4294 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4294 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include <linux/log2.h>
 | |
| 
 | |
| #include "xfs.h"
 | |
| #include "xfs_fs.h"
 | |
| #include "xfs_types.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_trans_priv.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_dmapi.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_ialloc_btree.h"
 | |
| #include "xfs_dir2_sf.h"
 | |
| #include "xfs_attr_sf.h"
 | |
| #include "xfs_dinode.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_buf_item.h"
 | |
| #include "xfs_inode_item.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_btree_trace.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_ialloc.h"
 | |
| #include "xfs_bmap.h"
 | |
| #include "xfs_rw.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_utils.h"
 | |
| #include "xfs_dir2_trace.h"
 | |
| #include "xfs_quota.h"
 | |
| #include "xfs_filestream.h"
 | |
| #include "xfs_vnodeops.h"
 | |
| 
 | |
| kmem_zone_t *xfs_ifork_zone;
 | |
| kmem_zone_t *xfs_inode_zone;
 | |
| 
 | |
| /*
 | |
|  * Used in xfs_itruncate().  This is the maximum number of extents
 | |
|  * freed from a file in a single transaction.
 | |
|  */
 | |
| #define	XFS_ITRUNC_MAX_EXTENTS	2
 | |
| 
 | |
| STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
 | |
| STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
 | |
| STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
 | |
| STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
 | |
| 
 | |
| #ifdef DEBUG
 | |
| /*
 | |
|  * Make sure that the extents in the given memory buffer
 | |
|  * are valid.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_validate_extents(
 | |
| 	xfs_ifork_t		*ifp,
 | |
| 	int			nrecs,
 | |
| 	xfs_exntfmt_t		fmt)
 | |
| {
 | |
| 	xfs_bmbt_irec_t		irec;
 | |
| 	xfs_bmbt_rec_host_t	rec;
 | |
| 	int			i;
 | |
| 
 | |
| 	for (i = 0; i < nrecs; i++) {
 | |
| 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 | |
| 		rec.l0 = get_unaligned(&ep->l0);
 | |
| 		rec.l1 = get_unaligned(&ep->l1);
 | |
| 		xfs_bmbt_get_all(&rec, &irec);
 | |
| 		if (fmt == XFS_EXTFMT_NOSTATE)
 | |
| 			ASSERT(irec.br_state == XFS_EXT_NORM);
 | |
| 	}
 | |
| }
 | |
| #else /* DEBUG */
 | |
| #define xfs_validate_extents(ifp, nrecs, fmt)
 | |
| #endif /* DEBUG */
 | |
| 
 | |
| /*
 | |
|  * Check that none of the inode's in the buffer have a next
 | |
|  * unlinked field of 0.
 | |
|  */
 | |
| #if defined(DEBUG)
 | |
| void
 | |
| xfs_inobp_check(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	int		i;
 | |
| 	int		j;
 | |
| 	xfs_dinode_t	*dip;
 | |
| 
 | |
| 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
 | |
| 
 | |
| 	for (i = 0; i < j; i++) {
 | |
| 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 | |
| 					i * mp->m_sb.sb_inodesize);
 | |
| 		if (!dip->di_next_unlinked)  {
 | |
| 			xfs_fs_cmn_err(CE_ALERT, mp,
 | |
| 				"Detected a bogus zero next_unlinked field in incore inode buffer 0x%p.  About to pop an ASSERT.",
 | |
| 				bp);
 | |
| 			ASSERT(dip->di_next_unlinked);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Find the buffer associated with the given inode map
 | |
|  * We do basic validation checks on the buffer once it has been
 | |
|  * retrieved from disk.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_imap_to_bp(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_trans_t	*tp,
 | |
| 	struct xfs_imap	*imap,
 | |
| 	xfs_buf_t	**bpp,
 | |
| 	uint		buf_flags,
 | |
| 	uint		iget_flags)
 | |
| {
 | |
| 	int		error;
 | |
| 	int		i;
 | |
| 	int		ni;
 | |
| 	xfs_buf_t	*bp;
 | |
| 
 | |
| 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
 | |
| 				   (int)imap->im_len, buf_flags, &bp);
 | |
| 	if (error) {
 | |
| 		if (error != EAGAIN) {
 | |
| 			cmn_err(CE_WARN,
 | |
| 				"xfs_imap_to_bp: xfs_trans_read_buf()returned "
 | |
| 				"an error %d on %s.  Returning error.",
 | |
| 				error, mp->m_fsname);
 | |
| 		} else {
 | |
| 			ASSERT(buf_flags & XFS_BUF_TRYLOCK);
 | |
| 		}
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the magic number and version of every inode in the buffer
 | |
| 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
 | |
| 	 */
 | |
| #ifdef DEBUG
 | |
| 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
 | |
| #else	/* usual case */
 | |
| 	ni = 1;
 | |
| #endif
 | |
| 
 | |
| 	for (i = 0; i < ni; i++) {
 | |
| 		int		di_ok;
 | |
| 		xfs_dinode_t	*dip;
 | |
| 
 | |
| 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
 | |
| 					(i << mp->m_sb.sb_inodelog));
 | |
| 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
 | |
| 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
 | |
| 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
 | |
| 						XFS_ERRTAG_ITOBP_INOTOBP,
 | |
| 						XFS_RANDOM_ITOBP_INOTOBP))) {
 | |
| 			if (iget_flags & XFS_IGET_BULKSTAT) {
 | |
| 				xfs_trans_brelse(tp, bp);
 | |
| 				return XFS_ERROR(EINVAL);
 | |
| 			}
 | |
| 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
 | |
| 						XFS_ERRLEVEL_HIGH, mp, dip);
 | |
| #ifdef DEBUG
 | |
| 			cmn_err(CE_PANIC,
 | |
| 					"Device %s - bad inode magic/vsn "
 | |
| 					"daddr %lld #%d (magic=%x)",
 | |
| 				XFS_BUFTARG_NAME(mp->m_ddev_targp),
 | |
| 				(unsigned long long)imap->im_blkno, i,
 | |
| 				be16_to_cpu(dip->di_magic));
 | |
| #endif
 | |
| 			xfs_trans_brelse(tp, bp);
 | |
| 			return XFS_ERROR(EFSCORRUPTED);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	xfs_inobp_check(mp, bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the buffer as an inode buffer now that it looks good
 | |
| 	 */
 | |
| 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
 | |
| 
 | |
| 	*bpp = bp;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine is called to map an inode number within a file
 | |
|  * system to the buffer containing the on-disk version of the
 | |
|  * inode.  It returns a pointer to the buffer containing the
 | |
|  * on-disk inode in the bpp parameter, and in the dip parameter
 | |
|  * it returns a pointer to the on-disk inode within that buffer.
 | |
|  *
 | |
|  * If a non-zero error is returned, then the contents of bpp and
 | |
|  * dipp are undefined.
 | |
|  *
 | |
|  * Use xfs_imap() to determine the size and location of the
 | |
|  * buffer to read from disk.
 | |
|  */
 | |
| int
 | |
| xfs_inotobp(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_ino_t	ino,
 | |
| 	xfs_dinode_t	**dipp,
 | |
| 	xfs_buf_t	**bpp,
 | |
| 	int		*offset,
 | |
| 	uint		imap_flags)
 | |
| {
 | |
| 	struct xfs_imap	imap;
 | |
| 	xfs_buf_t	*bp;
 | |
| 	int		error;
 | |
| 
 | |
| 	imap.im_blkno = 0;
 | |
| 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
 | |
| 	*bpp = bp;
 | |
| 	*offset = imap.im_boffset;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This routine is called to map an inode to the buffer containing
 | |
|  * the on-disk version of the inode.  It returns a pointer to the
 | |
|  * buffer containing the on-disk inode in the bpp parameter, and in
 | |
|  * the dip parameter it returns a pointer to the on-disk inode within
 | |
|  * that buffer.
 | |
|  *
 | |
|  * If a non-zero error is returned, then the contents of bpp and
 | |
|  * dipp are undefined.
 | |
|  *
 | |
|  * The inode is expected to already been mapped to its buffer and read
 | |
|  * in once, thus we can use the mapping information stored in the inode
 | |
|  * rather than calling xfs_imap().  This allows us to avoid the overhead
 | |
|  * of looking at the inode btree for small block file systems
 | |
|  * (see xfs_imap()).
 | |
|  */
 | |
| int
 | |
| xfs_itobp(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_dinode_t	**dipp,
 | |
| 	xfs_buf_t	**bpp,
 | |
| 	uint		buf_flags)
 | |
| {
 | |
| 	xfs_buf_t	*bp;
 | |
| 	int		error;
 | |
| 
 | |
| 	ASSERT(ip->i_imap.im_blkno != 0);
 | |
| 
 | |
| 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	if (!bp) {
 | |
| 		ASSERT(buf_flags & XFS_BUF_TRYLOCK);
 | |
| 		ASSERT(tp == NULL);
 | |
| 		*bpp = NULL;
 | |
| 		return EAGAIN;
 | |
| 	}
 | |
| 
 | |
| 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 | |
| 	*bpp = bp;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move inode type and inode format specific information from the
 | |
|  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
 | |
|  * this means set if_rdev to the proper value.  For files, directories,
 | |
|  * and symlinks this means to bring in the in-line data or extent
 | |
|  * pointers.  For a file in B-tree format, only the root is immediately
 | |
|  * brought in-core.  The rest will be in-lined in if_extents when it
 | |
|  * is first referenced (see xfs_iread_extents()).
 | |
|  */
 | |
| STATIC int
 | |
| xfs_iformat(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	xfs_dinode_t		*dip)
 | |
| {
 | |
| 	xfs_attr_shortform_t	*atp;
 | |
| 	int			size;
 | |
| 	int			error;
 | |
| 	xfs_fsize_t             di_size;
 | |
| 	ip->i_df.if_ext_max =
 | |
| 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	error = 0;
 | |
| 
 | |
| 	if (unlikely(be32_to_cpu(dip->di_nextents) +
 | |
| 		     be16_to_cpu(dip->di_anextents) >
 | |
| 		     be64_to_cpu(dip->di_nblocks))) {
 | |
| 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
 | |
| 			(unsigned long long)ip->i_ino,
 | |
| 			(int)(be32_to_cpu(dip->di_nextents) +
 | |
| 			      be16_to_cpu(dip->di_anextents)),
 | |
| 			(unsigned long long)
 | |
| 				be64_to_cpu(dip->di_nblocks));
 | |
| 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
 | |
| 				     ip->i_mount, dip);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
 | |
| 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 			"corrupt dinode %Lu, forkoff = 0x%x.",
 | |
| 			(unsigned long long)ip->i_ino,
 | |
| 			dip->di_forkoff);
 | |
| 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
 | |
| 				     ip->i_mount, dip);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
 | |
| 		     !ip->i_mount->m_rtdev_targp)) {
 | |
| 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 			"corrupt dinode %Lu, has realtime flag set.",
 | |
| 			ip->i_ino);
 | |
| 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
 | |
| 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	switch (ip->i_d.di_mode & S_IFMT) {
 | |
| 	case S_IFIFO:
 | |
| 	case S_IFCHR:
 | |
| 	case S_IFBLK:
 | |
| 	case S_IFSOCK:
 | |
| 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
 | |
| 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
 | |
| 					      ip->i_mount, dip);
 | |
| 			return XFS_ERROR(EFSCORRUPTED);
 | |
| 		}
 | |
| 		ip->i_d.di_size = 0;
 | |
| 		ip->i_size = 0;
 | |
| 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
 | |
| 		break;
 | |
| 
 | |
| 	case S_IFREG:
 | |
| 	case S_IFLNK:
 | |
| 	case S_IFDIR:
 | |
| 		switch (dip->di_format) {
 | |
| 		case XFS_DINODE_FMT_LOCAL:
 | |
| 			/*
 | |
| 			 * no local regular files yet
 | |
| 			 */
 | |
| 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
 | |
| 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 					"corrupt inode %Lu "
 | |
| 					"(local format for regular file).",
 | |
| 					(unsigned long long) ip->i_ino);
 | |
| 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
 | |
| 						     XFS_ERRLEVEL_LOW,
 | |
| 						     ip->i_mount, dip);
 | |
| 				return XFS_ERROR(EFSCORRUPTED);
 | |
| 			}
 | |
| 
 | |
| 			di_size = be64_to_cpu(dip->di_size);
 | |
| 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
 | |
| 				xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 					"corrupt inode %Lu "
 | |
| 					"(bad size %Ld for local inode).",
 | |
| 					(unsigned long long) ip->i_ino,
 | |
| 					(long long) di_size);
 | |
| 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
 | |
| 						     XFS_ERRLEVEL_LOW,
 | |
| 						     ip->i_mount, dip);
 | |
| 				return XFS_ERROR(EFSCORRUPTED);
 | |
| 			}
 | |
| 
 | |
| 			size = (int)di_size;
 | |
| 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
 | |
| 			break;
 | |
| 		case XFS_DINODE_FMT_EXTENTS:
 | |
| 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
 | |
| 			break;
 | |
| 		case XFS_DINODE_FMT_BTREE:
 | |
| 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
 | |
| 			break;
 | |
| 		default:
 | |
| 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
 | |
| 					 ip->i_mount);
 | |
| 			return XFS_ERROR(EFSCORRUPTED);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	if (error) {
 | |
| 		return error;
 | |
| 	}
 | |
| 	if (!XFS_DFORK_Q(dip))
 | |
| 		return 0;
 | |
| 	ASSERT(ip->i_afp == NULL);
 | |
| 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
 | |
| 	ip->i_afp->if_ext_max =
 | |
| 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	switch (dip->di_aformat) {
 | |
| 	case XFS_DINODE_FMT_LOCAL:
 | |
| 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
 | |
| 		size = be16_to_cpu(atp->hdr.totsize);
 | |
| 
 | |
| 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
 | |
| 			xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 				"corrupt inode %Lu "
 | |
| 				"(bad attr fork size %Ld).",
 | |
| 				(unsigned long long) ip->i_ino,
 | |
| 				(long long) size);
 | |
| 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
 | |
| 					     XFS_ERRLEVEL_LOW,
 | |
| 					     ip->i_mount, dip);
 | |
| 			return XFS_ERROR(EFSCORRUPTED);
 | |
| 		}
 | |
| 
 | |
| 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
 | |
| 		break;
 | |
| 	case XFS_DINODE_FMT_EXTENTS:
 | |
| 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
 | |
| 		break;
 | |
| 	case XFS_DINODE_FMT_BTREE:
 | |
| 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
 | |
| 		break;
 | |
| 	default:
 | |
| 		error = XFS_ERROR(EFSCORRUPTED);
 | |
| 		break;
 | |
| 	}
 | |
| 	if (error) {
 | |
| 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 | |
| 		ip->i_afp = NULL;
 | |
| 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 | |
| 	}
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The file is in-lined in the on-disk inode.
 | |
|  * If it fits into if_inline_data, then copy
 | |
|  * it there, otherwise allocate a buffer for it
 | |
|  * and copy the data there.  Either way, set
 | |
|  * if_data to point at the data.
 | |
|  * If we allocate a buffer for the data, make
 | |
|  * sure that its size is a multiple of 4 and
 | |
|  * record the real size in i_real_bytes.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_iformat_local(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_dinode_t	*dip,
 | |
| 	int		whichfork,
 | |
| 	int		size)
 | |
| {
 | |
| 	xfs_ifork_t	*ifp;
 | |
| 	int		real_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the size is unreasonable, then something
 | |
| 	 * is wrong and we just bail out rather than crash in
 | |
| 	 * kmem_alloc() or memcpy() below.
 | |
| 	 */
 | |
| 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 | |
| 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 			"corrupt inode %Lu "
 | |
| 			"(bad size %d for local fork, size = %d).",
 | |
| 			(unsigned long long) ip->i_ino, size,
 | |
| 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
 | |
| 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
 | |
| 				     ip->i_mount, dip);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	real_size = 0;
 | |
| 	if (size == 0)
 | |
| 		ifp->if_u1.if_data = NULL;
 | |
| 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
 | |
| 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 | |
| 	else {
 | |
| 		real_size = roundup(size, 4);
 | |
| 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
 | |
| 	}
 | |
| 	ifp->if_bytes = size;
 | |
| 	ifp->if_real_bytes = real_size;
 | |
| 	if (size)
 | |
| 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
 | |
| 	ifp->if_flags &= ~XFS_IFEXTENTS;
 | |
| 	ifp->if_flags |= XFS_IFINLINE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The file consists of a set of extents all
 | |
|  * of which fit into the on-disk inode.
 | |
|  * If there are few enough extents to fit into
 | |
|  * the if_inline_ext, then copy them there.
 | |
|  * Otherwise allocate a buffer for them and copy
 | |
|  * them into it.  Either way, set if_extents
 | |
|  * to point at the extents.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_iformat_extents(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_dinode_t	*dip,
 | |
| 	int		whichfork)
 | |
| {
 | |
| 	xfs_bmbt_rec_t	*dp;
 | |
| 	xfs_ifork_t	*ifp;
 | |
| 	int		nex;
 | |
| 	int		size;
 | |
| 	int		i;
 | |
| 
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
 | |
| 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the number of extents is unreasonable, then something
 | |
| 	 * is wrong and we just bail out rather than crash in
 | |
| 	 * kmem_alloc() or memcpy() below.
 | |
| 	 */
 | |
| 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
 | |
| 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 			"corrupt inode %Lu ((a)extents = %d).",
 | |
| 			(unsigned long long) ip->i_ino, nex);
 | |
| 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
 | |
| 				     ip->i_mount, dip);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	ifp->if_real_bytes = 0;
 | |
| 	if (nex == 0)
 | |
| 		ifp->if_u1.if_extents = NULL;
 | |
| 	else if (nex <= XFS_INLINE_EXTS)
 | |
| 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 | |
| 	else
 | |
| 		xfs_iext_add(ifp, 0, nex);
 | |
| 
 | |
| 	ifp->if_bytes = size;
 | |
| 	if (size) {
 | |
| 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
 | |
| 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
 | |
| 		for (i = 0; i < nex; i++, dp++) {
 | |
| 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 | |
| 			ep->l0 = get_unaligned_be64(&dp->l0);
 | |
| 			ep->l1 = get_unaligned_be64(&dp->l1);
 | |
| 		}
 | |
| 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
 | |
| 		if (whichfork != XFS_DATA_FORK ||
 | |
| 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
 | |
| 				if (unlikely(xfs_check_nostate_extents(
 | |
| 				    ifp, 0, nex))) {
 | |
| 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
 | |
| 							 XFS_ERRLEVEL_LOW,
 | |
| 							 ip->i_mount);
 | |
| 					return XFS_ERROR(EFSCORRUPTED);
 | |
| 				}
 | |
| 	}
 | |
| 	ifp->if_flags |= XFS_IFEXTENTS;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The file has too many extents to fit into
 | |
|  * the inode, so they are in B-tree format.
 | |
|  * Allocate a buffer for the root of the B-tree
 | |
|  * and copy the root into it.  The i_extents
 | |
|  * field will remain NULL until all of the
 | |
|  * extents are read in (when they are needed).
 | |
|  */
 | |
| STATIC int
 | |
| xfs_iformat_btree(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	xfs_dinode_t		*dip,
 | |
| 	int			whichfork)
 | |
| {
 | |
| 	xfs_bmdr_block_t	*dfp;
 | |
| 	xfs_ifork_t		*ifp;
 | |
| 	/* REFERENCED */
 | |
| 	int			nrecs;
 | |
| 	int			size;
 | |
| 
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
 | |
| 	size = XFS_BMAP_BROOT_SPACE(dfp);
 | |
| 	nrecs = be16_to_cpu(dfp->bb_numrecs);
 | |
| 
 | |
| 	/*
 | |
| 	 * blow out if -- fork has less extents than can fit in
 | |
| 	 * fork (fork shouldn't be a btree format), root btree
 | |
| 	 * block has more records than can fit into the fork,
 | |
| 	 * or the number of extents is greater than the number of
 | |
| 	 * blocks.
 | |
| 	 */
 | |
| 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
 | |
| 	    || XFS_BMDR_SPACE_CALC(nrecs) >
 | |
| 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
 | |
| 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
 | |
| 		xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
 | |
| 			"corrupt inode %Lu (btree).",
 | |
| 			(unsigned long long) ip->i_ino);
 | |
| 		XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
 | |
| 				 ip->i_mount);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 
 | |
| 	ifp->if_broot_bytes = size;
 | |
| 	ifp->if_broot = kmem_alloc(size, KM_SLEEP);
 | |
| 	ASSERT(ifp->if_broot != NULL);
 | |
| 	/*
 | |
| 	 * Copy and convert from the on-disk structure
 | |
| 	 * to the in-memory structure.
 | |
| 	 */
 | |
| 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
 | |
| 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
 | |
| 			 ifp->if_broot, size);
 | |
| 	ifp->if_flags &= ~XFS_IFEXTENTS;
 | |
| 	ifp->if_flags |= XFS_IFBROOT;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_dinode_from_disk(
 | |
| 	xfs_icdinode_t		*to,
 | |
| 	xfs_dinode_t		*from)
 | |
| {
 | |
| 	to->di_magic = be16_to_cpu(from->di_magic);
 | |
| 	to->di_mode = be16_to_cpu(from->di_mode);
 | |
| 	to->di_version = from ->di_version;
 | |
| 	to->di_format = from->di_format;
 | |
| 	to->di_onlink = be16_to_cpu(from->di_onlink);
 | |
| 	to->di_uid = be32_to_cpu(from->di_uid);
 | |
| 	to->di_gid = be32_to_cpu(from->di_gid);
 | |
| 	to->di_nlink = be32_to_cpu(from->di_nlink);
 | |
| 	to->di_projid = be16_to_cpu(from->di_projid);
 | |
| 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 | |
| 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
 | |
| 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
 | |
| 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
 | |
| 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
 | |
| 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
 | |
| 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
 | |
| 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
 | |
| 	to->di_size = be64_to_cpu(from->di_size);
 | |
| 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
 | |
| 	to->di_extsize = be32_to_cpu(from->di_extsize);
 | |
| 	to->di_nextents = be32_to_cpu(from->di_nextents);
 | |
| 	to->di_anextents = be16_to_cpu(from->di_anextents);
 | |
| 	to->di_forkoff = from->di_forkoff;
 | |
| 	to->di_aformat	= from->di_aformat;
 | |
| 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
 | |
| 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
 | |
| 	to->di_flags	= be16_to_cpu(from->di_flags);
 | |
| 	to->di_gen	= be32_to_cpu(from->di_gen);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_dinode_to_disk(
 | |
| 	xfs_dinode_t		*to,
 | |
| 	xfs_icdinode_t		*from)
 | |
| {
 | |
| 	to->di_magic = cpu_to_be16(from->di_magic);
 | |
| 	to->di_mode = cpu_to_be16(from->di_mode);
 | |
| 	to->di_version = from ->di_version;
 | |
| 	to->di_format = from->di_format;
 | |
| 	to->di_onlink = cpu_to_be16(from->di_onlink);
 | |
| 	to->di_uid = cpu_to_be32(from->di_uid);
 | |
| 	to->di_gid = cpu_to_be32(from->di_gid);
 | |
| 	to->di_nlink = cpu_to_be32(from->di_nlink);
 | |
| 	to->di_projid = cpu_to_be16(from->di_projid);
 | |
| 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
 | |
| 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
 | |
| 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
 | |
| 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
 | |
| 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
 | |
| 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
 | |
| 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
 | |
| 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
 | |
| 	to->di_size = cpu_to_be64(from->di_size);
 | |
| 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
 | |
| 	to->di_extsize = cpu_to_be32(from->di_extsize);
 | |
| 	to->di_nextents = cpu_to_be32(from->di_nextents);
 | |
| 	to->di_anextents = cpu_to_be16(from->di_anextents);
 | |
| 	to->di_forkoff = from->di_forkoff;
 | |
| 	to->di_aformat = from->di_aformat;
 | |
| 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
 | |
| 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
 | |
| 	to->di_flags = cpu_to_be16(from->di_flags);
 | |
| 	to->di_gen = cpu_to_be32(from->di_gen);
 | |
| }
 | |
| 
 | |
| STATIC uint
 | |
| _xfs_dic2xflags(
 | |
| 	__uint16_t		di_flags)
 | |
| {
 | |
| 	uint			flags = 0;
 | |
| 
 | |
| 	if (di_flags & XFS_DIFLAG_ANY) {
 | |
| 		if (di_flags & XFS_DIFLAG_REALTIME)
 | |
| 			flags |= XFS_XFLAG_REALTIME;
 | |
| 		if (di_flags & XFS_DIFLAG_PREALLOC)
 | |
| 			flags |= XFS_XFLAG_PREALLOC;
 | |
| 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 | |
| 			flags |= XFS_XFLAG_IMMUTABLE;
 | |
| 		if (di_flags & XFS_DIFLAG_APPEND)
 | |
| 			flags |= XFS_XFLAG_APPEND;
 | |
| 		if (di_flags & XFS_DIFLAG_SYNC)
 | |
| 			flags |= XFS_XFLAG_SYNC;
 | |
| 		if (di_flags & XFS_DIFLAG_NOATIME)
 | |
| 			flags |= XFS_XFLAG_NOATIME;
 | |
| 		if (di_flags & XFS_DIFLAG_NODUMP)
 | |
| 			flags |= XFS_XFLAG_NODUMP;
 | |
| 		if (di_flags & XFS_DIFLAG_RTINHERIT)
 | |
| 			flags |= XFS_XFLAG_RTINHERIT;
 | |
| 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 | |
| 			flags |= XFS_XFLAG_PROJINHERIT;
 | |
| 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 | |
| 			flags |= XFS_XFLAG_NOSYMLINKS;
 | |
| 		if (di_flags & XFS_DIFLAG_EXTSIZE)
 | |
| 			flags |= XFS_XFLAG_EXTSIZE;
 | |
| 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 | |
| 			flags |= XFS_XFLAG_EXTSZINHERIT;
 | |
| 		if (di_flags & XFS_DIFLAG_NODEFRAG)
 | |
| 			flags |= XFS_XFLAG_NODEFRAG;
 | |
| 		if (di_flags & XFS_DIFLAG_FILESTREAM)
 | |
| 			flags |= XFS_XFLAG_FILESTREAM;
 | |
| 	}
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| uint
 | |
| xfs_ip2xflags(
 | |
| 	xfs_inode_t		*ip)
 | |
| {
 | |
| 	xfs_icdinode_t		*dic = &ip->i_d;
 | |
| 
 | |
| 	return _xfs_dic2xflags(dic->di_flags) |
 | |
| 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
 | |
| }
 | |
| 
 | |
| uint
 | |
| xfs_dic2xflags(
 | |
| 	xfs_dinode_t		*dip)
 | |
| {
 | |
| 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
 | |
| 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the disk inode attributes into the in-core inode structure.
 | |
|  */
 | |
| int
 | |
| xfs_iread(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_daddr_t	bno,
 | |
| 	uint		iget_flags)
 | |
| {
 | |
| 	xfs_buf_t	*bp;
 | |
| 	xfs_dinode_t	*dip;
 | |
| 	int		error;
 | |
| 
 | |
| 	/*
 | |
| 	 * Fill in the location information in the in-core inode.
 | |
| 	 */
 | |
| 	ip->i_imap.im_blkno = bno;
 | |
| 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get pointers to the on-disk inode and the buffer containing it.
 | |
| 	 */
 | |
| 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
 | |
| 			       XFS_BUF_LOCK, iget_flags);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we got something that isn't an inode it means someone
 | |
| 	 * (nfs or dmi) has a stale handle.
 | |
| 	 */
 | |
| 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
 | |
| #ifdef DEBUG
 | |
| 		xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
 | |
| 				"dip->di_magic (0x%x) != "
 | |
| 				"XFS_DINODE_MAGIC (0x%x)",
 | |
| 				be16_to_cpu(dip->di_magic),
 | |
| 				XFS_DINODE_MAGIC);
 | |
| #endif /* DEBUG */
 | |
| 		error = XFS_ERROR(EINVAL);
 | |
| 		goto out_brelse;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the on-disk inode is already linked to a directory
 | |
| 	 * entry, copy all of the inode into the in-core inode.
 | |
| 	 * xfs_iformat() handles copying in the inode format
 | |
| 	 * specific information.
 | |
| 	 * Otherwise, just get the truly permanent information.
 | |
| 	 */
 | |
| 	if (dip->di_mode) {
 | |
| 		xfs_dinode_from_disk(&ip->i_d, dip);
 | |
| 		error = xfs_iformat(ip, dip);
 | |
| 		if (error)  {
 | |
| #ifdef DEBUG
 | |
| 			xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
 | |
| 					"xfs_iformat() returned error %d",
 | |
| 					error);
 | |
| #endif /* DEBUG */
 | |
| 			goto out_brelse;
 | |
| 		}
 | |
| 	} else {
 | |
| 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
 | |
| 		ip->i_d.di_version = dip->di_version;
 | |
| 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
 | |
| 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
 | |
| 		/*
 | |
| 		 * Make sure to pull in the mode here as well in
 | |
| 		 * case the inode is released without being used.
 | |
| 		 * This ensures that xfs_inactive() will see that
 | |
| 		 * the inode is already free and not try to mess
 | |
| 		 * with the uninitialized part of it.
 | |
| 		 */
 | |
| 		ip->i_d.di_mode = 0;
 | |
| 		/*
 | |
| 		 * Initialize the per-fork minima and maxima for a new
 | |
| 		 * inode here.  xfs_iformat will do it for old inodes.
 | |
| 		 */
 | |
| 		ip->i_df.if_ext_max =
 | |
| 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The inode format changed when we moved the link count and
 | |
| 	 * made it 32 bits long.  If this is an old format inode,
 | |
| 	 * convert it in memory to look like a new one.  If it gets
 | |
| 	 * flushed to disk we will convert back before flushing or
 | |
| 	 * logging it.  We zero out the new projid field and the old link
 | |
| 	 * count field.  We'll handle clearing the pad field (the remains
 | |
| 	 * of the old uuid field) when we actually convert the inode to
 | |
| 	 * the new format. We don't change the version number so that we
 | |
| 	 * can distinguish this from a real new format inode.
 | |
| 	 */
 | |
| 	if (ip->i_d.di_version == 1) {
 | |
| 		ip->i_d.di_nlink = ip->i_d.di_onlink;
 | |
| 		ip->i_d.di_onlink = 0;
 | |
| 		ip->i_d.di_projid = 0;
 | |
| 	}
 | |
| 
 | |
| 	ip->i_delayed_blks = 0;
 | |
| 	ip->i_size = ip->i_d.di_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the buffer containing the inode as something to keep
 | |
| 	 * around for a while.  This helps to keep recently accessed
 | |
| 	 * meta-data in-core longer.
 | |
| 	 */
 | |
| 	XFS_BUF_SET_REF(bp, XFS_INO_REF);
 | |
| 
 | |
| 	/*
 | |
| 	 * Use xfs_trans_brelse() to release the buffer containing the
 | |
| 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
 | |
| 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
 | |
| 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
 | |
| 	 * will only release the buffer if it is not dirty within the
 | |
| 	 * transaction.  It will be OK to release the buffer in this case,
 | |
| 	 * because inodes on disk are never destroyed and we will be
 | |
| 	 * locking the new in-core inode before putting it in the hash
 | |
| 	 * table where other processes can find it.  Thus we don't have
 | |
| 	 * to worry about the inode being changed just because we released
 | |
| 	 * the buffer.
 | |
| 	 */
 | |
|  out_brelse:
 | |
| 	xfs_trans_brelse(tp, bp);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read in extents from a btree-format inode.
 | |
|  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
 | |
|  */
 | |
| int
 | |
| xfs_iread_extents(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	int		whichfork)
 | |
| {
 | |
| 	int		error;
 | |
| 	xfs_ifork_t	*ifp;
 | |
| 	xfs_extnum_t	nextents;
 | |
| 	size_t		size;
 | |
| 
 | |
| 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
 | |
| 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
 | |
| 				 ip->i_mount);
 | |
| 		return XFS_ERROR(EFSCORRUPTED);
 | |
| 	}
 | |
| 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
 | |
| 	size = nextents * sizeof(xfs_bmbt_rec_t);
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 
 | |
| 	/*
 | |
| 	 * We know that the size is valid (it's checked in iformat_btree)
 | |
| 	 */
 | |
| 	ifp->if_lastex = NULLEXTNUM;
 | |
| 	ifp->if_bytes = ifp->if_real_bytes = 0;
 | |
| 	ifp->if_flags |= XFS_IFEXTENTS;
 | |
| 	xfs_iext_add(ifp, 0, nextents);
 | |
| 	error = xfs_bmap_read_extents(tp, ip, whichfork);
 | |
| 	if (error) {
 | |
| 		xfs_iext_destroy(ifp);
 | |
| 		ifp->if_flags &= ~XFS_IFEXTENTS;
 | |
| 		return error;
 | |
| 	}
 | |
| 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate an inode on disk and return a copy of its in-core version.
 | |
|  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 | |
|  * appropriately within the inode.  The uid and gid for the inode are
 | |
|  * set according to the contents of the given cred structure.
 | |
|  *
 | |
|  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 | |
|  * has a free inode available, call xfs_iget()
 | |
|  * to obtain the in-core version of the allocated inode.  Finally,
 | |
|  * fill in the inode and log its initial contents.  In this case,
 | |
|  * ialloc_context would be set to NULL and call_again set to false.
 | |
|  *
 | |
|  * If xfs_dialloc() does not have an available inode,
 | |
|  * it will replenish its supply by doing an allocation. Since we can
 | |
|  * only do one allocation within a transaction without deadlocks, we
 | |
|  * must commit the current transaction before returning the inode itself.
 | |
|  * In this case, therefore, we will set call_again to true and return.
 | |
|  * The caller should then commit the current transaction, start a new
 | |
|  * transaction, and call xfs_ialloc() again to actually get the inode.
 | |
|  *
 | |
|  * To ensure that some other process does not grab the inode that
 | |
|  * was allocated during the first call to xfs_ialloc(), this routine
 | |
|  * also returns the [locked] bp pointing to the head of the freelist
 | |
|  * as ialloc_context.  The caller should hold this buffer across
 | |
|  * the commit and pass it back into this routine on the second call.
 | |
|  *
 | |
|  * If we are allocating quota inodes, we do not have a parent inode
 | |
|  * to attach to or associate with (i.e. pip == NULL) because they
 | |
|  * are not linked into the directory structure - they are attached
 | |
|  * directly to the superblock - and so have no parent.
 | |
|  */
 | |
| int
 | |
| xfs_ialloc(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*pip,
 | |
| 	mode_t		mode,
 | |
| 	xfs_nlink_t	nlink,
 | |
| 	xfs_dev_t	rdev,
 | |
| 	cred_t		*cr,
 | |
| 	xfs_prid_t	prid,
 | |
| 	int		okalloc,
 | |
| 	xfs_buf_t	**ialloc_context,
 | |
| 	boolean_t	*call_again,
 | |
| 	xfs_inode_t	**ipp)
 | |
| {
 | |
| 	xfs_ino_t	ino;
 | |
| 	xfs_inode_t	*ip;
 | |
| 	uint		flags;
 | |
| 	int		error;
 | |
| 	timespec_t	tv;
 | |
| 	int		filestreams = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Call the space management code to pick
 | |
| 	 * the on-disk inode to be allocated.
 | |
| 	 */
 | |
| 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 | |
| 			    ialloc_context, call_again, &ino);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	if (*call_again || ino == NULLFSINO) {
 | |
| 		*ipp = NULL;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	ASSERT(*ialloc_context == NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the in-core inode with the lock held exclusively.
 | |
| 	 * This is because we're setting fields here we need
 | |
| 	 * to prevent others from looking at until we're done.
 | |
| 	 */
 | |
| 	error = xfs_trans_iget(tp->t_mountp, tp, ino,
 | |
| 				XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	ASSERT(ip != NULL);
 | |
| 
 | |
| 	ip->i_d.di_mode = (__uint16_t)mode;
 | |
| 	ip->i_d.di_onlink = 0;
 | |
| 	ip->i_d.di_nlink = nlink;
 | |
| 	ASSERT(ip->i_d.di_nlink == nlink);
 | |
| 	ip->i_d.di_uid = current_fsuid();
 | |
| 	ip->i_d.di_gid = current_fsgid();
 | |
| 	ip->i_d.di_projid = prid;
 | |
| 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 | |
| 
 | |
| 	/*
 | |
| 	 * If the superblock version is up to where we support new format
 | |
| 	 * inodes and this is currently an old format inode, then change
 | |
| 	 * the inode version number now.  This way we only do the conversion
 | |
| 	 * here rather than here and in the flush/logging code.
 | |
| 	 */
 | |
| 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
 | |
| 	    ip->i_d.di_version == 1) {
 | |
| 		ip->i_d.di_version = 2;
 | |
| 		/*
 | |
| 		 * We've already zeroed the old link count, the projid field,
 | |
| 		 * and the pad field.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Project ids won't be stored on disk if we are using a version 1 inode.
 | |
| 	 */
 | |
| 	if ((prid != 0) && (ip->i_d.di_version == 1))
 | |
| 		xfs_bump_ino_vers2(tp, ip);
 | |
| 
 | |
| 	if (pip && XFS_INHERIT_GID(pip)) {
 | |
| 		ip->i_d.di_gid = pip->i_d.di_gid;
 | |
| 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
 | |
| 			ip->i_d.di_mode |= S_ISGID;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the group ID of the new file does not match the effective group
 | |
| 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 | |
| 	 * (and only if the irix_sgid_inherit compatibility variable is set).
 | |
| 	 */
 | |
| 	if ((irix_sgid_inherit) &&
 | |
| 	    (ip->i_d.di_mode & S_ISGID) &&
 | |
| 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
 | |
| 		ip->i_d.di_mode &= ~S_ISGID;
 | |
| 	}
 | |
| 
 | |
| 	ip->i_d.di_size = 0;
 | |
| 	ip->i_size = 0;
 | |
| 	ip->i_d.di_nextents = 0;
 | |
| 	ASSERT(ip->i_d.di_nblocks == 0);
 | |
| 
 | |
| 	nanotime(&tv);
 | |
| 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
 | |
| 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
 | |
| 	ip->i_d.di_atime = ip->i_d.di_mtime;
 | |
| 	ip->i_d.di_ctime = ip->i_d.di_mtime;
 | |
| 
 | |
| 	/*
 | |
| 	 * di_gen will have been taken care of in xfs_iread.
 | |
| 	 */
 | |
| 	ip->i_d.di_extsize = 0;
 | |
| 	ip->i_d.di_dmevmask = 0;
 | |
| 	ip->i_d.di_dmstate = 0;
 | |
| 	ip->i_d.di_flags = 0;
 | |
| 	flags = XFS_ILOG_CORE;
 | |
| 	switch (mode & S_IFMT) {
 | |
| 	case S_IFIFO:
 | |
| 	case S_IFCHR:
 | |
| 	case S_IFBLK:
 | |
| 	case S_IFSOCK:
 | |
| 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 | |
| 		ip->i_df.if_u2.if_rdev = rdev;
 | |
| 		ip->i_df.if_flags = 0;
 | |
| 		flags |= XFS_ILOG_DEV;
 | |
| 		break;
 | |
| 	case S_IFREG:
 | |
| 		/*
 | |
| 		 * we can't set up filestreams until after the VFS inode
 | |
| 		 * is set up properly.
 | |
| 		 */
 | |
| 		if (pip && xfs_inode_is_filestream(pip))
 | |
| 			filestreams = 1;
 | |
| 		/* fall through */
 | |
| 	case S_IFDIR:
 | |
| 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 | |
| 			uint	di_flags = 0;
 | |
| 
 | |
| 			if ((mode & S_IFMT) == S_IFDIR) {
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 | |
| 					di_flags |= XFS_DIFLAG_RTINHERIT;
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 | |
| 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 | |
| 					ip->i_d.di_extsize = pip->i_d.di_extsize;
 | |
| 				}
 | |
| 			} else if ((mode & S_IFMT) == S_IFREG) {
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 | |
| 					di_flags |= XFS_DIFLAG_REALTIME;
 | |
| 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 | |
| 					di_flags |= XFS_DIFLAG_EXTSIZE;
 | |
| 					ip->i_d.di_extsize = pip->i_d.di_extsize;
 | |
| 				}
 | |
| 			}
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 | |
| 			    xfs_inherit_noatime)
 | |
| 				di_flags |= XFS_DIFLAG_NOATIME;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 | |
| 			    xfs_inherit_nodump)
 | |
| 				di_flags |= XFS_DIFLAG_NODUMP;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 | |
| 			    xfs_inherit_sync)
 | |
| 				di_flags |= XFS_DIFLAG_SYNC;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 | |
| 			    xfs_inherit_nosymlinks)
 | |
| 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 | |
| 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 | |
| 				di_flags |= XFS_DIFLAG_PROJINHERIT;
 | |
| 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 | |
| 			    xfs_inherit_nodefrag)
 | |
| 				di_flags |= XFS_DIFLAG_NODEFRAG;
 | |
| 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 | |
| 				di_flags |= XFS_DIFLAG_FILESTREAM;
 | |
| 			ip->i_d.di_flags |= di_flags;
 | |
| 		}
 | |
| 		/* FALLTHROUGH */
 | |
| 	case S_IFLNK:
 | |
| 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 | |
| 		ip->i_df.if_flags = XFS_IFEXTENTS;
 | |
| 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 | |
| 		ip->i_df.if_u1.if_extents = NULL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Attribute fork settings for new inode.
 | |
| 	 */
 | |
| 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 | |
| 	ip->i_d.di_anextents = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Log the new values stuffed into the inode.
 | |
| 	 */
 | |
| 	xfs_trans_log_inode(tp, ip, flags);
 | |
| 
 | |
| 	/* now that we have an i_mode we can setup inode ops and unlock */
 | |
| 	xfs_setup_inode(ip);
 | |
| 
 | |
| 	/* now we have set up the vfs inode we can associate the filestream */
 | |
| 	if (filestreams) {
 | |
| 		error = xfs_filestream_associate(pip, ip);
 | |
| 		if (error < 0)
 | |
| 			return -error;
 | |
| 		if (!error)
 | |
| 			xfs_iflags_set(ip, XFS_IFILESTREAM);
 | |
| 	}
 | |
| 
 | |
| 	*ipp = ip;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check to make sure that there are no blocks allocated to the
 | |
|  * file beyond the size of the file.  We don't check this for
 | |
|  * files with fixed size extents or real time extents, but we
 | |
|  * at least do it for regular files.
 | |
|  */
 | |
| #ifdef DEBUG
 | |
| void
 | |
| xfs_isize_check(
 | |
| 	xfs_mount_t	*mp,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_fsize_t	isize)
 | |
| {
 | |
| 	xfs_fileoff_t	map_first;
 | |
| 	int		nimaps;
 | |
| 	xfs_bmbt_irec_t	imaps[2];
 | |
| 
 | |
| 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
 | |
| 		return;
 | |
| 
 | |
| 	if (XFS_IS_REALTIME_INODE(ip))
 | |
| 		return;
 | |
| 
 | |
| 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
 | |
| 		return;
 | |
| 
 | |
| 	nimaps = 2;
 | |
| 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
 | |
| 	/*
 | |
| 	 * The filesystem could be shutting down, so bmapi may return
 | |
| 	 * an error.
 | |
| 	 */
 | |
| 	if (xfs_bmapi(NULL, ip, map_first,
 | |
| 			 (XFS_B_TO_FSB(mp,
 | |
| 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
 | |
| 			  map_first),
 | |
| 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
 | |
| 			 NULL, NULL))
 | |
| 	    return;
 | |
| 	ASSERT(nimaps == 1);
 | |
| 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
 | |
| }
 | |
| #endif	/* DEBUG */
 | |
| 
 | |
| /*
 | |
|  * Calculate the last possible buffered byte in a file.  This must
 | |
|  * include data that was buffered beyond the EOF by the write code.
 | |
|  * This also needs to deal with overflowing the xfs_fsize_t type
 | |
|  * which can happen for sizes near the limit.
 | |
|  *
 | |
|  * We also need to take into account any blocks beyond the EOF.  It
 | |
|  * may be the case that they were buffered by a write which failed.
 | |
|  * In that case the pages will still be in memory, but the inode size
 | |
|  * will never have been updated.
 | |
|  */
 | |
| STATIC xfs_fsize_t
 | |
| xfs_file_last_byte(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_fsize_t	last_byte;
 | |
| 	xfs_fileoff_t	last_block;
 | |
| 	xfs_fileoff_t	size_last_block;
 | |
| 	int		error;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
 | |
| 
 | |
| 	mp = ip->i_mount;
 | |
| 	/*
 | |
| 	 * Only check for blocks beyond the EOF if the extents have
 | |
| 	 * been read in.  This eliminates the need for the inode lock,
 | |
| 	 * and it also saves us from looking when it really isn't
 | |
| 	 * necessary.
 | |
| 	 */
 | |
| 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
 | |
| 		xfs_ilock(ip, XFS_ILOCK_SHARED);
 | |
| 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
 | |
| 			XFS_DATA_FORK);
 | |
| 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 | |
| 		if (error) {
 | |
| 			last_block = 0;
 | |
| 		}
 | |
| 	} else {
 | |
| 		last_block = 0;
 | |
| 	}
 | |
| 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
 | |
| 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
 | |
| 
 | |
| 	last_byte = XFS_FSB_TO_B(mp, last_block);
 | |
| 	if (last_byte < 0) {
 | |
| 		return XFS_MAXIOFFSET(mp);
 | |
| 	}
 | |
| 	last_byte += (1 << mp->m_writeio_log);
 | |
| 	if (last_byte < 0) {
 | |
| 		return XFS_MAXIOFFSET(mp);
 | |
| 	}
 | |
| 	return last_byte;
 | |
| }
 | |
| 
 | |
| #if defined(XFS_RW_TRACE)
 | |
| STATIC void
 | |
| xfs_itrunc_trace(
 | |
| 	int		tag,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	int		flag,
 | |
| 	xfs_fsize_t	new_size,
 | |
| 	xfs_off_t	toss_start,
 | |
| 	xfs_off_t	toss_finish)
 | |
| {
 | |
| 	if (ip->i_rwtrace == NULL) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ktrace_enter(ip->i_rwtrace,
 | |
| 		     (void*)((long)tag),
 | |
| 		     (void*)ip,
 | |
| 		     (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
 | |
| 		     (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
 | |
| 		     (void*)((long)flag),
 | |
| 		     (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
 | |
| 		     (void*)(unsigned long)(new_size & 0xffffffff),
 | |
| 		     (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
 | |
| 		     (void*)(unsigned long)(toss_start & 0xffffffff),
 | |
| 		     (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
 | |
| 		     (void*)(unsigned long)(toss_finish & 0xffffffff),
 | |
| 		     (void*)(unsigned long)current_cpu(),
 | |
| 		     (void*)(unsigned long)current_pid(),
 | |
| 		     (void*)NULL,
 | |
| 		     (void*)NULL,
 | |
| 		     (void*)NULL);
 | |
| }
 | |
| #else
 | |
| #define	xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Start the truncation of the file to new_size.  The new size
 | |
|  * must be smaller than the current size.  This routine will
 | |
|  * clear the buffer and page caches of file data in the removed
 | |
|  * range, and xfs_itruncate_finish() will remove the underlying
 | |
|  * disk blocks.
 | |
|  *
 | |
|  * The inode must have its I/O lock locked EXCLUSIVELY, and it
 | |
|  * must NOT have the inode lock held at all.  This is because we're
 | |
|  * calling into the buffer/page cache code and we can't hold the
 | |
|  * inode lock when we do so.
 | |
|  *
 | |
|  * We need to wait for any direct I/Os in flight to complete before we
 | |
|  * proceed with the truncate. This is needed to prevent the extents
 | |
|  * being read or written by the direct I/Os from being removed while the
 | |
|  * I/O is in flight as there is no other method of synchronising
 | |
|  * direct I/O with the truncate operation.  Also, because we hold
 | |
|  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
 | |
|  * started until the truncate completes and drops the lock. Essentially,
 | |
|  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
 | |
|  * ordering between direct I/Os and the truncate operation.
 | |
|  *
 | |
|  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
 | |
|  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
 | |
|  * in the case that the caller is locking things out of order and
 | |
|  * may not be able to call xfs_itruncate_finish() with the inode lock
 | |
|  * held without dropping the I/O lock.  If the caller must drop the
 | |
|  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
 | |
|  * must be called again with all the same restrictions as the initial
 | |
|  * call.
 | |
|  */
 | |
| int
 | |
| xfs_itruncate_start(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	uint		flags,
 | |
| 	xfs_fsize_t	new_size)
 | |
| {
 | |
| 	xfs_fsize_t	last_byte;
 | |
| 	xfs_off_t	toss_start;
 | |
| 	xfs_mount_t	*mp;
 | |
| 	int		error = 0;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
 | |
| 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
 | |
| 	       (flags == XFS_ITRUNC_MAYBE));
 | |
| 
 | |
| 	mp = ip->i_mount;
 | |
| 
 | |
| 	/* wait for the completion of any pending DIOs */
 | |
| 	if (new_size == 0 || new_size < ip->i_size)
 | |
| 		xfs_ioend_wait(ip);
 | |
| 
 | |
| 	/*
 | |
| 	 * Call toss_pages or flushinval_pages to get rid of pages
 | |
| 	 * overlapping the region being removed.  We have to use
 | |
| 	 * the less efficient flushinval_pages in the case that the
 | |
| 	 * caller may not be able to finish the truncate without
 | |
| 	 * dropping the inode's I/O lock.  Make sure
 | |
| 	 * to catch any pages brought in by buffers overlapping
 | |
| 	 * the EOF by searching out beyond the isize by our
 | |
| 	 * block size. We round new_size up to a block boundary
 | |
| 	 * so that we don't toss things on the same block as
 | |
| 	 * new_size but before it.
 | |
| 	 *
 | |
| 	 * Before calling toss_page or flushinval_pages, make sure to
 | |
| 	 * call remapf() over the same region if the file is mapped.
 | |
| 	 * This frees up mapped file references to the pages in the
 | |
| 	 * given range and for the flushinval_pages case it ensures
 | |
| 	 * that we get the latest mapped changes flushed out.
 | |
| 	 */
 | |
| 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
 | |
| 	toss_start = XFS_FSB_TO_B(mp, toss_start);
 | |
| 	if (toss_start < 0) {
 | |
| 		/*
 | |
| 		 * The place to start tossing is beyond our maximum
 | |
| 		 * file size, so there is no way that the data extended
 | |
| 		 * out there.
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	}
 | |
| 	last_byte = xfs_file_last_byte(ip);
 | |
| 	xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
 | |
| 			 last_byte);
 | |
| 	if (last_byte > toss_start) {
 | |
| 		if (flags & XFS_ITRUNC_DEFINITE) {
 | |
| 			xfs_tosspages(ip, toss_start,
 | |
| 					-1, FI_REMAPF_LOCKED);
 | |
| 		} else {
 | |
| 			error = xfs_flushinval_pages(ip, toss_start,
 | |
| 					-1, FI_REMAPF_LOCKED);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG
 | |
| 	if (new_size == 0) {
 | |
| 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
 | |
| 	}
 | |
| #endif
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Shrink the file to the given new_size.  The new size must be smaller than
 | |
|  * the current size.  This will free up the underlying blocks in the removed
 | |
|  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
 | |
|  *
 | |
|  * The transaction passed to this routine must have made a permanent log
 | |
|  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
 | |
|  * given transaction and start new ones, so make sure everything involved in
 | |
|  * the transaction is tidy before calling here.  Some transaction will be
 | |
|  * returned to the caller to be committed.  The incoming transaction must
 | |
|  * already include the inode, and both inode locks must be held exclusively.
 | |
|  * The inode must also be "held" within the transaction.  On return the inode
 | |
|  * will be "held" within the returned transaction.  This routine does NOT
 | |
|  * require any disk space to be reserved for it within the transaction.
 | |
|  *
 | |
|  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
 | |
|  * indicates the fork which is to be truncated.  For the attribute fork we only
 | |
|  * support truncation to size 0.
 | |
|  *
 | |
|  * We use the sync parameter to indicate whether or not the first transaction
 | |
|  * we perform might have to be synchronous.  For the attr fork, it needs to be
 | |
|  * so if the unlink of the inode is not yet known to be permanent in the log.
 | |
|  * This keeps us from freeing and reusing the blocks of the attribute fork
 | |
|  * before the unlink of the inode becomes permanent.
 | |
|  *
 | |
|  * For the data fork, we normally have to run synchronously if we're being
 | |
|  * called out of the inactive path or we're being called out of the create path
 | |
|  * where we're truncating an existing file.  Either way, the truncate needs to
 | |
|  * be sync so blocks don't reappear in the file with altered data in case of a
 | |
|  * crash.  wsync filesystems can run the first case async because anything that
 | |
|  * shrinks the inode has to run sync so by the time we're called here from
 | |
|  * inactive, the inode size is permanently set to 0.
 | |
|  *
 | |
|  * Calls from the truncate path always need to be sync unless we're in a wsync
 | |
|  * filesystem and the file has already been unlinked.
 | |
|  *
 | |
|  * The caller is responsible for correctly setting the sync parameter.  It gets
 | |
|  * too hard for us to guess here which path we're being called out of just
 | |
|  * based on inode state.
 | |
|  *
 | |
|  * If we get an error, we must return with the inode locked and linked into the
 | |
|  * current transaction. This keeps things simple for the higher level code,
 | |
|  * because it always knows that the inode is locked and held in the transaction
 | |
|  * that returns to it whether errors occur or not.  We don't mark the inode
 | |
|  * dirty on error so that transactions can be easily aborted if possible.
 | |
|  */
 | |
| int
 | |
| xfs_itruncate_finish(
 | |
| 	xfs_trans_t	**tp,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_fsize_t	new_size,
 | |
| 	int		fork,
 | |
| 	int		sync)
 | |
| {
 | |
| 	xfs_fsblock_t	first_block;
 | |
| 	xfs_fileoff_t	first_unmap_block;
 | |
| 	xfs_fileoff_t	last_block;
 | |
| 	xfs_filblks_t	unmap_len=0;
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_trans_t	*ntp;
 | |
| 	int		done;
 | |
| 	int		committed;
 | |
| 	xfs_bmap_free_t	free_list;
 | |
| 	int		error;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
 | |
| 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
 | |
| 	ASSERT(*tp != NULL);
 | |
| 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
 | |
| 	ASSERT(ip->i_transp == *tp);
 | |
| 	ASSERT(ip->i_itemp != NULL);
 | |
| 	ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
 | |
| 
 | |
| 
 | |
| 	ntp = *tp;
 | |
| 	mp = (ntp)->t_mountp;
 | |
| 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
 | |
| 
 | |
| 	/*
 | |
| 	 * We only support truncating the entire attribute fork.
 | |
| 	 */
 | |
| 	if (fork == XFS_ATTR_FORK) {
 | |
| 		new_size = 0LL;
 | |
| 	}
 | |
| 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
 | |
| 	xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
 | |
| 	/*
 | |
| 	 * The first thing we do is set the size to new_size permanently
 | |
| 	 * on disk.  This way we don't have to worry about anyone ever
 | |
| 	 * being able to look at the data being freed even in the face
 | |
| 	 * of a crash.  What we're getting around here is the case where
 | |
| 	 * we free a block, it is allocated to another file, it is written
 | |
| 	 * to, and then we crash.  If the new data gets written to the
 | |
| 	 * file but the log buffers containing the free and reallocation
 | |
| 	 * don't, then we'd end up with garbage in the blocks being freed.
 | |
| 	 * As long as we make the new_size permanent before actually
 | |
| 	 * freeing any blocks it doesn't matter if they get writtten to.
 | |
| 	 *
 | |
| 	 * The callers must signal into us whether or not the size
 | |
| 	 * setting here must be synchronous.  There are a few cases
 | |
| 	 * where it doesn't have to be synchronous.  Those cases
 | |
| 	 * occur if the file is unlinked and we know the unlink is
 | |
| 	 * permanent or if the blocks being truncated are guaranteed
 | |
| 	 * to be beyond the inode eof (regardless of the link count)
 | |
| 	 * and the eof value is permanent.  Both of these cases occur
 | |
| 	 * only on wsync-mounted filesystems.  In those cases, we're
 | |
| 	 * guaranteed that no user will ever see the data in the blocks
 | |
| 	 * that are being truncated so the truncate can run async.
 | |
| 	 * In the free beyond eof case, the file may wind up with
 | |
| 	 * more blocks allocated to it than it needs if we crash
 | |
| 	 * and that won't get fixed until the next time the file
 | |
| 	 * is re-opened and closed but that's ok as that shouldn't
 | |
| 	 * be too many blocks.
 | |
| 	 *
 | |
| 	 * However, we can't just make all wsync xactions run async
 | |
| 	 * because there's one call out of the create path that needs
 | |
| 	 * to run sync where it's truncating an existing file to size
 | |
| 	 * 0 whose size is > 0.
 | |
| 	 *
 | |
| 	 * It's probably possible to come up with a test in this
 | |
| 	 * routine that would correctly distinguish all the above
 | |
| 	 * cases from the values of the function parameters and the
 | |
| 	 * inode state but for sanity's sake, I've decided to let the
 | |
| 	 * layers above just tell us.  It's simpler to correctly figure
 | |
| 	 * out in the layer above exactly under what conditions we
 | |
| 	 * can run async and I think it's easier for others read and
 | |
| 	 * follow the logic in case something has to be changed.
 | |
| 	 * cscope is your friend -- rcc.
 | |
| 	 *
 | |
| 	 * The attribute fork is much simpler.
 | |
| 	 *
 | |
| 	 * For the attribute fork we allow the caller to tell us whether
 | |
| 	 * the unlink of the inode that led to this call is yet permanent
 | |
| 	 * in the on disk log.  If it is not and we will be freeing extents
 | |
| 	 * in this inode then we make the first transaction synchronous
 | |
| 	 * to make sure that the unlink is permanent by the time we free
 | |
| 	 * the blocks.
 | |
| 	 */
 | |
| 	if (fork == XFS_DATA_FORK) {
 | |
| 		if (ip->i_d.di_nextents > 0) {
 | |
| 			/*
 | |
| 			 * If we are not changing the file size then do
 | |
| 			 * not update the on-disk file size - we may be
 | |
| 			 * called from xfs_inactive_free_eofblocks().  If we
 | |
| 			 * update the on-disk file size and then the system
 | |
| 			 * crashes before the contents of the file are
 | |
| 			 * flushed to disk then the files may be full of
 | |
| 			 * holes (ie NULL files bug).
 | |
| 			 */
 | |
| 			if (ip->i_size != new_size) {
 | |
| 				ip->i_d.di_size = new_size;
 | |
| 				ip->i_size = new_size;
 | |
| 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (sync) {
 | |
| 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
 | |
| 		if (ip->i_d.di_anextents > 0)
 | |
| 			xfs_trans_set_sync(ntp);
 | |
| 	}
 | |
| 	ASSERT(fork == XFS_DATA_FORK ||
 | |
| 		(fork == XFS_ATTR_FORK &&
 | |
| 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
 | |
| 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
 | |
| 
 | |
| 	/*
 | |
| 	 * Since it is possible for space to become allocated beyond
 | |
| 	 * the end of the file (in a crash where the space is allocated
 | |
| 	 * but the inode size is not yet updated), simply remove any
 | |
| 	 * blocks which show up between the new EOF and the maximum
 | |
| 	 * possible file size.  If the first block to be removed is
 | |
| 	 * beyond the maximum file size (ie it is the same as last_block),
 | |
| 	 * then there is nothing to do.
 | |
| 	 */
 | |
| 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
 | |
| 	ASSERT(first_unmap_block <= last_block);
 | |
| 	done = 0;
 | |
| 	if (last_block == first_unmap_block) {
 | |
| 		done = 1;
 | |
| 	} else {
 | |
| 		unmap_len = last_block - first_unmap_block + 1;
 | |
| 	}
 | |
| 	while (!done) {
 | |
| 		/*
 | |
| 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
 | |
| 		 * will tell us whether it freed the entire range or
 | |
| 		 * not.  If this is a synchronous mount (wsync),
 | |
| 		 * then we can tell bunmapi to keep all the
 | |
| 		 * transactions asynchronous since the unlink
 | |
| 		 * transaction that made this inode inactive has
 | |
| 		 * already hit the disk.  There's no danger of
 | |
| 		 * the freed blocks being reused, there being a
 | |
| 		 * crash, and the reused blocks suddenly reappearing
 | |
| 		 * in this file with garbage in them once recovery
 | |
| 		 * runs.
 | |
| 		 */
 | |
| 		xfs_bmap_init(&free_list, &first_block);
 | |
| 		error = xfs_bunmapi(ntp, ip,
 | |
| 				    first_unmap_block, unmap_len,
 | |
| 				    xfs_bmapi_aflag(fork) |
 | |
| 				      (sync ? 0 : XFS_BMAPI_ASYNC),
 | |
| 				    XFS_ITRUNC_MAX_EXTENTS,
 | |
| 				    &first_block, &free_list,
 | |
| 				    NULL, &done);
 | |
| 		if (error) {
 | |
| 			/*
 | |
| 			 * If the bunmapi call encounters an error,
 | |
| 			 * return to the caller where the transaction
 | |
| 			 * can be properly aborted.  We just need to
 | |
| 			 * make sure we're not holding any resources
 | |
| 			 * that we were not when we came in.
 | |
| 			 */
 | |
| 			xfs_bmap_cancel(&free_list);
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Duplicate the transaction that has the permanent
 | |
| 		 * reservation and commit the old transaction.
 | |
| 		 */
 | |
| 		error = xfs_bmap_finish(tp, &free_list, &committed);
 | |
| 		ntp = *tp;
 | |
| 		if (committed) {
 | |
| 			/* link the inode into the next xact in the chain */
 | |
| 			xfs_trans_ijoin(ntp, ip,
 | |
| 					XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
 | |
| 			xfs_trans_ihold(ntp, ip);
 | |
| 		}
 | |
| 
 | |
| 		if (error) {
 | |
| 			/*
 | |
| 			 * If the bmap finish call encounters an error, return
 | |
| 			 * to the caller where the transaction can be properly
 | |
| 			 * aborted.  We just need to make sure we're not
 | |
| 			 * holding any resources that we were not when we came
 | |
| 			 * in.
 | |
| 			 *
 | |
| 			 * Aborting from this point might lose some blocks in
 | |
| 			 * the file system, but oh well.
 | |
| 			 */
 | |
| 			xfs_bmap_cancel(&free_list);
 | |
| 			return error;
 | |
| 		}
 | |
| 
 | |
| 		if (committed) {
 | |
| 			/*
 | |
| 			 * Mark the inode dirty so it will be logged and
 | |
| 			 * moved forward in the log as part of every commit.
 | |
| 			 */
 | |
| 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
 | |
| 		}
 | |
| 
 | |
| 		ntp = xfs_trans_dup(ntp);
 | |
| 		error = xfs_trans_commit(*tp, 0);
 | |
| 		*tp = ntp;
 | |
| 
 | |
| 		/* link the inode into the next transaction in the chain */
 | |
| 		xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
 | |
| 		xfs_trans_ihold(ntp, ip);
 | |
| 
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 		/*
 | |
| 		 * transaction commit worked ok so we can drop the extra ticket
 | |
| 		 * reference that we gained in xfs_trans_dup()
 | |
| 		 */
 | |
| 		xfs_log_ticket_put(ntp->t_ticket);
 | |
| 		error = xfs_trans_reserve(ntp, 0,
 | |
| 					XFS_ITRUNCATE_LOG_RES(mp), 0,
 | |
| 					XFS_TRANS_PERM_LOG_RES,
 | |
| 					XFS_ITRUNCATE_LOG_COUNT);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Only update the size in the case of the data fork, but
 | |
| 	 * always re-log the inode so that our permanent transaction
 | |
| 	 * can keep on rolling it forward in the log.
 | |
| 	 */
 | |
| 	if (fork == XFS_DATA_FORK) {
 | |
| 		xfs_isize_check(mp, ip, new_size);
 | |
| 		/*
 | |
| 		 * If we are not changing the file size then do
 | |
| 		 * not update the on-disk file size - we may be
 | |
| 		 * called from xfs_inactive_free_eofblocks().  If we
 | |
| 		 * update the on-disk file size and then the system
 | |
| 		 * crashes before the contents of the file are
 | |
| 		 * flushed to disk then the files may be full of
 | |
| 		 * holes (ie NULL files bug).
 | |
| 		 */
 | |
| 		if (ip->i_size != new_size) {
 | |
| 			ip->i_d.di_size = new_size;
 | |
| 			ip->i_size = new_size;
 | |
| 		}
 | |
| 	}
 | |
| 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
 | |
| 	ASSERT((new_size != 0) ||
 | |
| 	       (fork == XFS_ATTR_FORK) ||
 | |
| 	       (ip->i_delayed_blks == 0));
 | |
| 	ASSERT((new_size != 0) ||
 | |
| 	       (fork == XFS_ATTR_FORK) ||
 | |
| 	       (ip->i_d.di_nextents == 0));
 | |
| 	xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the inode's link count goes to 0.
 | |
|  * We place the on-disk inode on a list in the AGI.  It
 | |
|  * will be pulled from this list when the inode is freed.
 | |
|  */
 | |
| int
 | |
| xfs_iunlink(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_agi_t	*agi;
 | |
| 	xfs_dinode_t	*dip;
 | |
| 	xfs_buf_t	*agibp;
 | |
| 	xfs_buf_t	*ibp;
 | |
| 	xfs_agino_t	agino;
 | |
| 	short		bucket_index;
 | |
| 	int		offset;
 | |
| 	int		error;
 | |
| 
 | |
| 	ASSERT(ip->i_d.di_nlink == 0);
 | |
| 	ASSERT(ip->i_d.di_mode != 0);
 | |
| 	ASSERT(ip->i_transp == tp);
 | |
| 
 | |
| 	mp = tp->t_mountp;
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the agi buffer first.  It ensures lock ordering
 | |
| 	 * on the list.
 | |
| 	 */
 | |
| 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 	agi = XFS_BUF_TO_AGI(agibp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the index into the agi hash table for the
 | |
| 	 * list this inode will go on.
 | |
| 	 */
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
 | |
| 	ASSERT(agino != 0);
 | |
| 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
 | |
| 	ASSERT(agi->agi_unlinked[bucket_index]);
 | |
| 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
 | |
| 
 | |
| 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
 | |
| 		/*
 | |
| 		 * There is already another inode in the bucket we need
 | |
| 		 * to add ourselves to.  Add us at the front of the list.
 | |
| 		 * Here we put the head pointer into our next pointer,
 | |
| 		 * and then we fall through to point the head at us.
 | |
| 		 */
 | |
| 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
 | |
| 		if (error)
 | |
| 			return error;
 | |
| 
 | |
| 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
 | |
| 		/* both on-disk, don't endian flip twice */
 | |
| 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
 | |
| 		offset = ip->i_imap.im_boffset +
 | |
| 			offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 		xfs_trans_inode_buf(tp, ibp);
 | |
| 		xfs_trans_log_buf(tp, ibp, offset,
 | |
| 				  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 		xfs_inobp_check(mp, ibp);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Point the bucket head pointer at the inode being inserted.
 | |
| 	 */
 | |
| 	ASSERT(agino != 0);
 | |
| 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
 | |
| 	offset = offsetof(xfs_agi_t, agi_unlinked) +
 | |
| 		(sizeof(xfs_agino_t) * bucket_index);
 | |
| 	xfs_trans_log_buf(tp, agibp, offset,
 | |
| 			  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Pull the on-disk inode from the AGI unlinked list.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_iunlink_remove(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	xfs_ino_t	next_ino;
 | |
| 	xfs_mount_t	*mp;
 | |
| 	xfs_agi_t	*agi;
 | |
| 	xfs_dinode_t	*dip;
 | |
| 	xfs_buf_t	*agibp;
 | |
| 	xfs_buf_t	*ibp;
 | |
| 	xfs_agnumber_t	agno;
 | |
| 	xfs_agino_t	agino;
 | |
| 	xfs_agino_t	next_agino;
 | |
| 	xfs_buf_t	*last_ibp;
 | |
| 	xfs_dinode_t	*last_dip = NULL;
 | |
| 	short		bucket_index;
 | |
| 	int		offset, last_offset = 0;
 | |
| 	int		error;
 | |
| 
 | |
| 	mp = tp->t_mountp;
 | |
| 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the agi buffer first.  It ensures lock ordering
 | |
| 	 * on the list.
 | |
| 	 */
 | |
| 	error = xfs_read_agi(mp, tp, agno, &agibp);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
| 	agi = XFS_BUF_TO_AGI(agibp);
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the index into the agi hash table for the
 | |
| 	 * list this inode will go on.
 | |
| 	 */
 | |
| 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
 | |
| 	ASSERT(agino != 0);
 | |
| 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
 | |
| 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
 | |
| 	ASSERT(agi->agi_unlinked[bucket_index]);
 | |
| 
 | |
| 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
 | |
| 		/*
 | |
| 		 * We're at the head of the list.  Get the inode's
 | |
| 		 * on-disk buffer to see if there is anyone after us
 | |
| 		 * on the list.  Only modify our next pointer if it
 | |
| 		 * is not already NULLAGINO.  This saves us the overhead
 | |
| 		 * of dealing with the buffer when there is no need to
 | |
| 		 * change it.
 | |
| 		 */
 | |
| 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
 | |
| 		if (error) {
 | |
| 			cmn_err(CE_WARN,
 | |
| 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
 | |
| 				error, mp->m_fsname);
 | |
| 			return error;
 | |
| 		}
 | |
| 		next_agino = be32_to_cpu(dip->di_next_unlinked);
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		if (next_agino != NULLAGINO) {
 | |
| 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
 | |
| 			offset = ip->i_imap.im_boffset +
 | |
| 				offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 			xfs_trans_inode_buf(tp, ibp);
 | |
| 			xfs_trans_log_buf(tp, ibp, offset,
 | |
| 					  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 			xfs_inobp_check(mp, ibp);
 | |
| 		} else {
 | |
| 			xfs_trans_brelse(tp, ibp);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Point the bucket head pointer at the next inode.
 | |
| 		 */
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		ASSERT(next_agino != agino);
 | |
| 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
 | |
| 		offset = offsetof(xfs_agi_t, agi_unlinked) +
 | |
| 			(sizeof(xfs_agino_t) * bucket_index);
 | |
| 		xfs_trans_log_buf(tp, agibp, offset,
 | |
| 				  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We need to search the list for the inode being freed.
 | |
| 		 */
 | |
| 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
 | |
| 		last_ibp = NULL;
 | |
| 		while (next_agino != agino) {
 | |
| 			/*
 | |
| 			 * If the last inode wasn't the one pointing to
 | |
| 			 * us, then release its buffer since we're not
 | |
| 			 * going to do anything with it.
 | |
| 			 */
 | |
| 			if (last_ibp != NULL) {
 | |
| 				xfs_trans_brelse(tp, last_ibp);
 | |
| 			}
 | |
| 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
 | |
| 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
 | |
| 					    &last_ibp, &last_offset, 0);
 | |
| 			if (error) {
 | |
| 				cmn_err(CE_WARN,
 | |
| 			"xfs_iunlink_remove: xfs_inotobp()  returned an error %d on %s.  Returning error.",
 | |
| 					error, mp->m_fsname);
 | |
| 				return error;
 | |
| 			}
 | |
| 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
 | |
| 			ASSERT(next_agino != NULLAGINO);
 | |
| 			ASSERT(next_agino != 0);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Now last_ibp points to the buffer previous to us on
 | |
| 		 * the unlinked list.  Pull us from the list.
 | |
| 		 */
 | |
| 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
 | |
| 		if (error) {
 | |
| 			cmn_err(CE_WARN,
 | |
| 				"xfs_iunlink_remove: xfs_itobp()  returned an error %d on %s.  Returning error.",
 | |
| 				error, mp->m_fsname);
 | |
| 			return error;
 | |
| 		}
 | |
| 		next_agino = be32_to_cpu(dip->di_next_unlinked);
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		ASSERT(next_agino != agino);
 | |
| 		if (next_agino != NULLAGINO) {
 | |
| 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
 | |
| 			offset = ip->i_imap.im_boffset +
 | |
| 				offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 			xfs_trans_inode_buf(tp, ibp);
 | |
| 			xfs_trans_log_buf(tp, ibp, offset,
 | |
| 					  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 			xfs_inobp_check(mp, ibp);
 | |
| 		} else {
 | |
| 			xfs_trans_brelse(tp, ibp);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Point the previous inode on the list to the next inode.
 | |
| 		 */
 | |
| 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
 | |
| 		ASSERT(next_agino != 0);
 | |
| 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
 | |
| 		xfs_trans_inode_buf(tp, last_ibp);
 | |
| 		xfs_trans_log_buf(tp, last_ibp, offset,
 | |
| 				  (offset + sizeof(xfs_agino_t) - 1));
 | |
| 		xfs_inobp_check(mp, last_ibp);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_ifree_cluster(
 | |
| 	xfs_inode_t	*free_ip,
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_ino_t	inum)
 | |
| {
 | |
| 	xfs_mount_t		*mp = free_ip->i_mount;
 | |
| 	int			blks_per_cluster;
 | |
| 	int			nbufs;
 | |
| 	int			ninodes;
 | |
| 	int			i, j, found, pre_flushed;
 | |
| 	xfs_daddr_t		blkno;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	xfs_inode_t		*ip, **ip_found;
 | |
| 	xfs_inode_log_item_t	*iip;
 | |
| 	xfs_log_item_t		*lip;
 | |
| 	xfs_perag_t		*pag = xfs_get_perag(mp, inum);
 | |
| 
 | |
| 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
 | |
| 		blks_per_cluster = 1;
 | |
| 		ninodes = mp->m_sb.sb_inopblock;
 | |
| 		nbufs = XFS_IALLOC_BLOCKS(mp);
 | |
| 	} else {
 | |
| 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
 | |
| 					mp->m_sb.sb_blocksize;
 | |
| 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
 | |
| 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
 | |
| 	}
 | |
| 
 | |
| 	ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
 | |
| 
 | |
| 	for (j = 0; j < nbufs; j++, inum += ninodes) {
 | |
| 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
 | |
| 					 XFS_INO_TO_AGBNO(mp, inum));
 | |
| 
 | |
| 
 | |
| 		/*
 | |
| 		 * Look for each inode in memory and attempt to lock it,
 | |
| 		 * we can be racing with flush and tail pushing here.
 | |
| 		 * any inode we get the locks on, add to an array of
 | |
| 		 * inode items to process later.
 | |
| 		 *
 | |
| 		 * The get the buffer lock, we could beat a flush
 | |
| 		 * or tail pushing thread to the lock here, in which
 | |
| 		 * case they will go looking for the inode buffer
 | |
| 		 * and fail, we need some other form of interlock
 | |
| 		 * here.
 | |
| 		 */
 | |
| 		found = 0;
 | |
| 		for (i = 0; i < ninodes; i++) {
 | |
| 			read_lock(&pag->pag_ici_lock);
 | |
| 			ip = radix_tree_lookup(&pag->pag_ici_root,
 | |
| 					XFS_INO_TO_AGINO(mp, (inum + i)));
 | |
| 
 | |
| 			/* Inode not in memory or we found it already,
 | |
| 			 * nothing to do
 | |
| 			 */
 | |
| 			if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
 | |
| 				read_unlock(&pag->pag_ici_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (xfs_inode_clean(ip)) {
 | |
| 				read_unlock(&pag->pag_ici_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			/* If we can get the locks then add it to the
 | |
| 			 * list, otherwise by the time we get the bp lock
 | |
| 			 * below it will already be attached to the
 | |
| 			 * inode buffer.
 | |
| 			 */
 | |
| 
 | |
| 			/* This inode will already be locked - by us, lets
 | |
| 			 * keep it that way.
 | |
| 			 */
 | |
| 
 | |
| 			if (ip == free_ip) {
 | |
| 				if (xfs_iflock_nowait(ip)) {
 | |
| 					xfs_iflags_set(ip, XFS_ISTALE);
 | |
| 					if (xfs_inode_clean(ip)) {
 | |
| 						xfs_ifunlock(ip);
 | |
| 					} else {
 | |
| 						ip_found[found++] = ip;
 | |
| 					}
 | |
| 				}
 | |
| 				read_unlock(&pag->pag_ici_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
 | |
| 				if (xfs_iflock_nowait(ip)) {
 | |
| 					xfs_iflags_set(ip, XFS_ISTALE);
 | |
| 
 | |
| 					if (xfs_inode_clean(ip)) {
 | |
| 						xfs_ifunlock(ip);
 | |
| 						xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 					} else {
 | |
| 						ip_found[found++] = ip;
 | |
| 					}
 | |
| 				} else {
 | |
| 					xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 				}
 | |
| 			}
 | |
| 			read_unlock(&pag->pag_ici_lock);
 | |
| 		}
 | |
| 
 | |
| 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno, 
 | |
| 					mp->m_bsize * blks_per_cluster,
 | |
| 					XFS_BUF_LOCK);
 | |
| 
 | |
| 		pre_flushed = 0;
 | |
| 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
 | |
| 		while (lip) {
 | |
| 			if (lip->li_type == XFS_LI_INODE) {
 | |
| 				iip = (xfs_inode_log_item_t *)lip;
 | |
| 				ASSERT(iip->ili_logged == 1);
 | |
| 				lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
 | |
| 				xfs_trans_ail_copy_lsn(mp->m_ail,
 | |
| 							&iip->ili_flush_lsn,
 | |
| 							&iip->ili_item.li_lsn);
 | |
| 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
 | |
| 				pre_flushed++;
 | |
| 			}
 | |
| 			lip = lip->li_bio_list;
 | |
| 		}
 | |
| 
 | |
| 		for (i = 0; i < found; i++) {
 | |
| 			ip = ip_found[i];
 | |
| 			iip = ip->i_itemp;
 | |
| 
 | |
| 			if (!iip) {
 | |
| 				ip->i_update_core = 0;
 | |
| 				xfs_ifunlock(ip);
 | |
| 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			iip->ili_last_fields = iip->ili_format.ilf_fields;
 | |
| 			iip->ili_format.ilf_fields = 0;
 | |
| 			iip->ili_logged = 1;
 | |
| 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
 | |
| 						&iip->ili_item.li_lsn);
 | |
| 
 | |
| 			xfs_buf_attach_iodone(bp,
 | |
| 				(void(*)(xfs_buf_t*,xfs_log_item_t*))
 | |
| 				xfs_istale_done, (xfs_log_item_t *)iip);
 | |
| 			if (ip != free_ip) {
 | |
| 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (found || pre_flushed)
 | |
| 			xfs_trans_stale_inode_buf(tp, bp);
 | |
| 		xfs_trans_binval(tp, bp);
 | |
| 	}
 | |
| 
 | |
| 	kmem_free(ip_found);
 | |
| 	xfs_put_perag(mp, pag);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to return an inode to the inode free list.
 | |
|  * The inode should already be truncated to 0 length and have
 | |
|  * no pages associated with it.  This routine also assumes that
 | |
|  * the inode is already a part of the transaction.
 | |
|  *
 | |
|  * The on-disk copy of the inode will have been added to the list
 | |
|  * of unlinked inodes in the AGI. We need to remove the inode from
 | |
|  * that list atomically with respect to freeing it here.
 | |
|  */
 | |
| int
 | |
| xfs_ifree(
 | |
| 	xfs_trans_t	*tp,
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_bmap_free_t	*flist)
 | |
| {
 | |
| 	int			error;
 | |
| 	int			delete;
 | |
| 	xfs_ino_t		first_ino;
 | |
| 	xfs_dinode_t    	*dip;
 | |
| 	xfs_buf_t       	*ibp;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 | |
| 	ASSERT(ip->i_transp == tp);
 | |
| 	ASSERT(ip->i_d.di_nlink == 0);
 | |
| 	ASSERT(ip->i_d.di_nextents == 0);
 | |
| 	ASSERT(ip->i_d.di_anextents == 0);
 | |
| 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
 | |
| 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
 | |
| 	ASSERT(ip->i_d.di_nblocks == 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Pull the on-disk inode from the AGI unlinked list.
 | |
| 	 */
 | |
| 	error = xfs_iunlink_remove(tp, ip);
 | |
| 	if (error != 0) {
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
 | |
| 	if (error != 0) {
 | |
| 		return error;
 | |
| 	}
 | |
| 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
 | |
| 	ip->i_d.di_flags = 0;
 | |
| 	ip->i_d.di_dmevmask = 0;
 | |
| 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
 | |
| 	ip->i_df.if_ext_max =
 | |
| 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 | |
| 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 | |
| 	/*
 | |
| 	 * Bump the generation count so no one will be confused
 | |
| 	 * by reincarnations of this inode.
 | |
| 	 */
 | |
| 	ip->i_d.di_gen++;
 | |
| 
 | |
| 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 | |
| 
 | |
| 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
 | |
| 	if (error)
 | |
| 		return error;
 | |
| 
 | |
|         /*
 | |
| 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
 | |
| 	* from picking up this inode when it is reclaimed (its incore state
 | |
| 	* initialzed but not flushed to disk yet). The in-core di_mode is
 | |
| 	* already cleared  and a corresponding transaction logged.
 | |
| 	* The hack here just synchronizes the in-core to on-disk
 | |
| 	* di_mode value in advance before the actual inode sync to disk.
 | |
| 	* This is OK because the inode is already unlinked and would never
 | |
| 	* change its di_mode again for this inode generation.
 | |
| 	* This is a temporary hack that would require a proper fix
 | |
| 	* in the future.
 | |
| 	*/
 | |
| 	dip->di_mode = 0;
 | |
| 
 | |
| 	if (delete) {
 | |
| 		xfs_ifree_cluster(ip, tp, first_ino);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reallocate the space for if_broot based on the number of records
 | |
|  * being added or deleted as indicated in rec_diff.  Move the records
 | |
|  * and pointers in if_broot to fit the new size.  When shrinking this
 | |
|  * will eliminate holes between the records and pointers created by
 | |
|  * the caller.  When growing this will create holes to be filled in
 | |
|  * by the caller.
 | |
|  *
 | |
|  * The caller must not request to add more records than would fit in
 | |
|  * the on-disk inode root.  If the if_broot is currently NULL, then
 | |
|  * if we adding records one will be allocated.  The caller must also
 | |
|  * not request that the number of records go below zero, although
 | |
|  * it can go to zero.
 | |
|  *
 | |
|  * ip -- the inode whose if_broot area is changing
 | |
|  * ext_diff -- the change in the number of records, positive or negative,
 | |
|  *	 requested for the if_broot array.
 | |
|  */
 | |
| void
 | |
| xfs_iroot_realloc(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	int			rec_diff,
 | |
| 	int			whichfork)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 	int			cur_max;
 | |
| 	xfs_ifork_t		*ifp;
 | |
| 	struct xfs_btree_block	*new_broot;
 | |
| 	int			new_max;
 | |
| 	size_t			new_size;
 | |
| 	char			*np;
 | |
| 	char			*op;
 | |
| 
 | |
| 	/*
 | |
| 	 * Handle the degenerate case quietly.
 | |
| 	 */
 | |
| 	if (rec_diff == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	if (rec_diff > 0) {
 | |
| 		/*
 | |
| 		 * If there wasn't any memory allocated before, just
 | |
| 		 * allocate it now and get out.
 | |
| 		 */
 | |
| 		if (ifp->if_broot_bytes == 0) {
 | |
| 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
 | |
| 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
 | |
| 			ifp->if_broot_bytes = (int)new_size;
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If there is already an existing if_broot, then we need
 | |
| 		 * to realloc() it and shift the pointers to their new
 | |
| 		 * location.  The records don't change location because
 | |
| 		 * they are kept butted up against the btree block header.
 | |
| 		 */
 | |
| 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
 | |
| 		new_max = cur_max + rec_diff;
 | |
| 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
 | |
| 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
 | |
| 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
 | |
| 				KM_SLEEP);
 | |
| 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
 | |
| 						     ifp->if_broot_bytes);
 | |
| 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
 | |
| 						     (int)new_size);
 | |
| 		ifp->if_broot_bytes = (int)new_size;
 | |
| 		ASSERT(ifp->if_broot_bytes <=
 | |
| 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
 | |
| 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * rec_diff is less than 0.  In this case, we are shrinking the
 | |
| 	 * if_broot buffer.  It must already exist.  If we go to zero
 | |
| 	 * records, just get rid of the root and clear the status bit.
 | |
| 	 */
 | |
| 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
 | |
| 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
 | |
| 	new_max = cur_max + rec_diff;
 | |
| 	ASSERT(new_max >= 0);
 | |
| 	if (new_max > 0)
 | |
| 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
 | |
| 	else
 | |
| 		new_size = 0;
 | |
| 	if (new_size > 0) {
 | |
| 		new_broot = kmem_alloc(new_size, KM_SLEEP);
 | |
| 		/*
 | |
| 		 * First copy over the btree block header.
 | |
| 		 */
 | |
| 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
 | |
| 	} else {
 | |
| 		new_broot = NULL;
 | |
| 		ifp->if_flags &= ~XFS_IFBROOT;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Only copy the records and pointers if there are any.
 | |
| 	 */
 | |
| 	if (new_max > 0) {
 | |
| 		/*
 | |
| 		 * First copy the records.
 | |
| 		 */
 | |
| 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
 | |
| 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
 | |
| 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
 | |
| 
 | |
| 		/*
 | |
| 		 * Then copy the pointers.
 | |
| 		 */
 | |
| 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
 | |
| 						     ifp->if_broot_bytes);
 | |
| 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
 | |
| 						     (int)new_size);
 | |
| 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
 | |
| 	}
 | |
| 	kmem_free(ifp->if_broot);
 | |
| 	ifp->if_broot = new_broot;
 | |
| 	ifp->if_broot_bytes = (int)new_size;
 | |
| 	ASSERT(ifp->if_broot_bytes <=
 | |
| 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This is called when the amount of space needed for if_data
 | |
|  * is increased or decreased.  The change in size is indicated by
 | |
|  * the number of bytes that need to be added or deleted in the
 | |
|  * byte_diff parameter.
 | |
|  *
 | |
|  * If the amount of space needed has decreased below the size of the
 | |
|  * inline buffer, then switch to using the inline buffer.  Otherwise,
 | |
|  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
 | |
|  * to what is needed.
 | |
|  *
 | |
|  * ip -- the inode whose if_data area is changing
 | |
|  * byte_diff -- the change in the number of bytes, positive or negative,
 | |
|  *	 requested for the if_data array.
 | |
|  */
 | |
| void
 | |
| xfs_idata_realloc(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	int		byte_diff,
 | |
| 	int		whichfork)
 | |
| {
 | |
| 	xfs_ifork_t	*ifp;
 | |
| 	int		new_size;
 | |
| 	int		real_size;
 | |
| 
 | |
| 	if (byte_diff == 0) {
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	new_size = (int)ifp->if_bytes + byte_diff;
 | |
| 	ASSERT(new_size >= 0);
 | |
| 
 | |
| 	if (new_size == 0) {
 | |
| 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
 | |
| 			kmem_free(ifp->if_u1.if_data);
 | |
| 		}
 | |
| 		ifp->if_u1.if_data = NULL;
 | |
| 		real_size = 0;
 | |
| 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
 | |
| 		/*
 | |
| 		 * If the valid extents/data can fit in if_inline_ext/data,
 | |
| 		 * copy them from the malloc'd vector and free it.
 | |
| 		 */
 | |
| 		if (ifp->if_u1.if_data == NULL) {
 | |
| 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 | |
| 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
 | |
| 			ASSERT(ifp->if_real_bytes != 0);
 | |
| 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
 | |
| 			      new_size);
 | |
| 			kmem_free(ifp->if_u1.if_data);
 | |
| 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
 | |
| 		}
 | |
| 		real_size = 0;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Stuck with malloc/realloc.
 | |
| 		 * For inline data, the underlying buffer must be
 | |
| 		 * a multiple of 4 bytes in size so that it can be
 | |
| 		 * logged and stay on word boundaries.  We enforce
 | |
| 		 * that here.
 | |
| 		 */
 | |
| 		real_size = roundup(new_size, 4);
 | |
| 		if (ifp->if_u1.if_data == NULL) {
 | |
| 			ASSERT(ifp->if_real_bytes == 0);
 | |
| 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
 | |
| 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
 | |
| 			/*
 | |
| 			 * Only do the realloc if the underlying size
 | |
| 			 * is really changing.
 | |
| 			 */
 | |
| 			if (ifp->if_real_bytes != real_size) {
 | |
| 				ifp->if_u1.if_data =
 | |
| 					kmem_realloc(ifp->if_u1.if_data,
 | |
| 							real_size,
 | |
| 							ifp->if_real_bytes,
 | |
| 							KM_SLEEP);
 | |
| 			}
 | |
| 		} else {
 | |
| 			ASSERT(ifp->if_real_bytes == 0);
 | |
| 			ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
 | |
| 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
 | |
| 				ifp->if_bytes);
 | |
| 		}
 | |
| 	}
 | |
| 	ifp->if_real_bytes = real_size;
 | |
| 	ifp->if_bytes = new_size;
 | |
| 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_idestroy_fork(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	int		whichfork)
 | |
| {
 | |
| 	xfs_ifork_t	*ifp;
 | |
| 
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	if (ifp->if_broot != NULL) {
 | |
| 		kmem_free(ifp->if_broot);
 | |
| 		ifp->if_broot = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the format is local, then we can't have an extents
 | |
| 	 * array so just look for an inline data array.  If we're
 | |
| 	 * not local then we may or may not have an extents list,
 | |
| 	 * so check and free it up if we do.
 | |
| 	 */
 | |
| 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
 | |
| 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
 | |
| 		    (ifp->if_u1.if_data != NULL)) {
 | |
| 			ASSERT(ifp->if_real_bytes != 0);
 | |
| 			kmem_free(ifp->if_u1.if_data);
 | |
| 			ifp->if_u1.if_data = NULL;
 | |
| 			ifp->if_real_bytes = 0;
 | |
| 		}
 | |
| 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
 | |
| 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
 | |
| 		    ((ifp->if_u1.if_extents != NULL) &&
 | |
| 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
 | |
| 		ASSERT(ifp->if_real_bytes != 0);
 | |
| 		xfs_iext_destroy(ifp);
 | |
| 	}
 | |
| 	ASSERT(ifp->if_u1.if_extents == NULL ||
 | |
| 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
 | |
| 	ASSERT(ifp->if_real_bytes == 0);
 | |
| 	if (whichfork == XFS_ATTR_FORK) {
 | |
| 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
 | |
| 		ip->i_afp = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Increment the pin count of the given buffer.
 | |
|  * This value is protected by ipinlock spinlock in the mount structure.
 | |
|  */
 | |
| void
 | |
| xfs_ipin(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
 | |
| 
 | |
| 	atomic_inc(&ip->i_pincount);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Decrement the pin count of the given inode, and wake up
 | |
|  * anyone in xfs_iwait_unpin() if the count goes to 0.  The
 | |
|  * inode must have been previously pinned with a call to xfs_ipin().
 | |
|  */
 | |
| void
 | |
| xfs_iunpin(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	ASSERT(atomic_read(&ip->i_pincount) > 0);
 | |
| 
 | |
| 	if (atomic_dec_and_test(&ip->i_pincount))
 | |
| 		wake_up(&ip->i_ipin_wait);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to unpin an inode. It can be directed to wait or to return
 | |
|  * immediately without waiting for the inode to be unpinned.  The caller must
 | |
|  * have the inode locked in at least shared mode so that the buffer cannot be
 | |
|  * subsequently pinned once someone is waiting for it to be unpinned.
 | |
|  */
 | |
| STATIC void
 | |
| __xfs_iunpin_wait(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	int		wait)
 | |
| {
 | |
| 	xfs_inode_log_item_t	*iip = ip->i_itemp;
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
 | |
| 	if (atomic_read(&ip->i_pincount) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Give the log a push to start the unpinning I/O */
 | |
| 	xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
 | |
| 				iip->ili_last_lsn : 0, XFS_LOG_FORCE);
 | |
| 	if (wait)
 | |
| 		wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| xfs_iunpin_wait(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	__xfs_iunpin_wait(ip, 1);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| xfs_iunpin_nowait(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	__xfs_iunpin_wait(ip, 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * xfs_iextents_copy()
 | |
|  *
 | |
|  * This is called to copy the REAL extents (as opposed to the delayed
 | |
|  * allocation extents) from the inode into the given buffer.  It
 | |
|  * returns the number of bytes copied into the buffer.
 | |
|  *
 | |
|  * If there are no delayed allocation extents, then we can just
 | |
|  * memcpy() the extents into the buffer.  Otherwise, we need to
 | |
|  * examine each extent in turn and skip those which are delayed.
 | |
|  */
 | |
| int
 | |
| xfs_iextents_copy(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	xfs_bmbt_rec_t		*dp,
 | |
| 	int			whichfork)
 | |
| {
 | |
| 	int			copied;
 | |
| 	int			i;
 | |
| 	xfs_ifork_t		*ifp;
 | |
| 	int			nrecs;
 | |
| 	xfs_fsblock_t		start_block;
 | |
| 
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
 | |
| 	ASSERT(ifp->if_bytes > 0);
 | |
| 
 | |
| 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
 | |
| 	ASSERT(nrecs > 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * There are some delayed allocation extents in the
 | |
| 	 * inode, so copy the extents one at a time and skip
 | |
| 	 * the delayed ones.  There must be at least one
 | |
| 	 * non-delayed extent.
 | |
| 	 */
 | |
| 	copied = 0;
 | |
| 	for (i = 0; i < nrecs; i++) {
 | |
| 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
 | |
| 		start_block = xfs_bmbt_get_startblock(ep);
 | |
| 		if (isnullstartblock(start_block)) {
 | |
| 			/*
 | |
| 			 * It's a delayed allocation extent, so skip it.
 | |
| 			 */
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Translate to on disk format */
 | |
| 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
 | |
| 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
 | |
| 		dp++;
 | |
| 		copied++;
 | |
| 	}
 | |
| 	ASSERT(copied != 0);
 | |
| 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
 | |
| 
 | |
| 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Each of the following cases stores data into the same region
 | |
|  * of the on-disk inode, so only one of them can be valid at
 | |
|  * any given time. While it is possible to have conflicting formats
 | |
|  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
 | |
|  * in EXTENTS format, this can only happen when the fork has
 | |
|  * changed formats after being modified but before being flushed.
 | |
|  * In these cases, the format always takes precedence, because the
 | |
|  * format indicates the current state of the fork.
 | |
|  */
 | |
| /*ARGSUSED*/
 | |
| STATIC void
 | |
| xfs_iflush_fork(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	xfs_dinode_t		*dip,
 | |
| 	xfs_inode_log_item_t	*iip,
 | |
| 	int			whichfork,
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	char			*cp;
 | |
| 	xfs_ifork_t		*ifp;
 | |
| 	xfs_mount_t		*mp;
 | |
| #ifdef XFS_TRANS_DEBUG
 | |
| 	int			first;
 | |
| #endif
 | |
| 	static const short	brootflag[2] =
 | |
| 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
 | |
| 	static const short	dataflag[2] =
 | |
| 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
 | |
| 	static const short	extflag[2] =
 | |
| 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
 | |
| 
 | |
| 	if (!iip)
 | |
| 		return;
 | |
| 	ifp = XFS_IFORK_PTR(ip, whichfork);
 | |
| 	/*
 | |
| 	 * This can happen if we gave up in iformat in an error path,
 | |
| 	 * for the attribute fork.
 | |
| 	 */
 | |
| 	if (!ifp) {
 | |
| 		ASSERT(whichfork == XFS_ATTR_FORK);
 | |
| 		return;
 | |
| 	}
 | |
| 	cp = XFS_DFORK_PTR(dip, whichfork);
 | |
| 	mp = ip->i_mount;
 | |
| 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
 | |
| 	case XFS_DINODE_FMT_LOCAL:
 | |
| 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
 | |
| 		    (ifp->if_bytes > 0)) {
 | |
| 			ASSERT(ifp->if_u1.if_data != NULL);
 | |
| 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
 | |
| 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_EXTENTS:
 | |
| 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
 | |
| 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
 | |
| 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
 | |
| 			(ifp->if_bytes == 0));
 | |
| 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
 | |
| 			(ifp->if_bytes > 0));
 | |
| 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
 | |
| 		    (ifp->if_bytes > 0)) {
 | |
| 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
 | |
| 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
 | |
| 				whichfork);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_BTREE:
 | |
| 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
 | |
| 		    (ifp->if_broot_bytes > 0)) {
 | |
| 			ASSERT(ifp->if_broot != NULL);
 | |
| 			ASSERT(ifp->if_broot_bytes <=
 | |
| 			       (XFS_IFORK_SIZE(ip, whichfork) +
 | |
| 				XFS_BROOT_SIZE_ADJ));
 | |
| 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
 | |
| 				(xfs_bmdr_block_t *)cp,
 | |
| 				XFS_DFORK_SIZE(dip, mp, whichfork));
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_DEV:
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
 | |
| 			ASSERT(whichfork == XFS_DATA_FORK);
 | |
| 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case XFS_DINODE_FMT_UUID:
 | |
| 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
 | |
| 			ASSERT(whichfork == XFS_DATA_FORK);
 | |
| 			memcpy(XFS_DFORK_DPTR(dip),
 | |
| 			       &ip->i_df.if_u2.if_uuid,
 | |
| 			       sizeof(uuid_t));
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		ASSERT(0);
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_iflush_cluster(
 | |
| 	xfs_inode_t	*ip,
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	xfs_mount_t		*mp = ip->i_mount;
 | |
| 	xfs_perag_t		*pag = xfs_get_perag(mp, ip->i_ino);
 | |
| 	unsigned long		first_index, mask;
 | |
| 	unsigned long		inodes_per_cluster;
 | |
| 	int			ilist_size;
 | |
| 	xfs_inode_t		**ilist;
 | |
| 	xfs_inode_t		*iq;
 | |
| 	int			nr_found;
 | |
| 	int			clcount = 0;
 | |
| 	int			bufwasdelwri;
 | |
| 	int			i;
 | |
| 
 | |
| 	ASSERT(pag->pagi_inodeok);
 | |
| 	ASSERT(pag->pag_ici_init);
 | |
| 
 | |
| 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
 | |
| 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
 | |
| 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
 | |
| 	if (!ilist)
 | |
| 		return 0;
 | |
| 
 | |
| 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
 | |
| 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
 | |
| 	read_lock(&pag->pag_ici_lock);
 | |
| 	/* really need a gang lookup range call here */
 | |
| 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
 | |
| 					first_index, inodes_per_cluster);
 | |
| 	if (nr_found == 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	for (i = 0; i < nr_found; i++) {
 | |
| 		iq = ilist[i];
 | |
| 		if (iq == ip)
 | |
| 			continue;
 | |
| 		/* if the inode lies outside this cluster, we're done. */
 | |
| 		if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
 | |
| 			break;
 | |
| 		/*
 | |
| 		 * Do an un-protected check to see if the inode is dirty and
 | |
| 		 * is a candidate for flushing.  These checks will be repeated
 | |
| 		 * later after the appropriate locks are acquired.
 | |
| 		 */
 | |
| 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Try to get locks.  If any are unavailable or it is pinned,
 | |
| 		 * then this inode cannot be flushed and is skipped.
 | |
| 		 */
 | |
| 
 | |
| 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
 | |
| 			continue;
 | |
| 		if (!xfs_iflock_nowait(iq)) {
 | |
| 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (xfs_ipincount(iq)) {
 | |
| 			xfs_ifunlock(iq);
 | |
| 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * arriving here means that this inode can be flushed.  First
 | |
| 		 * re-check that it's dirty before flushing.
 | |
| 		 */
 | |
| 		if (!xfs_inode_clean(iq)) {
 | |
| 			int	error;
 | |
| 			error = xfs_iflush_int(iq, bp);
 | |
| 			if (error) {
 | |
| 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 				goto cluster_corrupt_out;
 | |
| 			}
 | |
| 			clcount++;
 | |
| 		} else {
 | |
| 			xfs_ifunlock(iq);
 | |
| 		}
 | |
| 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
 | |
| 	}
 | |
| 
 | |
| 	if (clcount) {
 | |
| 		XFS_STATS_INC(xs_icluster_flushcnt);
 | |
| 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
 | |
| 	}
 | |
| 
 | |
| out_free:
 | |
| 	read_unlock(&pag->pag_ici_lock);
 | |
| 	kmem_free(ilist);
 | |
| 	return 0;
 | |
| 
 | |
| 
 | |
| cluster_corrupt_out:
 | |
| 	/*
 | |
| 	 * Corruption detected in the clustering loop.  Invalidate the
 | |
| 	 * inode buffer and shut down the filesystem.
 | |
| 	 */
 | |
| 	read_unlock(&pag->pag_ici_lock);
 | |
| 	/*
 | |
| 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
 | |
| 	 * brelse can handle it with no problems.  If not, shut down the
 | |
| 	 * filesystem before releasing the buffer.
 | |
| 	 */
 | |
| 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
 | |
| 	if (bufwasdelwri)
 | |
| 		xfs_buf_relse(bp);
 | |
| 
 | |
| 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| 
 | |
| 	if (!bufwasdelwri) {
 | |
| 		/*
 | |
| 		 * Just like incore_relse: if we have b_iodone functions,
 | |
| 		 * mark the buffer as an error and call them.  Otherwise
 | |
| 		 * mark it as stale and brelse.
 | |
| 		 */
 | |
| 		if (XFS_BUF_IODONE_FUNC(bp)) {
 | |
| 			XFS_BUF_CLR_BDSTRAT_FUNC(bp);
 | |
| 			XFS_BUF_UNDONE(bp);
 | |
| 			XFS_BUF_STALE(bp);
 | |
| 			XFS_BUF_ERROR(bp,EIO);
 | |
| 			xfs_biodone(bp);
 | |
| 		} else {
 | |
| 			XFS_BUF_STALE(bp);
 | |
| 			xfs_buf_relse(bp);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Unlocks the flush lock
 | |
| 	 */
 | |
| 	xfs_iflush_abort(iq);
 | |
| 	kmem_free(ilist);
 | |
| 	return XFS_ERROR(EFSCORRUPTED);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * xfs_iflush() will write a modified inode's changes out to the
 | |
|  * inode's on disk home.  The caller must have the inode lock held
 | |
|  * in at least shared mode and the inode flush completion must be
 | |
|  * active as well.  The inode lock will still be held upon return from
 | |
|  * the call and the caller is free to unlock it.
 | |
|  * The inode flush will be completed when the inode reaches the disk.
 | |
|  * The flags indicate how the inode's buffer should be written out.
 | |
|  */
 | |
| int
 | |
| xfs_iflush(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	uint			flags)
 | |
| {
 | |
| 	xfs_inode_log_item_t	*iip;
 | |
| 	xfs_buf_t		*bp;
 | |
| 	xfs_dinode_t		*dip;
 | |
| 	xfs_mount_t		*mp;
 | |
| 	int			error;
 | |
| 	int			noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
 | |
| 	enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
 | |
| 
 | |
| 	XFS_STATS_INC(xs_iflush_count);
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
 | |
| 	ASSERT(!completion_done(&ip->i_flush));
 | |
| 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 | |
| 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
 | |
| 
 | |
| 	iip = ip->i_itemp;
 | |
| 	mp = ip->i_mount;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the inode isn't dirty, then just release the inode
 | |
| 	 * flush lock and do nothing.
 | |
| 	 */
 | |
| 	if (xfs_inode_clean(ip)) {
 | |
| 		xfs_ifunlock(ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't flush the inode until it is unpinned, so wait for it if we
 | |
| 	 * are allowed to block.  We know noone new can pin it, because we are
 | |
| 	 * holding the inode lock shared and you need to hold it exclusively to
 | |
| 	 * pin the inode.
 | |
| 	 *
 | |
| 	 * If we are not allowed to block, force the log out asynchronously so
 | |
| 	 * that when we come back the inode will be unpinned. If other inodes
 | |
| 	 * in the same cluster are dirty, they will probably write the inode
 | |
| 	 * out for us if they occur after the log force completes.
 | |
| 	 */
 | |
| 	if (noblock && xfs_ipincount(ip)) {
 | |
| 		xfs_iunpin_nowait(ip);
 | |
| 		xfs_ifunlock(ip);
 | |
| 		return EAGAIN;
 | |
| 	}
 | |
| 	xfs_iunpin_wait(ip);
 | |
| 
 | |
| 	/*
 | |
| 	 * This may have been unpinned because the filesystem is shutting
 | |
| 	 * down forcibly. If that's the case we must not write this inode
 | |
| 	 * to disk, because the log record didn't make it to disk!
 | |
| 	 */
 | |
| 	if (XFS_FORCED_SHUTDOWN(mp)) {
 | |
| 		ip->i_update_core = 0;
 | |
| 		if (iip)
 | |
| 			iip->ili_format.ilf_fields = 0;
 | |
| 		xfs_ifunlock(ip);
 | |
| 		return XFS_ERROR(EIO);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Decide how buffer will be flushed out.  This is done before
 | |
| 	 * the call to xfs_iflush_int because this field is zeroed by it.
 | |
| 	 */
 | |
| 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
 | |
| 		/*
 | |
| 		 * Flush out the inode buffer according to the directions
 | |
| 		 * of the caller.  In the cases where the caller has given
 | |
| 		 * us a choice choose the non-delwri case.  This is because
 | |
| 		 * the inode is in the AIL and we need to get it out soon.
 | |
| 		 */
 | |
| 		switch (flags) {
 | |
| 		case XFS_IFLUSH_SYNC:
 | |
| 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
 | |
| 			flags = 0;
 | |
| 			break;
 | |
| 		case XFS_IFLUSH_ASYNC_NOBLOCK:
 | |
| 		case XFS_IFLUSH_ASYNC:
 | |
| 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
 | |
| 			flags = INT_ASYNC;
 | |
| 			break;
 | |
| 		case XFS_IFLUSH_DELWRI:
 | |
| 			flags = INT_DELWRI;
 | |
| 			break;
 | |
| 		default:
 | |
| 			ASSERT(0);
 | |
| 			flags = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	} else {
 | |
| 		switch (flags) {
 | |
| 		case XFS_IFLUSH_DELWRI_ELSE_SYNC:
 | |
| 		case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
 | |
| 		case XFS_IFLUSH_DELWRI:
 | |
| 			flags = INT_DELWRI;
 | |
| 			break;
 | |
| 		case XFS_IFLUSH_ASYNC_NOBLOCK:
 | |
| 		case XFS_IFLUSH_ASYNC:
 | |
| 			flags = INT_ASYNC;
 | |
| 			break;
 | |
| 		case XFS_IFLUSH_SYNC:
 | |
| 			flags = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			ASSERT(0);
 | |
| 			flags = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Get the buffer containing the on-disk inode.
 | |
| 	 */
 | |
| 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
 | |
| 				noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
 | |
| 	if (error || !bp) {
 | |
| 		xfs_ifunlock(ip);
 | |
| 		return error;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * First flush out the inode that xfs_iflush was called with.
 | |
| 	 */
 | |
| 	error = xfs_iflush_int(ip, bp);
 | |
| 	if (error)
 | |
| 		goto corrupt_out;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the buffer is pinned then push on the log now so we won't
 | |
| 	 * get stuck waiting in the write for too long.
 | |
| 	 */
 | |
| 	if (XFS_BUF_ISPINNED(bp))
 | |
| 		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
 | |
| 
 | |
| 	/*
 | |
| 	 * inode clustering:
 | |
| 	 * see if other inodes can be gathered into this write
 | |
| 	 */
 | |
| 	error = xfs_iflush_cluster(ip, bp);
 | |
| 	if (error)
 | |
| 		goto cluster_corrupt_out;
 | |
| 
 | |
| 	if (flags & INT_DELWRI) {
 | |
| 		xfs_bdwrite(mp, bp);
 | |
| 	} else if (flags & INT_ASYNC) {
 | |
| 		error = xfs_bawrite(mp, bp);
 | |
| 	} else {
 | |
| 		error = xfs_bwrite(mp, bp);
 | |
| 	}
 | |
| 	return error;
 | |
| 
 | |
| corrupt_out:
 | |
| 	xfs_buf_relse(bp);
 | |
| 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
 | |
| cluster_corrupt_out:
 | |
| 	/*
 | |
| 	 * Unlocks the flush lock
 | |
| 	 */
 | |
| 	xfs_iflush_abort(ip);
 | |
| 	return XFS_ERROR(EFSCORRUPTED);
 | |
| }
 | |
| 
 | |
| 
 | |
| STATIC int
 | |
| xfs_iflush_int(
 | |
| 	xfs_inode_t		*ip,
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	xfs_inode_log_item_t	*iip;
 | |
| 	xfs_dinode_t		*dip;
 | |
| 	xfs_mount_t		*mp;
 | |
| #ifdef XFS_TRANS_DEBUG
 | |
| 	int			first;
 | |
| #endif
 | |
| 
 | |
| 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
 | |
| 	ASSERT(!completion_done(&ip->i_flush));
 | |
| 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 | |
| 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
 | |
| 
 | |
| 	iip = ip->i_itemp;
 | |
| 	mp = ip->i_mount;
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * If the inode isn't dirty, then just release the inode
 | |
| 	 * flush lock and do nothing.
 | |
| 	 */
 | |
| 	if (xfs_inode_clean(ip)) {
 | |
| 		xfs_ifunlock(ip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* set *dip = inode's place in the buffer */
 | |
| 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear i_update_core before copying out the data.
 | |
| 	 * This is for coordination with our timestamp updates
 | |
| 	 * that don't hold the inode lock. They will always
 | |
| 	 * update the timestamps BEFORE setting i_update_core,
 | |
| 	 * so if we clear i_update_core after they set it we
 | |
| 	 * are guaranteed to see their updates to the timestamps.
 | |
| 	 * I believe that this depends on strongly ordered memory
 | |
| 	 * semantics, but we have that.  We use the SYNCHRONIZE
 | |
| 	 * macro to make sure that the compiler does not reorder
 | |
| 	 * the i_update_core access below the data copy below.
 | |
| 	 */
 | |
| 	ip->i_update_core = 0;
 | |
| 	SYNCHRONIZE();
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure to get the latest timestamps from the Linux inode.
 | |
| 	 */
 | |
| 	xfs_synchronize_times(ip);
 | |
| 
 | |
| 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
 | |
| 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
 | |
| 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
 | |
| 		    "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
 | |
| 			ip->i_ino, be16_to_cpu(dip->di_magic), dip);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
 | |
| 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
 | |
| 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
 | |
| 			"xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
 | |
| 			ip->i_ino, ip, ip->i_d.di_magic);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
 | |
| 		if (XFS_TEST_ERROR(
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
 | |
| 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
 | |
| 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
 | |
| 				"xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
 | |
| 				ip->i_ino, ip);
 | |
| 			goto corrupt_out;
 | |
| 		}
 | |
| 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
 | |
| 		if (XFS_TEST_ERROR(
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
 | |
| 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
 | |
| 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
 | |
| 			xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
 | |
| 				"xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
 | |
| 				ip->i_ino, ip);
 | |
| 			goto corrupt_out;
 | |
| 		}
 | |
| 	}
 | |
| 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
 | |
| 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
 | |
| 				XFS_RANDOM_IFLUSH_5)) {
 | |
| 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
 | |
| 			"xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
 | |
| 			ip->i_ino,
 | |
| 			ip->i_d.di_nextents + ip->i_d.di_anextents,
 | |
| 			ip->i_d.di_nblocks,
 | |
| 			ip);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
 | |
| 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
 | |
| 		xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
 | |
| 			"xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
 | |
| 			ip->i_ino, ip->i_d.di_forkoff, ip);
 | |
| 		goto corrupt_out;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * bump the flush iteration count, used to detect flushes which
 | |
| 	 * postdate a log record during recovery.
 | |
| 	 */
 | |
| 
 | |
| 	ip->i_d.di_flushiter++;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the dirty parts of the inode into the on-disk
 | |
| 	 * inode.  We always copy out the core of the inode,
 | |
| 	 * because if the inode is dirty at all the core must
 | |
| 	 * be.
 | |
| 	 */
 | |
| 	xfs_dinode_to_disk(dip, &ip->i_d);
 | |
| 
 | |
| 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
 | |
| 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
 | |
| 		ip->i_d.di_flushiter = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is really an old format inode and the superblock version
 | |
| 	 * has not been updated to support only new format inodes, then
 | |
| 	 * convert back to the old inode format.  If the superblock version
 | |
| 	 * has been updated, then make the conversion permanent.
 | |
| 	 */
 | |
| 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
 | |
| 	if (ip->i_d.di_version == 1) {
 | |
| 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
 | |
| 			/*
 | |
| 			 * Convert it back.
 | |
| 			 */
 | |
| 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
 | |
| 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * The superblock version has already been bumped,
 | |
| 			 * so just make the conversion to the new inode
 | |
| 			 * format permanent.
 | |
| 			 */
 | |
| 			ip->i_d.di_version = 2;
 | |
| 			dip->di_version = 2;
 | |
| 			ip->i_d.di_onlink = 0;
 | |
| 			dip->di_onlink = 0;
 | |
| 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
 | |
| 			memset(&(dip->di_pad[0]), 0,
 | |
| 			      sizeof(dip->di_pad));
 | |
| 			ASSERT(ip->i_d.di_projid == 0);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
 | |
| 	if (XFS_IFORK_Q(ip))
 | |
| 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
 | |
| 	xfs_inobp_check(mp, bp);
 | |
| 
 | |
| 	/*
 | |
| 	 * We've recorded everything logged in the inode, so we'd
 | |
| 	 * like to clear the ilf_fields bits so we don't log and
 | |
| 	 * flush things unnecessarily.  However, we can't stop
 | |
| 	 * logging all this information until the data we've copied
 | |
| 	 * into the disk buffer is written to disk.  If we did we might
 | |
| 	 * overwrite the copy of the inode in the log with all the
 | |
| 	 * data after re-logging only part of it, and in the face of
 | |
| 	 * a crash we wouldn't have all the data we need to recover.
 | |
| 	 *
 | |
| 	 * What we do is move the bits to the ili_last_fields field.
 | |
| 	 * When logging the inode, these bits are moved back to the
 | |
| 	 * ilf_fields field.  In the xfs_iflush_done() routine we
 | |
| 	 * clear ili_last_fields, since we know that the information
 | |
| 	 * those bits represent is permanently on disk.  As long as
 | |
| 	 * the flush completes before the inode is logged again, then
 | |
| 	 * both ilf_fields and ili_last_fields will be cleared.
 | |
| 	 *
 | |
| 	 * We can play with the ilf_fields bits here, because the inode
 | |
| 	 * lock must be held exclusively in order to set bits there
 | |
| 	 * and the flush lock protects the ili_last_fields bits.
 | |
| 	 * Set ili_logged so the flush done
 | |
| 	 * routine can tell whether or not to look in the AIL.
 | |
| 	 * Also, store the current LSN of the inode so that we can tell
 | |
| 	 * whether the item has moved in the AIL from xfs_iflush_done().
 | |
| 	 * In order to read the lsn we need the AIL lock, because
 | |
| 	 * it is a 64 bit value that cannot be read atomically.
 | |
| 	 */
 | |
| 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
 | |
| 		iip->ili_last_fields = iip->ili_format.ilf_fields;
 | |
| 		iip->ili_format.ilf_fields = 0;
 | |
| 		iip->ili_logged = 1;
 | |
| 
 | |
| 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
 | |
| 					&iip->ili_item.li_lsn);
 | |
| 
 | |
| 		/*
 | |
| 		 * Attach the function xfs_iflush_done to the inode's
 | |
| 		 * buffer.  This will remove the inode from the AIL
 | |
| 		 * and unlock the inode's flush lock when the inode is
 | |
| 		 * completely written to disk.
 | |
| 		 */
 | |
| 		xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
 | |
| 				      xfs_iflush_done, (xfs_log_item_t *)iip);
 | |
| 
 | |
| 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
 | |
| 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We're flushing an inode which is not in the AIL and has
 | |
| 		 * not been logged but has i_update_core set.  For this
 | |
| 		 * case we can use a B_DELWRI flush and immediately drop
 | |
| 		 * the inode flush lock because we can avoid the whole
 | |
| 		 * AIL state thing.  It's OK to drop the flush lock now,
 | |
| 		 * because we've already locked the buffer and to do anything
 | |
| 		 * you really need both.
 | |
| 		 */
 | |
| 		if (iip != NULL) {
 | |
| 			ASSERT(iip->ili_logged == 0);
 | |
| 			ASSERT(iip->ili_last_fields == 0);
 | |
| 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
 | |
| 		}
 | |
| 		xfs_ifunlock(ip);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| corrupt_out:
 | |
| 	return XFS_ERROR(EFSCORRUPTED);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef XFS_ILOCK_TRACE
 | |
| void
 | |
| xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
 | |
| {
 | |
| 	ktrace_enter(ip->i_lock_trace,
 | |
| 		     (void *)ip,
 | |
| 		     (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
 | |
| 		     (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
 | |
| 		     (void *)ra,		/* caller of ilock */
 | |
| 		     (void *)(unsigned long)current_cpu(),
 | |
| 		     (void *)(unsigned long)current_pid(),
 | |
| 		     NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Return a pointer to the extent record at file index idx.
 | |
|  */
 | |
| xfs_bmbt_rec_host_t *
 | |
| xfs_iext_get_ext(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	idx)		/* index of target extent */
 | |
| {
 | |
| 	ASSERT(idx >= 0);
 | |
| 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
 | |
| 		return ifp->if_u1.if_ext_irec->er_extbuf;
 | |
| 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
 | |
| 		xfs_ext_irec_t	*erp;		/* irec pointer */
 | |
| 		int		erp_idx = 0;	/* irec index */
 | |
| 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
 | |
| 
 | |
| 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
 | |
| 		return &erp->er_extbuf[page_idx];
 | |
| 	} else if (ifp->if_bytes) {
 | |
| 		return &ifp->if_u1.if_extents[idx];
 | |
| 	} else {
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Insert new item(s) into the extent records for incore inode
 | |
|  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
 | |
|  */
 | |
| void
 | |
| xfs_iext_insert(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	idx,		/* starting index of new items */
 | |
| 	xfs_extnum_t	count,		/* number of inserted items */
 | |
| 	xfs_bmbt_irec_t	*new)		/* items to insert */
 | |
| {
 | |
| 	xfs_extnum_t	i;		/* extent record index */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
 | |
| 	xfs_iext_add(ifp, idx, count);
 | |
| 	for (i = idx; i < idx + count; i++, new++)
 | |
| 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the amount of space required for incore file
 | |
|  * extents needs to be increased. The ext_diff parameter stores the
 | |
|  * number of new extents being added and the idx parameter contains
 | |
|  * the extent index where the new extents will be added. If the new
 | |
|  * extents are being appended, then we just need to (re)allocate and
 | |
|  * initialize the space. Otherwise, if the new extents are being
 | |
|  * inserted into the middle of the existing entries, a bit more work
 | |
|  * is required to make room for the new extents to be inserted. The
 | |
|  * caller is responsible for filling in the new extent entries upon
 | |
|  * return.
 | |
|  */
 | |
| void
 | |
| xfs_iext_add(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	idx,		/* index to begin adding exts */
 | |
| 	int		ext_diff)	/* number of extents to add */
 | |
| {
 | |
| 	int		byte_diff;	/* new bytes being added */
 | |
| 	int		new_size;	/* size of extents after adding */
 | |
| 	xfs_extnum_t	nextents;	/* number of extents in file */
 | |
| 
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	ASSERT((idx >= 0) && (idx <= nextents));
 | |
| 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
 | |
| 	new_size = ifp->if_bytes + byte_diff;
 | |
| 	/*
 | |
| 	 * If the new number of extents (nextents + ext_diff)
 | |
| 	 * fits inside the inode, then continue to use the inline
 | |
| 	 * extent buffer.
 | |
| 	 */
 | |
| 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
 | |
| 		if (idx < nextents) {
 | |
| 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
 | |
| 				&ifp->if_u2.if_inline_ext[idx],
 | |
| 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
 | |
| 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
 | |
| 		}
 | |
| 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 | |
| 		ifp->if_real_bytes = 0;
 | |
| 		ifp->if_lastex = nextents + ext_diff;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Otherwise use a linear (direct) extent list.
 | |
| 	 * If the extents are currently inside the inode,
 | |
| 	 * xfs_iext_realloc_direct will switch us from
 | |
| 	 * inline to direct extent allocation mode.
 | |
| 	 */
 | |
| 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
 | |
| 		xfs_iext_realloc_direct(ifp, new_size);
 | |
| 		if (idx < nextents) {
 | |
| 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
 | |
| 				&ifp->if_u1.if_extents[idx],
 | |
| 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
 | |
| 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
 | |
| 		}
 | |
| 	}
 | |
| 	/* Indirection array */
 | |
| 	else {
 | |
| 		xfs_ext_irec_t	*erp;
 | |
| 		int		erp_idx = 0;
 | |
| 		int		page_idx = idx;
 | |
| 
 | |
| 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
 | |
| 		if (ifp->if_flags & XFS_IFEXTIREC) {
 | |
| 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
 | |
| 		} else {
 | |
| 			xfs_iext_irec_init(ifp);
 | |
| 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 			erp = ifp->if_u1.if_ext_irec;
 | |
| 		}
 | |
| 		/* Extents fit in target extent page */
 | |
| 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
 | |
| 			if (page_idx < erp->er_extcount) {
 | |
| 				memmove(&erp->er_extbuf[page_idx + ext_diff],
 | |
| 					&erp->er_extbuf[page_idx],
 | |
| 					(erp->er_extcount - page_idx) *
 | |
| 					sizeof(xfs_bmbt_rec_t));
 | |
| 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
 | |
| 			}
 | |
| 			erp->er_extcount += ext_diff;
 | |
| 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
 | |
| 		}
 | |
| 		/* Insert a new extent page */
 | |
| 		else if (erp) {
 | |
| 			xfs_iext_add_indirect_multi(ifp,
 | |
| 				erp_idx, page_idx, ext_diff);
 | |
| 		}
 | |
| 		/*
 | |
| 		 * If extent(s) are being appended to the last page in
 | |
| 		 * the indirection array and the new extent(s) don't fit
 | |
| 		 * in the page, then erp is NULL and erp_idx is set to
 | |
| 		 * the next index needed in the indirection array.
 | |
| 		 */
 | |
| 		else {
 | |
| 			int	count = ext_diff;
 | |
| 
 | |
| 			while (count) {
 | |
| 				erp = xfs_iext_irec_new(ifp, erp_idx);
 | |
| 				erp->er_extcount = count;
 | |
| 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
 | |
| 				if (count) {
 | |
| 					erp_idx++;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	ifp->if_bytes = new_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when incore extents are being added to the indirection
 | |
|  * array and the new extents do not fit in the target extent list. The
 | |
|  * erp_idx parameter contains the irec index for the target extent list
 | |
|  * in the indirection array, and the idx parameter contains the extent
 | |
|  * index within the list. The number of extents being added is stored
 | |
|  * in the count parameter.
 | |
|  *
 | |
|  *    |-------|   |-------|
 | |
|  *    |       |   |       |    idx - number of extents before idx
 | |
|  *    |  idx  |   | count |
 | |
|  *    |       |   |       |    count - number of extents being inserted at idx
 | |
|  *    |-------|   |-------|
 | |
|  *    | count |   | nex2  |    nex2 - number of extents after idx + count
 | |
|  *    |-------|   |-------|
 | |
|  */
 | |
| void
 | |
| xfs_iext_add_indirect_multi(
 | |
| 	xfs_ifork_t	*ifp,			/* inode fork pointer */
 | |
| 	int		erp_idx,		/* target extent irec index */
 | |
| 	xfs_extnum_t	idx,			/* index within target list */
 | |
| 	int		count)			/* new extents being added */
 | |
| {
 | |
| 	int		byte_diff;		/* new bytes being added */
 | |
| 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
 | |
| 	xfs_extnum_t	ext_diff;		/* number of extents to add */
 | |
| 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
 | |
| 	xfs_extnum_t	nex2;			/* extents after idx + count */
 | |
| 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
 | |
| 	int		nlists;			/* number of irec's (lists) */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
 | |
| 	nex2 = erp->er_extcount - idx;
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 
 | |
| 	/*
 | |
| 	 * Save second part of target extent list
 | |
| 	 * (all extents past */
 | |
| 	if (nex2) {
 | |
| 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
 | |
| 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
 | |
| 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
 | |
| 		erp->er_extcount -= nex2;
 | |
| 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
 | |
| 		memset(&erp->er_extbuf[idx], 0, byte_diff);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Add the new extents to the end of the target
 | |
| 	 * list, then allocate new irec record(s) and
 | |
| 	 * extent buffer(s) as needed to store the rest
 | |
| 	 * of the new extents.
 | |
| 	 */
 | |
| 	ext_cnt = count;
 | |
| 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
 | |
| 	if (ext_diff) {
 | |
| 		erp->er_extcount += ext_diff;
 | |
| 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
 | |
| 		ext_cnt -= ext_diff;
 | |
| 	}
 | |
| 	while (ext_cnt) {
 | |
| 		erp_idx++;
 | |
| 		erp = xfs_iext_irec_new(ifp, erp_idx);
 | |
| 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
 | |
| 		erp->er_extcount = ext_diff;
 | |
| 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
 | |
| 		ext_cnt -= ext_diff;
 | |
| 	}
 | |
| 
 | |
| 	/* Add nex2 extents back to indirection array */
 | |
| 	if (nex2) {
 | |
| 		xfs_extnum_t	ext_avail;
 | |
| 		int		i;
 | |
| 
 | |
| 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
 | |
| 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
 | |
| 		i = 0;
 | |
| 		/*
 | |
| 		 * If nex2 extents fit in the current page, append
 | |
| 		 * nex2_ep after the new extents.
 | |
| 		 */
 | |
| 		if (nex2 <= ext_avail) {
 | |
| 			i = erp->er_extcount;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Otherwise, check if space is available in the
 | |
| 		 * next page.
 | |
| 		 */
 | |
| 		else if ((erp_idx < nlists - 1) &&
 | |
| 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
 | |
| 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
 | |
| 			erp_idx++;
 | |
| 			erp++;
 | |
| 			/* Create a hole for nex2 extents */
 | |
| 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
 | |
| 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Final choice, create a new extent page for
 | |
| 		 * nex2 extents.
 | |
| 		 */
 | |
| 		else {
 | |
| 			erp_idx++;
 | |
| 			erp = xfs_iext_irec_new(ifp, erp_idx);
 | |
| 		}
 | |
| 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
 | |
| 		kmem_free(nex2_ep);
 | |
| 		erp->er_extcount += nex2;
 | |
| 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when the amount of space required for incore file
 | |
|  * extents needs to be decreased. The ext_diff parameter stores the
 | |
|  * number of extents to be removed and the idx parameter contains
 | |
|  * the extent index where the extents will be removed from.
 | |
|  *
 | |
|  * If the amount of space needed has decreased below the linear
 | |
|  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
 | |
|  * extent array.  Otherwise, use kmem_realloc() to adjust the
 | |
|  * size to what is needed.
 | |
|  */
 | |
| void
 | |
| xfs_iext_remove(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	idx,		/* index to begin removing exts */
 | |
| 	int		ext_diff)	/* number of extents to remove */
 | |
| {
 | |
| 	xfs_extnum_t	nextents;	/* number of extents in file */
 | |
| 	int		new_size;	/* size of extents after removal */
 | |
| 
 | |
| 	ASSERT(ext_diff > 0);
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
 | |
| 
 | |
| 	if (new_size == 0) {
 | |
| 		xfs_iext_destroy(ifp);
 | |
| 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
 | |
| 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
 | |
| 	} else if (ifp->if_real_bytes) {
 | |
| 		xfs_iext_remove_direct(ifp, idx, ext_diff);
 | |
| 	} else {
 | |
| 		xfs_iext_remove_inline(ifp, idx, ext_diff);
 | |
| 	}
 | |
| 	ifp->if_bytes = new_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This removes ext_diff extents from the inline buffer, beginning
 | |
|  * at extent index idx.
 | |
|  */
 | |
| void
 | |
| xfs_iext_remove_inline(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	idx,		/* index to begin removing exts */
 | |
| 	int		ext_diff)	/* number of extents to remove */
 | |
| {
 | |
| 	int		nextents;	/* number of extents in file */
 | |
| 
 | |
| 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
 | |
| 	ASSERT(idx < XFS_INLINE_EXTS);
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	ASSERT(((nextents - ext_diff) > 0) &&
 | |
| 		(nextents - ext_diff) < XFS_INLINE_EXTS);
 | |
| 
 | |
| 	if (idx + ext_diff < nextents) {
 | |
| 		memmove(&ifp->if_u2.if_inline_ext[idx],
 | |
| 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
 | |
| 			(nextents - (idx + ext_diff)) *
 | |
| 			 sizeof(xfs_bmbt_rec_t));
 | |
| 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
 | |
| 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
 | |
| 	} else {
 | |
| 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
 | |
| 			ext_diff * sizeof(xfs_bmbt_rec_t));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This removes ext_diff extents from a linear (direct) extent list,
 | |
|  * beginning at extent index idx. If the extents are being removed
 | |
|  * from the end of the list (ie. truncate) then we just need to re-
 | |
|  * allocate the list to remove the extra space. Otherwise, if the
 | |
|  * extents are being removed from the middle of the existing extent
 | |
|  * entries, then we first need to move the extent records beginning
 | |
|  * at idx + ext_diff up in the list to overwrite the records being
 | |
|  * removed, then remove the extra space via kmem_realloc.
 | |
|  */
 | |
| void
 | |
| xfs_iext_remove_direct(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	idx,		/* index to begin removing exts */
 | |
| 	int		ext_diff)	/* number of extents to remove */
 | |
| {
 | |
| 	xfs_extnum_t	nextents;	/* number of extents in file */
 | |
| 	int		new_size;	/* size of extents after removal */
 | |
| 
 | |
| 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
 | |
| 	new_size = ifp->if_bytes -
 | |
| 		(ext_diff * sizeof(xfs_bmbt_rec_t));
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 
 | |
| 	if (new_size == 0) {
 | |
| 		xfs_iext_destroy(ifp);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* Move extents up in the list (if needed) */
 | |
| 	if (idx + ext_diff < nextents) {
 | |
| 		memmove(&ifp->if_u1.if_extents[idx],
 | |
| 			&ifp->if_u1.if_extents[idx + ext_diff],
 | |
| 			(nextents - (idx + ext_diff)) *
 | |
| 			 sizeof(xfs_bmbt_rec_t));
 | |
| 	}
 | |
| 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
 | |
| 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
 | |
| 	/*
 | |
| 	 * Reallocate the direct extent list. If the extents
 | |
| 	 * will fit inside the inode then xfs_iext_realloc_direct
 | |
| 	 * will switch from direct to inline extent allocation
 | |
| 	 * mode for us.
 | |
| 	 */
 | |
| 	xfs_iext_realloc_direct(ifp, new_size);
 | |
| 	ifp->if_bytes = new_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called when incore extents are being removed from the
 | |
|  * indirection array and the extents being removed span multiple extent
 | |
|  * buffers. The idx parameter contains the file extent index where we
 | |
|  * want to begin removing extents, and the count parameter contains
 | |
|  * how many extents need to be removed.
 | |
|  *
 | |
|  *    |-------|   |-------|
 | |
|  *    | nex1  |   |       |    nex1 - number of extents before idx
 | |
|  *    |-------|   | count |
 | |
|  *    |       |   |       |    count - number of extents being removed at idx
 | |
|  *    | count |   |-------|
 | |
|  *    |       |   | nex2  |    nex2 - number of extents after idx + count
 | |
|  *    |-------|   |-------|
 | |
|  */
 | |
| void
 | |
| xfs_iext_remove_indirect(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	idx,		/* index to begin removing extents */
 | |
| 	int		count)		/* number of extents to remove */
 | |
| {
 | |
| 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
 | |
| 	int		erp_idx = 0;	/* indirection array index */
 | |
| 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
 | |
| 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
 | |
| 	xfs_extnum_t	nex1;		/* number of extents before idx */
 | |
| 	xfs_extnum_t	nex2;		/* extents after idx + count */
 | |
| 	int		nlists;		/* entries in indirection array */
 | |
| 	int		page_idx = idx;	/* index in target extent list */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
 | |
| 	ASSERT(erp != NULL);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	nex1 = page_idx;
 | |
| 	ext_cnt = count;
 | |
| 	while (ext_cnt) {
 | |
| 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
 | |
| 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
 | |
| 		/*
 | |
| 		 * Check for deletion of entire list;
 | |
| 		 * xfs_iext_irec_remove() updates extent offsets.
 | |
| 		 */
 | |
| 		if (ext_diff == erp->er_extcount) {
 | |
| 			xfs_iext_irec_remove(ifp, erp_idx);
 | |
| 			ext_cnt -= ext_diff;
 | |
| 			nex1 = 0;
 | |
| 			if (ext_cnt) {
 | |
| 				ASSERT(erp_idx < ifp->if_real_bytes /
 | |
| 					XFS_IEXT_BUFSZ);
 | |
| 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
 | |
| 				nex1 = 0;
 | |
| 				continue;
 | |
| 			} else {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 		/* Move extents up (if needed) */
 | |
| 		if (nex2) {
 | |
| 			memmove(&erp->er_extbuf[nex1],
 | |
| 				&erp->er_extbuf[nex1 + ext_diff],
 | |
| 				nex2 * sizeof(xfs_bmbt_rec_t));
 | |
| 		}
 | |
| 		/* Zero out rest of page */
 | |
| 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
 | |
| 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
 | |
| 		/* Update remaining counters */
 | |
| 		erp->er_extcount -= ext_diff;
 | |
| 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
 | |
| 		ext_cnt -= ext_diff;
 | |
| 		nex1 = 0;
 | |
| 		erp_idx++;
 | |
| 		erp++;
 | |
| 	}
 | |
| 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
 | |
| 	xfs_iext_irec_compact(ifp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create, destroy, or resize a linear (direct) block of extents.
 | |
|  */
 | |
| void
 | |
| xfs_iext_realloc_direct(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	int		new_size)	/* new size of extents */
 | |
| {
 | |
| 	int		rnew_size;	/* real new size of extents */
 | |
| 
 | |
| 	rnew_size = new_size;
 | |
| 
 | |
| 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
 | |
| 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
 | |
| 		 (new_size != ifp->if_real_bytes)));
 | |
| 
 | |
| 	/* Free extent records */
 | |
| 	if (new_size == 0) {
 | |
| 		xfs_iext_destroy(ifp);
 | |
| 	}
 | |
| 	/* Resize direct extent list and zero any new bytes */
 | |
| 	else if (ifp->if_real_bytes) {
 | |
| 		/* Check if extents will fit inside the inode */
 | |
| 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
 | |
| 			xfs_iext_direct_to_inline(ifp, new_size /
 | |
| 				(uint)sizeof(xfs_bmbt_rec_t));
 | |
| 			ifp->if_bytes = new_size;
 | |
| 			return;
 | |
| 		}
 | |
| 		if (!is_power_of_2(new_size)){
 | |
| 			rnew_size = roundup_pow_of_two(new_size);
 | |
| 		}
 | |
| 		if (rnew_size != ifp->if_real_bytes) {
 | |
| 			ifp->if_u1.if_extents =
 | |
| 				kmem_realloc(ifp->if_u1.if_extents,
 | |
| 						rnew_size,
 | |
| 						ifp->if_real_bytes, KM_NOFS);
 | |
| 		}
 | |
| 		if (rnew_size > ifp->if_real_bytes) {
 | |
| 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
 | |
| 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
 | |
| 				rnew_size - ifp->if_real_bytes);
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Switch from the inline extent buffer to a direct
 | |
| 	 * extent list. Be sure to include the inline extent
 | |
| 	 * bytes in new_size.
 | |
| 	 */
 | |
| 	else {
 | |
| 		new_size += ifp->if_bytes;
 | |
| 		if (!is_power_of_2(new_size)) {
 | |
| 			rnew_size = roundup_pow_of_two(new_size);
 | |
| 		}
 | |
| 		xfs_iext_inline_to_direct(ifp, rnew_size);
 | |
| 	}
 | |
| 	ifp->if_real_bytes = rnew_size;
 | |
| 	ifp->if_bytes = new_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch from linear (direct) extent records to inline buffer.
 | |
|  */
 | |
| void
 | |
| xfs_iext_direct_to_inline(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	nextents)	/* number of extents in file */
 | |
| {
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
 | |
| 	ASSERT(nextents <= XFS_INLINE_EXTS);
 | |
| 	/*
 | |
| 	 * The inline buffer was zeroed when we switched
 | |
| 	 * from inline to direct extent allocation mode,
 | |
| 	 * so we don't need to clear it here.
 | |
| 	 */
 | |
| 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
 | |
| 		nextents * sizeof(xfs_bmbt_rec_t));
 | |
| 	kmem_free(ifp->if_u1.if_extents);
 | |
| 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
 | |
| 	ifp->if_real_bytes = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch from inline buffer to linear (direct) extent records.
 | |
|  * new_size should already be rounded up to the next power of 2
 | |
|  * by the caller (when appropriate), so use new_size as it is.
 | |
|  * However, since new_size may be rounded up, we can't update
 | |
|  * if_bytes here. It is the caller's responsibility to update
 | |
|  * if_bytes upon return.
 | |
|  */
 | |
| void
 | |
| xfs_iext_inline_to_direct(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	int		new_size)	/* number of extents in file */
 | |
| {
 | |
| 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
 | |
| 	memset(ifp->if_u1.if_extents, 0, new_size);
 | |
| 	if (ifp->if_bytes) {
 | |
| 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
 | |
| 			ifp->if_bytes);
 | |
| 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
 | |
| 			sizeof(xfs_bmbt_rec_t));
 | |
| 	}
 | |
| 	ifp->if_real_bytes = new_size;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Resize an extent indirection array to new_size bytes.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_iext_realloc_indirect(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	int		new_size)	/* new indirection array size */
 | |
| {
 | |
| 	int		nlists;		/* number of irec's (ex lists) */
 | |
| 	int		size;		/* current indirection array size */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	size = nlists * sizeof(xfs_ext_irec_t);
 | |
| 	ASSERT(ifp->if_real_bytes);
 | |
| 	ASSERT((new_size >= 0) && (new_size != size));
 | |
| 	if (new_size == 0) {
 | |
| 		xfs_iext_destroy(ifp);
 | |
| 	} else {
 | |
| 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
 | |
| 			kmem_realloc(ifp->if_u1.if_ext_irec,
 | |
| 				new_size, size, KM_NOFS);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch from indirection array to linear (direct) extent allocations.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_iext_indirect_to_direct(
 | |
| 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
 | |
| {
 | |
| 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
 | |
| 	xfs_extnum_t	nextents;	/* number of extents in file */
 | |
| 	int		size;		/* size of file extents */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	ASSERT(nextents <= XFS_LINEAR_EXTS);
 | |
| 	size = nextents * sizeof(xfs_bmbt_rec_t);
 | |
| 
 | |
| 	xfs_iext_irec_compact_pages(ifp);
 | |
| 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
 | |
| 
 | |
| 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
 | |
| 	kmem_free(ifp->if_u1.if_ext_irec);
 | |
| 	ifp->if_flags &= ~XFS_IFEXTIREC;
 | |
| 	ifp->if_u1.if_extents = ep;
 | |
| 	ifp->if_bytes = size;
 | |
| 	if (nextents < XFS_LINEAR_EXTS) {
 | |
| 		xfs_iext_realloc_direct(ifp, size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free incore file extents.
 | |
|  */
 | |
| void
 | |
| xfs_iext_destroy(
 | |
| 	xfs_ifork_t	*ifp)		/* inode fork pointer */
 | |
| {
 | |
| 	if (ifp->if_flags & XFS_IFEXTIREC) {
 | |
| 		int	erp_idx;
 | |
| 		int	nlists;
 | |
| 
 | |
| 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
 | |
| 			xfs_iext_irec_remove(ifp, erp_idx);
 | |
| 		}
 | |
| 		ifp->if_flags &= ~XFS_IFEXTIREC;
 | |
| 	} else if (ifp->if_real_bytes) {
 | |
| 		kmem_free(ifp->if_u1.if_extents);
 | |
| 	} else if (ifp->if_bytes) {
 | |
| 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
 | |
| 			sizeof(xfs_bmbt_rec_t));
 | |
| 	}
 | |
| 	ifp->if_u1.if_extents = NULL;
 | |
| 	ifp->if_real_bytes = 0;
 | |
| 	ifp->if_bytes = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a pointer to the extent record for file system block bno.
 | |
|  */
 | |
| xfs_bmbt_rec_host_t *			/* pointer to found extent record */
 | |
| xfs_iext_bno_to_ext(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_fileoff_t	bno,		/* block number to search for */
 | |
| 	xfs_extnum_t	*idxp)		/* index of target extent */
 | |
| {
 | |
| 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
 | |
| 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
 | |
| 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
 | |
| 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
 | |
| 	int		high;		/* upper boundary in search */
 | |
| 	xfs_extnum_t	idx = 0;	/* index of target extent */
 | |
| 	int		low;		/* lower boundary in search */
 | |
| 	xfs_extnum_t	nextents;	/* number of file extents */
 | |
| 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
 | |
| 
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	if (nextents == 0) {
 | |
| 		*idxp = 0;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	low = 0;
 | |
| 	if (ifp->if_flags & XFS_IFEXTIREC) {
 | |
| 		/* Find target extent list */
 | |
| 		int	erp_idx = 0;
 | |
| 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
 | |
| 		base = erp->er_extbuf;
 | |
| 		high = erp->er_extcount - 1;
 | |
| 	} else {
 | |
| 		base = ifp->if_u1.if_extents;
 | |
| 		high = nextents - 1;
 | |
| 	}
 | |
| 	/* Binary search extent records */
 | |
| 	while (low <= high) {
 | |
| 		idx = (low + high) >> 1;
 | |
| 		ep = base + idx;
 | |
| 		startoff = xfs_bmbt_get_startoff(ep);
 | |
| 		blockcount = xfs_bmbt_get_blockcount(ep);
 | |
| 		if (bno < startoff) {
 | |
| 			high = idx - 1;
 | |
| 		} else if (bno >= startoff + blockcount) {
 | |
| 			low = idx + 1;
 | |
| 		} else {
 | |
| 			/* Convert back to file-based extent index */
 | |
| 			if (ifp->if_flags & XFS_IFEXTIREC) {
 | |
| 				idx += erp->er_extoff;
 | |
| 			}
 | |
| 			*idxp = idx;
 | |
| 			return ep;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Convert back to file-based extent index */
 | |
| 	if (ifp->if_flags & XFS_IFEXTIREC) {
 | |
| 		idx += erp->er_extoff;
 | |
| 	}
 | |
| 	if (bno >= startoff + blockcount) {
 | |
| 		if (++idx == nextents) {
 | |
| 			ep = NULL;
 | |
| 		} else {
 | |
| 			ep = xfs_iext_get_ext(ifp, idx);
 | |
| 		}
 | |
| 	}
 | |
| 	*idxp = idx;
 | |
| 	return ep;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a pointer to the indirection array entry containing the
 | |
|  * extent record for filesystem block bno. Store the index of the
 | |
|  * target irec in *erp_idxp.
 | |
|  */
 | |
| xfs_ext_irec_t *			/* pointer to found extent record */
 | |
| xfs_iext_bno_to_irec(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_fileoff_t	bno,		/* block number to search for */
 | |
| 	int		*erp_idxp)	/* irec index of target ext list */
 | |
| {
 | |
| 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
 | |
| 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
 | |
| 	int		erp_idx;	/* indirection array index */
 | |
| 	int		nlists;		/* number of extent irec's (lists) */
 | |
| 	int		high;		/* binary search upper limit */
 | |
| 	int		low;		/* binary search lower limit */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	erp_idx = 0;
 | |
| 	low = 0;
 | |
| 	high = nlists - 1;
 | |
| 	while (low <= high) {
 | |
| 		erp_idx = (low + high) >> 1;
 | |
| 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
 | |
| 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
 | |
| 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
 | |
| 			high = erp_idx - 1;
 | |
| 		} else if (erp_next && bno >=
 | |
| 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
 | |
| 			low = erp_idx + 1;
 | |
| 		} else {
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	*erp_idxp = erp_idx;
 | |
| 	return erp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return a pointer to the indirection array entry containing the
 | |
|  * extent record at file extent index *idxp. Store the index of the
 | |
|  * target irec in *erp_idxp and store the page index of the target
 | |
|  * extent record in *idxp.
 | |
|  */
 | |
| xfs_ext_irec_t *
 | |
| xfs_iext_idx_to_irec(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
 | |
| 	int		*erp_idxp,	/* pointer to target irec */
 | |
| 	int		realloc)	/* new bytes were just added */
 | |
| {
 | |
| 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
 | |
| 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
 | |
| 	int		erp_idx;	/* indirection array index */
 | |
| 	int		nlists;		/* number of irec's (ex lists) */
 | |
| 	int		high;		/* binary search upper limit */
 | |
| 	int		low;		/* binary search lower limit */
 | |
| 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	ASSERT(page_idx >= 0 && page_idx <=
 | |
| 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	erp_idx = 0;
 | |
| 	low = 0;
 | |
| 	high = nlists - 1;
 | |
| 
 | |
| 	/* Binary search extent irec's */
 | |
| 	while (low <= high) {
 | |
| 		erp_idx = (low + high) >> 1;
 | |
| 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
 | |
| 		prev = erp_idx > 0 ? erp - 1 : NULL;
 | |
| 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
 | |
| 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
 | |
| 			high = erp_idx - 1;
 | |
| 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
 | |
| 			   (page_idx == erp->er_extoff + erp->er_extcount &&
 | |
| 			    !realloc)) {
 | |
| 			low = erp_idx + 1;
 | |
| 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
 | |
| 			   erp->er_extcount == XFS_LINEAR_EXTS) {
 | |
| 			ASSERT(realloc);
 | |
| 			page_idx = 0;
 | |
| 			erp_idx++;
 | |
| 			erp = erp_idx < nlists ? erp + 1 : NULL;
 | |
| 			break;
 | |
| 		} else {
 | |
| 			page_idx -= erp->er_extoff;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	*idxp = page_idx;
 | |
| 	*erp_idxp = erp_idx;
 | |
| 	return(erp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize an indirection array once the space needed
 | |
|  * for incore extents increases above XFS_IEXT_BUFSZ.
 | |
|  */
 | |
| void
 | |
| xfs_iext_irec_init(
 | |
| 	xfs_ifork_t	*ifp)		/* inode fork pointer */
 | |
| {
 | |
| 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
 | |
| 	xfs_extnum_t	nextents;	/* number of extents in file */
 | |
| 
 | |
| 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 	ASSERT(nextents <= XFS_LINEAR_EXTS);
 | |
| 
 | |
| 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
 | |
| 
 | |
| 	if (nextents == 0) {
 | |
| 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
 | |
| 	} else if (!ifp->if_real_bytes) {
 | |
| 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
 | |
| 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
 | |
| 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
 | |
| 	}
 | |
| 	erp->er_extbuf = ifp->if_u1.if_extents;
 | |
| 	erp->er_extcount = nextents;
 | |
| 	erp->er_extoff = 0;
 | |
| 
 | |
| 	ifp->if_flags |= XFS_IFEXTIREC;
 | |
| 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
 | |
| 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
 | |
| 	ifp->if_u1.if_ext_irec = erp;
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialize a new entry in the indirection array.
 | |
|  */
 | |
| xfs_ext_irec_t *
 | |
| xfs_iext_irec_new(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	int		erp_idx)	/* index for new irec */
 | |
| {
 | |
| 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
 | |
| 	int		i;		/* loop counter */
 | |
| 	int		nlists;		/* number of irec's (ex lists) */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 
 | |
| 	/* Resize indirection array */
 | |
| 	xfs_iext_realloc_indirect(ifp, ++nlists *
 | |
| 				  sizeof(xfs_ext_irec_t));
 | |
| 	/*
 | |
| 	 * Move records down in the array so the
 | |
| 	 * new page can use erp_idx.
 | |
| 	 */
 | |
| 	erp = ifp->if_u1.if_ext_irec;
 | |
| 	for (i = nlists - 1; i > erp_idx; i--) {
 | |
| 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
 | |
| 	}
 | |
| 	ASSERT(i == erp_idx);
 | |
| 
 | |
| 	/* Initialize new extent record */
 | |
| 	erp = ifp->if_u1.if_ext_irec;
 | |
| 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
 | |
| 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
 | |
| 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
 | |
| 	erp[erp_idx].er_extcount = 0;
 | |
| 	erp[erp_idx].er_extoff = erp_idx > 0 ?
 | |
| 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
 | |
| 	return (&erp[erp_idx]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a record from the indirection array.
 | |
|  */
 | |
| void
 | |
| xfs_iext_irec_remove(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	int		erp_idx)	/* irec index to remove */
 | |
| {
 | |
| 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
 | |
| 	int		i;		/* loop counter */
 | |
| 	int		nlists;		/* number of irec's (ex lists) */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
 | |
| 	if (erp->er_extbuf) {
 | |
| 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
 | |
| 			-erp->er_extcount);
 | |
| 		kmem_free(erp->er_extbuf);
 | |
| 	}
 | |
| 	/* Compact extent records */
 | |
| 	erp = ifp->if_u1.if_ext_irec;
 | |
| 	for (i = erp_idx; i < nlists - 1; i++) {
 | |
| 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Manually free the last extent record from the indirection
 | |
| 	 * array.  A call to xfs_iext_realloc_indirect() with a size
 | |
| 	 * of zero would result in a call to xfs_iext_destroy() which
 | |
| 	 * would in turn call this function again, creating a nasty
 | |
| 	 * infinite loop.
 | |
| 	 */
 | |
| 	if (--nlists) {
 | |
| 		xfs_iext_realloc_indirect(ifp,
 | |
| 			nlists * sizeof(xfs_ext_irec_t));
 | |
| 	} else {
 | |
| 		kmem_free(ifp->if_u1.if_ext_irec);
 | |
| 	}
 | |
| 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to clean up large amounts of unused memory allocated
 | |
|  * by the indirection array.  Before compacting anything though, verify
 | |
|  * that the indirection array is still needed and switch back to the
 | |
|  * linear extent list (or even the inline buffer) if possible.  The
 | |
|  * compaction policy is as follows:
 | |
|  *
 | |
|  *    Full Compaction: Extents fit into a single page (or inline buffer)
 | |
|  * Partial Compaction: Extents occupy less than 50% of allocated space
 | |
|  *      No Compaction: Extents occupy at least 50% of allocated space
 | |
|  */
 | |
| void
 | |
| xfs_iext_irec_compact(
 | |
| 	xfs_ifork_t	*ifp)		/* inode fork pointer */
 | |
| {
 | |
| 	xfs_extnum_t	nextents;	/* number of extents in file */
 | |
| 	int		nlists;		/* number of irec's (ex lists) */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
 | |
| 
 | |
| 	if (nextents == 0) {
 | |
| 		xfs_iext_destroy(ifp);
 | |
| 	} else if (nextents <= XFS_INLINE_EXTS) {
 | |
| 		xfs_iext_indirect_to_direct(ifp);
 | |
| 		xfs_iext_direct_to_inline(ifp, nextents);
 | |
| 	} else if (nextents <= XFS_LINEAR_EXTS) {
 | |
| 		xfs_iext_indirect_to_direct(ifp);
 | |
| 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
 | |
| 		xfs_iext_irec_compact_pages(ifp);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Combine extents from neighboring extent pages.
 | |
|  */
 | |
| void
 | |
| xfs_iext_irec_compact_pages(
 | |
| 	xfs_ifork_t	*ifp)		/* inode fork pointer */
 | |
| {
 | |
| 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
 | |
| 	int		erp_idx = 0;	/* indirection array index */
 | |
| 	int		nlists;		/* number of irec's (ex lists) */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	while (erp_idx < nlists - 1) {
 | |
| 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
 | |
| 		erp_next = erp + 1;
 | |
| 		if (erp_next->er_extcount <=
 | |
| 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
 | |
| 			memcpy(&erp->er_extbuf[erp->er_extcount],
 | |
| 				erp_next->er_extbuf, erp_next->er_extcount *
 | |
| 				sizeof(xfs_bmbt_rec_t));
 | |
| 			erp->er_extcount += erp_next->er_extcount;
 | |
| 			/*
 | |
| 			 * Free page before removing extent record
 | |
| 			 * so er_extoffs don't get modified in
 | |
| 			 * xfs_iext_irec_remove.
 | |
| 			 */
 | |
| 			kmem_free(erp_next->er_extbuf);
 | |
| 			erp_next->er_extbuf = NULL;
 | |
| 			xfs_iext_irec_remove(ifp, erp_idx + 1);
 | |
| 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 		} else {
 | |
| 			erp_idx++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to update the er_extoff field in the indirection
 | |
|  * array when extents have been added or removed from one of the
 | |
|  * extent lists. erp_idx contains the irec index to begin updating
 | |
|  * at and ext_diff contains the number of extents that were added
 | |
|  * or removed.
 | |
|  */
 | |
| void
 | |
| xfs_iext_irec_update_extoffs(
 | |
| 	xfs_ifork_t	*ifp,		/* inode fork pointer */
 | |
| 	int		erp_idx,	/* irec index to update */
 | |
| 	int		ext_diff)	/* number of new extents */
 | |
| {
 | |
| 	int		i;		/* loop counter */
 | |
| 	int		nlists;		/* number of irec's (ex lists */
 | |
| 
 | |
| 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
 | |
| 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
 | |
| 	for (i = erp_idx; i < nlists; i++) {
 | |
| 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
 | |
| 	}
 | |
| }
 |