a HW Pstate capable processor */
 | |
| 		cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
 | |
| 		if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
 | |
| 			cpu_family = CPU_HW_PSTATE;
 | |
| 		else
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	*rc = 0;
 | |
| }
 | |
| 
 | |
| static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
 | |
| 		u8 maxvid)
 | |
| {
 | |
| 	unsigned int j;
 | |
| 	u8 lastfid = 0xff;
 | |
| 
 | |
| 	for (j = 0; j < data->numps; j++) {
 | |
| 		if (pst[j].vid > LEAST_VID) {
 | |
| 			printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
 | |
| 			       j, pst[j].vid);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (pst[j].vid < data->rvo) {
 | |
| 			/* vid + rvo >= 0 */
 | |
| 			printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
 | |
| 			       " %d\n", j);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		if (pst[j].vid < maxvid + data->rvo) {
 | |
| 			/* vid + rvo >= maxvid */
 | |
| 			printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
 | |
| 			       " %d\n", j);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		if (pst[j].fid > MAX_FID) {
 | |
| 			printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
 | |
| 			       " %d\n", j);
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 		if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
 | |
| 			/* Only first fid is allowed to be in "low" range */
 | |
| 			printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
 | |
| 			       "0x%x\n", j, pst[j].fid);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (pst[j].fid < lastfid)
 | |
| 			lastfid = pst[j].fid;
 | |
| 	}
 | |
| 	if (lastfid & 1) {
 | |
| 		printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	if (lastfid > LO_FID_TABLE_TOP)
 | |
| 		printk(KERN_INFO FW_BUG PFX
 | |
| 			"first fid not from lo freq table\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
 | |
| 		unsigned int entry)
 | |
| {
 | |
| 	powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
 | |
| }
 | |
| 
 | |
| static void print_basics(struct powernow_k8_data *data)
 | |
| {
 | |
| 	int j;
 | |
| 	for (j = 0; j < data->numps; j++) {
 | |
| 		if (data->powernow_table[j].frequency !=
 | |
| 				CPUFREQ_ENTRY_INVALID) {
 | |
| 			if (cpu_family == CPU_HW_PSTATE) {
 | |
| 				printk(KERN_INFO PFX
 | |
| 					"   %d : pstate %d (%d MHz)\n", j,
 | |
| 					data->powernow_table[j].index,
 | |
| 					data->powernow_table[j].frequency/1000);
 | |
| 			} else {
 | |
| 				printk(KERN_INFO PFX
 | |
| 					"   %d : fid 0x%x (%d MHz), vid 0x%x\n",
 | |
| 					j,
 | |
| 					data->powernow_table[j].index & 0xff,
 | |
| 					data->powernow_table[j].frequency/1000,
 | |
| 					data->powernow_table[j].index >> 8);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	if (data->batps)
 | |
| 		printk(KERN_INFO PFX "Only %d pstates on battery\n",
 | |
| 				data->batps);
 | |
| }
 | |
| 
 | |
| static u32 freq_from_fid_did(u32 fid, u32 did)
 | |
| {
 | |
| 	u32 mhz = 0;
 | |
| 
 | |
| 	if (boot_cpu_data.x86 == 0x10)
 | |
| 		mhz = (100 * (fid + 0x10)) >> did;
 | |
| 	else if (boot_cpu_data.x86 == 0x11)
 | |
| 		mhz = (100 * (fid + 8)) >> did;
 | |
| 	else
 | |
| 		BUG();
 | |
| 
 | |
| 	return mhz * 1000;
 | |
| }
 | |
| 
 | |
| static int fill_powernow_table(struct powernow_k8_data *data,
 | |
| 		struct pst_s *pst, u8 maxvid)
 | |
| {
 | |
| 	struct cpufreq_frequency_table *powernow_table;
 | |
| 	unsigned int j;
 | |
| 
 | |
| 	if (data->batps) {
 | |
| 		/* use ACPI support to get full speed on mains power */
 | |
| 		printk(KERN_WARNING PFX
 | |
| 			"Only %d pstates usable (use ACPI driver for full "
 | |
| 			"range\n", data->batps);
 | |
| 		data->numps = data->batps;
 | |
| 	}
 | |
| 
 | |
| 	for (j = 1; j < data->numps; j++) {
 | |
| 		if (pst[j-1].fid >= pst[j].fid) {
 | |
| 			printk(KERN_ERR PFX "PST out of sequence\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (data->numps < 2) {
 | |
| 		printk(KERN_ERR PFX "no p states to transition\n");
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (check_pst_table(data, pst, maxvid))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 | |
| 		* (data->numps + 1)), GFP_KERNEL);
 | |
| 	if (!powernow_table) {
 | |
| 		printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < data->numps; j++) {
 | |
| 		int freq;
 | |
| 		powernow_table[j].index = pst[j].fid; /* lower 8 bits */
 | |
| 		powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
 | |
| 		freq = find_khz_freq_from_fid(pst[j].fid);
 | |
| 		powernow_table[j].frequency = freq;
 | |
| 	}
 | |
| 	powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
 | |
| 	powernow_table[data->numps].index = 0;
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(data)) {
 | |
| 		kfree(powernow_table);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
 | |
| 	data->powernow_table = powernow_table;
 | |
| 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 | |
| 		print_basics(data);
 | |
| 
 | |
| 	for (j = 0; j < data->numps; j++)
 | |
| 		if ((pst[j].fid == data->currfid) &&
 | |
| 		    (pst[j].vid == data->currvid))
 | |
| 			return 0;
 | |
| 
 | |
| 	dprintk("currfid/vid do not match PST, ignoring\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Find and validate the PSB/PST table in BIOS. */
 | |
| static int find_psb_table(struct powernow_k8_data *data)
 | |
| {
 | |
| 	struct psb_s *psb;
 | |
| 	unsigned int i;
 | |
| 	u32 mvs;
 | |
| 	u8 maxvid;
 | |
| 	u32 cpst = 0;
 | |
| 	u32 thiscpuid;
 | |
| 
 | |
| 	for (i = 0xc0000; i < 0xffff0; i += 0x10) {
 | |
| 		/* Scan BIOS looking for the signature. */
 | |
| 		/* It can not be at ffff0 - it is too big. */
 | |
| 
 | |
| 		psb = phys_to_virt(i);
 | |
| 		if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
 | |
| 			continue;
 | |
| 
 | |
| 		dprintk("found PSB header at 0x%p\n", psb);
 | |
| 
 | |
| 		dprintk("table vers: 0x%x\n", psb->tableversion);
 | |
| 		if (psb->tableversion != PSB_VERSION_1_4) {
 | |
| 			printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		dprintk("flags: 0x%x\n", psb->flags1);
 | |
| 		if (psb->flags1) {
 | |
| 			printk(KERN_ERR FW_BUG PFX "unknown flags\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		data->vstable = psb->vstable;
 | |
| 		dprintk("voltage stabilization time: %d(*20us)\n",
 | |
| 				data->vstable);
 | |
| 
 | |
| 		dprintk("flags2: 0x%x\n", psb->flags2);
 | |
| 		data->rvo = psb->flags2 & 3;
 | |
| 		data->irt = ((psb->flags2) >> 2) & 3;
 | |
| 		mvs = ((psb->flags2) >> 4) & 3;
 | |
| 		data->vidmvs = 1 << mvs;
 | |
| 		data->batps = ((psb->flags2) >> 6) & 3;
 | |
| 
 | |
| 		dprintk("ramp voltage offset: %d\n", data->rvo);
 | |
| 		dprintk("isochronous relief time: %d\n", data->irt);
 | |
| 		dprintk("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
 | |
| 
 | |
| 		dprintk("numpst: 0x%x\n", psb->num_tables);
 | |
| 		cpst = psb->num_tables;
 | |
| 		if ((psb->cpuid == 0x00000fc0) ||
 | |
| 		    (psb->cpuid == 0x00000fe0)) {
 | |
| 			thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
 | |
| 			if ((thiscpuid == 0x00000fc0) ||
 | |
| 			    (thiscpuid == 0x00000fe0))
 | |
| 				cpst = 1;
 | |
| 		}
 | |
| 		if (cpst != 1) {
 | |
| 			printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
 | |
| 			return -ENODEV;
 | |
| 		}
 | |
| 
 | |
| 		data->plllock = psb->plllocktime;
 | |
| 		dprintk("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
 | |
| 		dprintk("maxfid: 0x%x\n", psb->maxfid);
 | |
| 		dprintk("maxvid: 0x%x\n", psb->maxvid);
 | |
| 		maxvid = psb->maxvid;
 | |
| 
 | |
| 		data->numps = psb->numps;
 | |
| 		dprintk("numpstates: 0x%x\n", data->numps);
 | |
| 		return fill_powernow_table(data,
 | |
| 				(struct pst_s *)(psb+1), maxvid);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * If you see this message, complain to BIOS manufacturer. If
 | |
| 	 * he tells you "we do not support Linux" or some similar
 | |
| 	 * nonsense, remember that Windows 2000 uses the same legacy
 | |
| 	 * mechanism that the old Linux PSB driver uses. Tell them it
 | |
| 	 * is broken with Windows 2000.
 | |
| 	 *
 | |
| 	 * The reference to the AMD documentation is chapter 9 in the
 | |
| 	 * BIOS and Kernel Developer's Guide, which is available on
 | |
| 	 * www.amd.com
 | |
| 	 */
 | |
| 	printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
 | |
| 		unsigned int index)
 | |
| {
 | |
| 	acpi_integer control;
 | |
| 
 | |
| 	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
 | |
| 		return;
 | |
| 
 | |
| 	control = data->acpi_data.states[index].control;
 | |
| 	data->irt = (control >> IRT_SHIFT) & IRT_MASK;
 | |
| 	data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
 | |
| 	data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
 | |
| 	data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
 | |
| 	data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
 | |
| 	data->vstable = (control >> VST_SHIFT) & VST_MASK;
 | |
| }
 | |
| 
 | |
| static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
 | |
| {
 | |
| 	struct cpufreq_frequency_table *powernow_table;
 | |
| 	int ret_val = -ENODEV;
 | |
| 	acpi_integer control, status;
 | |
| 
 | |
| 	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
 | |
| 		dprintk("register performance failed: bad ACPI data\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* verify the data contained in the ACPI structures */
 | |
| 	if (data->acpi_data.state_count <= 1) {
 | |
| 		dprintk("No ACPI P-States\n");
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	control = data->acpi_data.control_register.space_id;
 | |
| 	status = data->acpi_data.status_register.space_id;
 | |
| 
 | |
| 	if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
 | |
| 	    (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
 | |
| 		dprintk("Invalid control/status registers (%x - %x)\n",
 | |
| 			control, status);
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	/* fill in data->powernow_table */
 | |
| 	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
 | |
| 		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
 | |
| 	if (!powernow_table) {
 | |
| 		dprintk("powernow_table memory alloc failure\n");
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	/* fill in data */
 | |
| 	data->numps = data->acpi_data.state_count;
 | |
| 	powernow_k8_acpi_pst_values(data, 0);
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		ret_val = fill_powernow_table_pstate(data, powernow_table);
 | |
| 	else
 | |
| 		ret_val = fill_powernow_table_fidvid(data, powernow_table);
 | |
| 	if (ret_val)
 | |
| 		goto err_out_mem;
 | |
| 
 | |
| 	powernow_table[data->acpi_data.state_count].frequency =
 | |
| 		CPUFREQ_TABLE_END;
 | |
| 	powernow_table[data->acpi_data.state_count].index = 0;
 | |
| 	data->powernow_table = powernow_table;
 | |
| 
 | |
| 	if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
 | |
| 		print_basics(data);
 | |
| 
 | |
| 	/* notify BIOS that we exist */
 | |
| 	acpi_processor_notify_smm(THIS_MODULE);
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
 | |
| 		printk(KERN_ERR PFX
 | |
| 				"unable to alloc powernow_k8_data cpumask\n");
 | |
| 		ret_val = -ENOMEM;
 | |
| 		goto err_out_mem;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_mem:
 | |
| 	kfree(powernow_table);
 | |
| 
 | |
| err_out:
 | |
| 	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
 | |
| 
 | |
| 	/* data->acpi_data.state_count informs us at ->exit()
 | |
| 	 * whether ACPI was used */
 | |
| 	data->acpi_data.state_count = 0;
 | |
| 
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| static int fill_powernow_table_pstate(struct powernow_k8_data *data,
 | |
| 		struct cpufreq_frequency_table *powernow_table)
 | |
| {
 | |
| 	int i;
 | |
| 	u32 hi = 0, lo = 0;
 | |
| 	rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
 | |
| 	data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
 | |
| 
 | |
| 	for (i = 0; i < data->acpi_data.state_count; i++) {
 | |
| 		u32 index;
 | |
| 
 | |
| 		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
 | |
| 		if (index > data->max_hw_pstate) {
 | |
| 			printk(KERN_ERR PFX "invalid pstate %d - "
 | |
| 					"bad value %d.\n", i, index);
 | |
| 			printk(KERN_ERR PFX "Please report to BIOS "
 | |
| 					"manufacturer\n");
 | |
| 			invalidate_entry(powernow_table, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 		rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
 | |
| 		if (!(hi & HW_PSTATE_VALID_MASK)) {
 | |
| 			dprintk("invalid pstate %d, ignoring\n", index);
 | |
| 			invalidate_entry(powernow_table, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		powernow_table[i].index = index;
 | |
| 
 | |
| 		/* Frequency may be rounded for these */
 | |
| 		if (boot_cpu_data.x86 == 0x10 || boot_cpu_data.x86 == 0x11) {
 | |
| 			powernow_table[i].frequency =
 | |
| 				freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
 | |
| 		} else
 | |
| 			powernow_table[i].frequency =
 | |
| 				data->acpi_data.states[i].core_frequency * 1000;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
 | |
| 		struct cpufreq_frequency_table *powernow_table)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < data->acpi_data.state_count; i++) {
 | |
| 		u32 fid;
 | |
| 		u32 vid;
 | |
| 		u32 freq, index;
 | |
| 		acpi_integer status, control;
 | |
| 
 | |
| 		if (data->exttype) {
 | |
| 			status =  data->acpi_data.states[i].status;
 | |
| 			fid = status & EXT_FID_MASK;
 | |
| 			vid = (status >> VID_SHIFT) & EXT_VID_MASK;
 | |
| 		} else {
 | |
| 			control =  data->acpi_data.states[i].control;
 | |
| 			fid = control & FID_MASK;
 | |
| 			vid = (control >> VID_SHIFT) & VID_MASK;
 | |
| 		}
 | |
| 
 | |
| 		dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
 | |
| 
 | |
| 		index = fid | (vid<<8);
 | |
| 		powernow_table[i].index = index;
 | |
| 
 | |
| 		freq = find_khz_freq_from_fid(fid);
 | |
| 		powernow_table[i].frequency = freq;
 | |
| 
 | |
| 		/* verify frequency is OK */
 | |
| 		if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
 | |
| 			dprintk("invalid freq %u kHz, ignoring\n", freq);
 | |
| 			invalidate_entry(powernow_table, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* verify voltage is OK -
 | |
| 		 * BIOSs are using "off" to indicate invalid */
 | |
| 		if (vid == VID_OFF) {
 | |
| 			dprintk("invalid vid %u, ignoring\n", vid);
 | |
| 			invalidate_entry(powernow_table, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
 | |
| 			printk(KERN_INFO PFX "invalid freq entries "
 | |
| 				"%u kHz vs. %u kHz\n", freq,
 | |
| 				(unsigned int)
 | |
| 				(data->acpi_data.states[i].core_frequency
 | |
| 				 * 1000));
 | |
| 			invalidate_entry(powernow_table, i);
 | |
| 			continue;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
 | |
| {
 | |
| 	if (data->acpi_data.state_count)
 | |
| 		acpi_processor_unregister_performance(&data->acpi_data,
 | |
| 				data->cpu);
 | |
| 	free_cpumask_var(data->acpi_data.shared_cpu_map);
 | |
| }
 | |
| 
 | |
| static int get_transition_latency(struct powernow_k8_data *data)
 | |
| {
 | |
| 	int max_latency = 0;
 | |
| 	int i;
 | |
| 	for (i = 0; i < data->acpi_data.state_count; i++) {
 | |
| 		int cur_latency = data->acpi_data.states[i].transition_latency
 | |
| 			+ data->acpi_data.states[i].bus_master_latency;
 | |
| 		if (cur_latency > max_latency)
 | |
| 			max_latency = cur_latency;
 | |
| 	}
 | |
| 	if (max_latency == 0) {
 | |
| 		/*
 | |
| 		 * Fam 11h always returns 0 as transition latency.
 | |
| 		 * This is intended and means "very fast". While cpufreq core
 | |
| 		 * and governors currently can handle that gracefully, better
 | |
| 		 * set it to 1 to avoid problems in the future.
 | |
| 		 * For all others it's a BIOS bug.
 | |
| 		 */
 | |
| 		if (boot_cpu_data.x86 != 0x11)
 | |
| 			printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
 | |
| 				"latency\n");
 | |
| 		max_latency = 1;
 | |
| 	}
 | |
| 	/* value in usecs, needs to be in nanoseconds */
 | |
| 	return 1000 * max_latency;
 | |
| }
 | |
| 
 | |
| /* Take a frequency, and issue the fid/vid transition command */
 | |
| static int transition_frequency_fidvid(struct powernow_k8_data *data,
 | |
| 		unsigned int index)
 | |
| {
 | |
| 	u32 fid = 0;
 | |
| 	u32 vid = 0;
 | |
| 	int res, i;
 | |
| 	struct cpufreq_freqs freqs;
 | |
| 
 | |
| 	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
 | |
| 
 | |
| 	/* fid/vid correctness check for k8 */
 | |
| 	/* fid are the lower 8 bits of the index we stored into
 | |
| 	 * the cpufreq frequency table in find_psb_table, vid
 | |
| 	 * are the upper 8 bits.
 | |
| 	 */
 | |
| 	fid = data->powernow_table[index].index & 0xFF;
 | |
| 	vid = (data->powernow_table[index].index & 0xFF00) >> 8;
 | |
| 
 | |
| 	dprintk("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if ((data->currvid == vid) && (data->currfid == fid)) {
 | |
| 		dprintk("target matches current values (fid 0x%x, vid 0x%x)\n",
 | |
| 			fid, vid);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("cpu %d, changing to fid 0x%x, vid 0x%x\n",
 | |
| 		smp_processor_id(), fid, vid);
 | |
| 	freqs.old = find_khz_freq_from_fid(data->currfid);
 | |
| 	freqs.new = find_khz_freq_from_fid(fid);
 | |
| 
 | |
| 	for_each_cpu(i, data->available_cores) {
 | |
| 		freqs.cpu = i;
 | |
| 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
 | |
| 	}
 | |
| 
 | |
| 	res = transition_fid_vid(data, fid, vid);
 | |
| 	freqs.new = find_khz_freq_from_fid(data->currfid);
 | |
| 
 | |
| 	for_each_cpu(i, data->available_cores) {
 | |
| 		freqs.cpu = i;
 | |
| 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Take a frequency, and issue the hardware pstate transition command */
 | |
| static int transition_frequency_pstate(struct powernow_k8_data *data,
 | |
| 		unsigned int index)
 | |
| {
 | |
| 	u32 pstate = 0;
 | |
| 	int res, i;
 | |
| 	struct cpufreq_freqs freqs;
 | |
| 
 | |
| 	dprintk("cpu %d transition to index %u\n", smp_processor_id(), index);
 | |
| 
 | |
| 	/* get MSR index for hardware pstate transition */
 | |
| 	pstate = index & HW_PSTATE_MASK;
 | |
| 	if (pstate > data->max_hw_pstate)
 | |
| 		return 0;
 | |
| 	freqs.old = find_khz_freq_from_pstate(data->powernow_table,
 | |
| 			data->currpstate);
 | |
| 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
 | |
| 
 | |
| 	for_each_cpu(i, data->available_cores) {
 | |
| 		freqs.cpu = i;
 | |
| 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
 | |
| 	}
 | |
| 
 | |
| 	res = transition_pstate(data, pstate);
 | |
| 	freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
 | |
| 
 | |
| 	for_each_cpu(i, data->available_cores) {
 | |
| 		freqs.cpu = i;
 | |
| 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /* Driver entry point to switch to the target frequency */
 | |
| static int powernowk8_target(struct cpufreq_policy *pol,
 | |
| 		unsigned targfreq, unsigned relation)
 | |
| {
 | |
| 	cpumask_t oldmask;
 | |
| 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
 | |
| 	u32 checkfid;
 | |
| 	u32 checkvid;
 | |
| 	unsigned int newstate;
 | |
| 	int ret = -EIO;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	checkfid = data->currfid;
 | |
| 	checkvid = data->currvid;
 | |
| 
 | |
| 	/* only run on specific CPU from here on */
 | |
| 	oldmask = current->cpus_allowed;
 | |
| 	set_cpus_allowed_ptr(current, &cpumask_of_cpu(pol->cpu));
 | |
| 
 | |
| 	if (smp_processor_id() != pol->cpu) {
 | |
| 		printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	if (pending_bit_stuck()) {
 | |
| 		printk(KERN_ERR PFX "failing targ, change pending bit set\n");
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
 | |
| 		pol->cpu, targfreq, pol->min, pol->max, relation);
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(data))
 | |
| 		goto err_out;
 | |
| 
 | |
| 	if (cpu_family != CPU_HW_PSTATE) {
 | |
| 		dprintk("targ: curr fid 0x%x, vid 0x%x\n",
 | |
| 		data->currfid, data->currvid);
 | |
| 
 | |
| 		if ((checkvid != data->currvid) ||
 | |
| 		    (checkfid != data->currfid)) {
 | |
| 			printk(KERN_INFO PFX
 | |
| 				"error - out of sync, fix 0x%x 0x%x, "
 | |
| 				"vid 0x%x 0x%x\n",
 | |
| 				checkfid, data->currfid,
 | |
| 				checkvid, data->currvid);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (cpufreq_frequency_table_target(pol, data->powernow_table,
 | |
| 				targfreq, relation, &newstate))
 | |
| 		goto err_out;
 | |
| 
 | |
| 	mutex_lock(&fidvid_mutex);
 | |
| 
 | |
| 	powernow_k8_acpi_pst_values(data, newstate);
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		ret = transition_frequency_pstate(data, newstate);
 | |
| 	else
 | |
| 		ret = transition_frequency_fidvid(data, newstate);
 | |
| 	if (ret) {
 | |
| 		printk(KERN_ERR PFX "transition frequency failed\n");
 | |
| 		ret = 1;
 | |
| 		mutex_unlock(&fidvid_mutex);
 | |
| 		goto err_out;
 | |
| 	}
 | |
| 	mutex_unlock(&fidvid_mutex);
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
 | |
| 				newstate);
 | |
| 	else
 | |
| 		pol->cur = find_khz_freq_from_fid(data->currfid);
 | |
| 	ret = 0;
 | |
| 
 | |
| err_out:
 | |
| 	set_cpus_allowed_ptr(current, &oldmask);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* Driver entry point to verify the policy and range of frequencies */
 | |
| static int powernowk8_verify(struct cpufreq_policy *pol)
 | |
| {
 | |
| 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return cpufreq_frequency_table_verify(pol, data->powernow_table);
 | |
| }
 | |
| 
 | |
| struct init_on_cpu {
 | |
| 	struct powernow_k8_data *data;
 | |
| 	int rc;
 | |
| };
 | |
| 
 | |
| static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
 | |
| {
 | |
| 	struct init_on_cpu *init_on_cpu = _init_on_cpu;
 | |
| 
 | |
| 	if (pending_bit_stuck()) {
 | |
| 		printk(KERN_ERR PFX "failing init, change pending bit set\n");
 | |
| 		init_on_cpu->rc = -ENODEV;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (query_current_values_with_pending_wait(init_on_cpu->data)) {
 | |
| 		init_on_cpu->rc = -ENODEV;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cpu_family == CPU_OPTERON)
 | |
| 		fidvid_msr_init();
 | |
| 
 | |
| 	init_on_cpu->rc = 0;
 | |
| }
 | |
| 
 | |
| /* per CPU init entry point to the driver */
 | |
| static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
 | |
| {
 | |
| 	static const char ACPI_PSS_BIOS_BUG_MSG[] =
 | |
| 		KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
 | |
| 		FW_BUG PFX "Try again with latest BIOS.\n";
 | |
| 	struct powernow_k8_data *data;
 | |
| 	struct init_on_cpu init_on_cpu;
 | |
| 	int rc;
 | |
| 
 | |
| 	if (!cpu_online(pol->cpu))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
 | |
| 	if (rc)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
 | |
| 	if (!data) {
 | |
| 		printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	data->cpu = pol->cpu;
 | |
| 	data->currpstate = HW_PSTATE_INVALID;
 | |
| 
 | |
| 	if (powernow_k8_cpu_init_acpi(data)) {
 | |
| 		/*
 | |
| 		 * Use the PSB BIOS structure. This is only availabe on
 | |
| 		 * an UP version, and is deprecated by AMD.
 | |
| 		 */
 | |
| 		if (num_online_cpus() != 1) {
 | |
| 			printk_once(ACPI_PSS_BIOS_BUG_MSG);
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 		if (pol->cpu != 0) {
 | |
| 			printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
 | |
| 			       "CPU other than CPU0. Complain to your BIOS "
 | |
| 			       "vendor.\n");
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 		rc = find_psb_table(data);
 | |
| 		if (rc)
 | |
| 			goto err_out;
 | |
| 
 | |
| 		/* Take a crude guess here.
 | |
| 		 * That guess was in microseconds, so multiply with 1000 */
 | |
| 		pol->cpuinfo.transition_latency = (
 | |
| 			 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
 | |
| 			 ((1 << data->irt) * 30)) * 1000;
 | |
| 	} else /* ACPI _PSS objects available */
 | |
| 		pol->cpuinfo.transition_latency = get_transition_latency(data);
 | |
| 
 | |
| 	/* only run on specific CPU from here on */
 | |
| 	init_on_cpu.data = data;
 | |
| 	smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
 | |
| 				 &init_on_cpu, 1);
 | |
| 	rc = init_on_cpu.rc;
 | |
| 	if (rc != 0)
 | |
| 		goto err_out_exit_acpi;
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
 | |
| 	else
 | |
| 		cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
 | |
| 	data->available_cores = pol->cpus;
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		pol->cur = find_khz_freq_from_pstate(data->powernow_table,
 | |
| 				data->currpstate);
 | |
| 	else
 | |
| 		pol->cur = find_khz_freq_from_fid(data->currfid);
 | |
| 	dprintk("policy current frequency %d kHz\n", pol->cur);
 | |
| 
 | |
| 	/* min/max the cpu is capable of */
 | |
| 	if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
 | |
| 		printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
 | |
| 		powernow_k8_cpu_exit_acpi(data);
 | |
| 		kfree(data->powernow_table);
 | |
| 		kfree(data);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		dprintk("cpu_init done, current pstate 0x%x\n",
 | |
| 				data->currpstate);
 | |
| 	else
 | |
| 		dprintk("cpu_init done, current fid 0x%x, vid 0x%x\n",
 | |
| 			data->currfid, data->currvid);
 | |
| 
 | |
| 	per_cpu(powernow_data, pol->cpu) = data;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out_exit_acpi:
 | |
| 	powernow_k8_cpu_exit_acpi(data);
 | |
| 
 | |
| err_out:
 | |
| 	kfree(data);
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
 | |
| {
 | |
| 	struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
 | |
| 
 | |
| 	if (!data)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	powernow_k8_cpu_exit_acpi(data);
 | |
| 
 | |
| 	cpufreq_frequency_table_put_attr(pol->cpu);
 | |
| 
 | |
| 	kfree(data->powernow_table);
 | |
| 	kfree(data);
 | |
| 	per_cpu(powernow_data, pol->cpu) = NULL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void query_values_on_cpu(void *_err)
 | |
| {
 | |
| 	int *err = _err;
 | |
| 	struct powernow_k8_data *data = __get_cpu_var(powernow_data);
 | |
| 
 | |
| 	*err = query_current_values_with_pending_wait(data);
 | |
| }
 | |
| 
 | |
| static unsigned int powernowk8_get(unsigned int cpu)
 | |
| {
 | |
| 	struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
 | |
| 	unsigned int khz = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!data)
 | |
| 		return 0;
 | |
| 
 | |
| 	smp_call_function_single(cpu, query_values_on_cpu, &err, true);
 | |
| 	if (err)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (cpu_family == CPU_HW_PSTATE)
 | |
| 		khz = find_khz_freq_from_pstate(data->powernow_table,
 | |
| 						data->currpstate);
 | |
| 	else
 | |
| 		khz = find_khz_freq_from_fid(data->currfid);
 | |
| 
 | |
| 
 | |
| out:
 | |
| 	return khz;
 | |
| }
 | |
| 
 | |
| static struct freq_attr *powernow_k8_attr[] = {
 | |
| 	&cpufreq_freq_attr_scaling_available_freqs,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct cpufreq_driver cpufreq_amd64_driver = {
 | |
| 	.verify = powernowk8_verify,
 | |
| 	.target = powernowk8_target,
 | |
| 	.init = powernowk8_cpu_init,
 | |
| 	.exit = __devexit_p(powernowk8_cpu_exit),
 | |
| 	.get = powernowk8_get,
 | |
| 	.name = "powernow-k8",
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.attr = powernow_k8_attr,
 | |
| };
 | |
| 
 | |
| /* driver entry point for init */
 | |
| static int __cpuinit powernowk8_init(void)
 | |
| {
 | |
| 	unsigned int i, supported_cpus = 0;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		int rc;
 | |
| 		smp_call_function_single(i, check_supported_cpu, &rc, 1);
 | |
| 		if (rc == 0)
 | |
| 			supported_cpus++;
 | |
| 	}
 | |
| 
 | |
| 	if (supported_cpus == num_online_cpus()) {
 | |
| 		printk(KERN_INFO PFX "Found %d %s "
 | |
| 			"processors (%d cpu cores) (" VERSION ")\n",
 | |
| 			num_online_nodes(),
 | |
| 			boot_cpu_data.x86_model_id, supported_cpus);
 | |
| 		return cpufreq_register_driver(&cpufreq_amd64_driver);
 | |
| 	}
 | |
| 
 | |
| 	return -ENODEV;
 | |
| }
 | |
| 
 | |
| /* driver entry point for term */
 | |
| static void __exit powernowk8_exit(void)
 | |
| {
 | |
| 	dprintk("exit\n");
 | |
| 
 | |
| 	cpufreq_unregister_driver(&cpufreq_amd64_driver);
 | |
| }
 | |
| 
 | |
| MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
 | |
| 		"Mark Langsdorf <mark.langsdorf@amd.com>");
 | |
| MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| late_initcall(powernowk8_init);
 | |
| module_exit(powernowk8_exit);
 |