1658 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1658 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include "xfs_bit.h"
 | |
| #include "xfs_log.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_dir2.h"
 | |
| #include "xfs_trans.h"
 | |
| #include "xfs_dmapi.h"
 | |
| #include "xfs_mount.h"
 | |
| #include "xfs_bmap_btree.h"
 | |
| #include "xfs_alloc_btree.h"
 | |
| #include "xfs_ialloc_btree.h"
 | |
| #include "xfs_dir2_sf.h"
 | |
| #include "xfs_attr_sf.h"
 | |
| #include "xfs_dinode.h"
 | |
| #include "xfs_inode.h"
 | |
| #include "xfs_alloc.h"
 | |
| #include "xfs_btree.h"
 | |
| #include "xfs_error.h"
 | |
| #include "xfs_rw.h"
 | |
| #include "xfs_iomap.h"
 | |
| #include "xfs_vnodeops.h"
 | |
| #include <linux/mpage.h>
 | |
| #include <linux/pagevec.h>
 | |
| #include <linux/writeback.h>
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Prime number of hash buckets since address is used as the key.
 | |
|  */
 | |
| #define NVSYNC		37
 | |
| #define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
 | |
| static wait_queue_head_t xfs_ioend_wq[NVSYNC];
 | |
| 
 | |
| void __init
 | |
| xfs_ioend_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < NVSYNC; i++)
 | |
| 		init_waitqueue_head(&xfs_ioend_wq[i]);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_ioend_wait(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	wait_queue_head_t *wq = to_ioend_wq(ip);
 | |
| 
 | |
| 	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_ioend_wake(
 | |
| 	xfs_inode_t	*ip)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ip->i_iocount))
 | |
| 		wake_up(to_ioend_wq(ip));
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_count_page_state(
 | |
| 	struct page		*page,
 | |
| 	int			*delalloc,
 | |
| 	int			*unmapped,
 | |
| 	int			*unwritten)
 | |
| {
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 
 | |
| 	*delalloc = *unmapped = *unwritten = 0;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		if (buffer_uptodate(bh) && !buffer_mapped(bh))
 | |
| 			(*unmapped) = 1;
 | |
| 		else if (buffer_unwritten(bh))
 | |
| 			(*unwritten) = 1;
 | |
| 		else if (buffer_delay(bh))
 | |
| 			(*delalloc) = 1;
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| }
 | |
| 
 | |
| #if defined(XFS_RW_TRACE)
 | |
| void
 | |
| xfs_page_trace(
 | |
| 	int		tag,
 | |
| 	struct inode	*inode,
 | |
| 	struct page	*page,
 | |
| 	unsigned long	pgoff)
 | |
| {
 | |
| 	xfs_inode_t	*ip;
 | |
| 	loff_t		isize = i_size_read(inode);
 | |
| 	loff_t		offset = page_offset(page);
 | |
| 	int		delalloc = -1, unmapped = -1, unwritten = -1;
 | |
| 
 | |
| 	if (page_has_buffers(page))
 | |
| 		xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
 | |
| 
 | |
| 	ip = XFS_I(inode);
 | |
| 	if (!ip->i_rwtrace)
 | |
| 		return;
 | |
| 
 | |
| 	ktrace_enter(ip->i_rwtrace,
 | |
| 		(void *)((unsigned long)tag),
 | |
| 		(void *)ip,
 | |
| 		(void *)inode,
 | |
| 		(void *)page,
 | |
| 		(void *)pgoff,
 | |
| 		(void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
 | |
| 		(void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
 | |
| 		(void *)((unsigned long)((isize >> 32) & 0xffffffff)),
 | |
| 		(void *)((unsigned long)(isize & 0xffffffff)),
 | |
| 		(void *)((unsigned long)((offset >> 32) & 0xffffffff)),
 | |
| 		(void *)((unsigned long)(offset & 0xffffffff)),
 | |
| 		(void *)((unsigned long)delalloc),
 | |
| 		(void *)((unsigned long)unmapped),
 | |
| 		(void *)((unsigned long)unwritten),
 | |
| 		(void *)((unsigned long)current_pid()),
 | |
| 		(void *)NULL);
 | |
| }
 | |
| #else
 | |
| #define xfs_page_trace(tag, inode, page, pgoff)
 | |
| #endif
 | |
| 
 | |
| STATIC struct block_device *
 | |
| xfs_find_bdev_for_inode(
 | |
| 	struct xfs_inode	*ip)
 | |
| {
 | |
| 	struct xfs_mount	*mp = ip->i_mount;
 | |
| 
 | |
| 	if (XFS_IS_REALTIME_INODE(ip))
 | |
| 		return mp->m_rtdev_targp->bt_bdev;
 | |
| 	else
 | |
| 		return mp->m_ddev_targp->bt_bdev;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're now finished for good with this ioend structure.
 | |
|  * Update the page state via the associated buffer_heads,
 | |
|  * release holds on the inode and bio, and finally free
 | |
|  * up memory.  Do not use the ioend after this.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_destroy_ioend(
 | |
| 	xfs_ioend_t		*ioend)
 | |
| {
 | |
| 	struct buffer_head	*bh, *next;
 | |
| 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 | |
| 
 | |
| 	for (bh = ioend->io_buffer_head; bh; bh = next) {
 | |
| 		next = bh->b_private;
 | |
| 		bh->b_end_io(bh, !ioend->io_error);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Volume managers supporting multiple paths can send back ENODEV
 | |
| 	 * when the final path disappears.  In this case continuing to fill
 | |
| 	 * the page cache with dirty data which cannot be written out is
 | |
| 	 * evil, so prevent that.
 | |
| 	 */
 | |
| 	if (unlikely(ioend->io_error == -ENODEV)) {
 | |
| 		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
 | |
| 				      __FILE__, __LINE__);
 | |
| 	}
 | |
| 
 | |
| 	xfs_ioend_wake(ip);
 | |
| 	mempool_free(ioend, xfs_ioend_pool);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the end of the current ioend is beyond the current EOF,
 | |
|  * return the new EOF value, otherwise zero.
 | |
|  */
 | |
| STATIC xfs_fsize_t
 | |
| xfs_ioend_new_eof(
 | |
| 	xfs_ioend_t		*ioend)
 | |
| {
 | |
| 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 | |
| 	xfs_fsize_t		isize;
 | |
| 	xfs_fsize_t		bsize;
 | |
| 
 | |
| 	bsize = ioend->io_offset + ioend->io_size;
 | |
| 	isize = MAX(ip->i_size, ip->i_new_size);
 | |
| 	isize = MIN(isize, bsize);
 | |
| 	return isize > ip->i_d.di_size ? isize : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update on-disk file size now that data has been written to disk.
 | |
|  * The current in-memory file size is i_size.  If a write is beyond
 | |
|  * eof i_new_size will be the intended file size until i_size is
 | |
|  * updated.  If this write does not extend all the way to the valid
 | |
|  * file size then restrict this update to the end of the write.
 | |
|  */
 | |
| 
 | |
| STATIC void
 | |
| xfs_setfilesize(
 | |
| 	xfs_ioend_t		*ioend)
 | |
| {
 | |
| 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 | |
| 	xfs_fsize_t		isize;
 | |
| 
 | |
| 	ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
 | |
| 	ASSERT(ioend->io_type != IOMAP_READ);
 | |
| 
 | |
| 	if (unlikely(ioend->io_error))
 | |
| 		return;
 | |
| 
 | |
| 	xfs_ilock(ip, XFS_ILOCK_EXCL);
 | |
| 	isize = xfs_ioend_new_eof(ioend);
 | |
| 	if (isize) {
 | |
| 		ip->i_d.di_size = isize;
 | |
| 		xfs_mark_inode_dirty_sync(ip);
 | |
| 	}
 | |
| 
 | |
| 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Buffered IO write completion for delayed allocate extents.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_bio_delalloc(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend =
 | |
| 		container_of(work, xfs_ioend_t, io_work);
 | |
| 
 | |
| 	xfs_setfilesize(ioend);
 | |
| 	xfs_destroy_ioend(ioend);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Buffered IO write completion for regular, written extents.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_bio_written(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend =
 | |
| 		container_of(work, xfs_ioend_t, io_work);
 | |
| 
 | |
| 	xfs_setfilesize(ioend);
 | |
| 	xfs_destroy_ioend(ioend);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IO write completion for unwritten extents.
 | |
|  *
 | |
|  * Issue transactions to convert a buffer range from unwritten
 | |
|  * to written extents.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_bio_unwritten(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend =
 | |
| 		container_of(work, xfs_ioend_t, io_work);
 | |
| 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 | |
| 	xfs_off_t		offset = ioend->io_offset;
 | |
| 	size_t			size = ioend->io_size;
 | |
| 
 | |
| 	if (likely(!ioend->io_error)) {
 | |
| 		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 | |
| 			int error;
 | |
| 			error = xfs_iomap_write_unwritten(ip, offset, size);
 | |
| 			if (error)
 | |
| 				ioend->io_error = error;
 | |
| 		}
 | |
| 		xfs_setfilesize(ioend);
 | |
| 	}
 | |
| 	xfs_destroy_ioend(ioend);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * IO read completion for regular, written extents.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_bio_read(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend =
 | |
| 		container_of(work, xfs_ioend_t, io_work);
 | |
| 
 | |
| 	xfs_destroy_ioend(ioend);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Schedule IO completion handling on a xfsdatad if this was
 | |
|  * the final hold on this ioend. If we are asked to wait,
 | |
|  * flush the workqueue.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_finish_ioend(
 | |
| 	xfs_ioend_t	*ioend,
 | |
| 	int		wait)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&ioend->io_remaining)) {
 | |
| 		struct workqueue_struct *wq = xfsdatad_workqueue;
 | |
| 		if (ioend->io_work.func == xfs_end_bio_unwritten)
 | |
| 			wq = xfsconvertd_workqueue;
 | |
| 
 | |
| 		queue_work(wq, &ioend->io_work);
 | |
| 		if (wait)
 | |
| 			flush_workqueue(wq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate and initialise an IO completion structure.
 | |
|  * We need to track unwritten extent write completion here initially.
 | |
|  * We'll need to extend this for updating the ondisk inode size later
 | |
|  * (vs. incore size).
 | |
|  */
 | |
| STATIC xfs_ioend_t *
 | |
| xfs_alloc_ioend(
 | |
| 	struct inode		*inode,
 | |
| 	unsigned int		type)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend;
 | |
| 
 | |
| 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the count to 1 initially, which will prevent an I/O
 | |
| 	 * completion callback from happening before we have started
 | |
| 	 * all the I/O from calling the completion routine too early.
 | |
| 	 */
 | |
| 	atomic_set(&ioend->io_remaining, 1);
 | |
| 	ioend->io_error = 0;
 | |
| 	ioend->io_list = NULL;
 | |
| 	ioend->io_type = type;
 | |
| 	ioend->io_inode = inode;
 | |
| 	ioend->io_buffer_head = NULL;
 | |
| 	ioend->io_buffer_tail = NULL;
 | |
| 	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
 | |
| 	ioend->io_offset = 0;
 | |
| 	ioend->io_size = 0;
 | |
| 
 | |
| 	if (type == IOMAP_UNWRITTEN)
 | |
| 		INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
 | |
| 	else if (type == IOMAP_DELAY)
 | |
| 		INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
 | |
| 	else if (type == IOMAP_READ)
 | |
| 		INIT_WORK(&ioend->io_work, xfs_end_bio_read);
 | |
| 	else
 | |
| 		INIT_WORK(&ioend->io_work, xfs_end_bio_written);
 | |
| 
 | |
| 	return ioend;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_map_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	loff_t			offset,
 | |
| 	ssize_t			count,
 | |
| 	xfs_iomap_t		*mapp,
 | |
| 	int			flags)
 | |
| {
 | |
| 	int			nmaps = 1;
 | |
| 
 | |
| 	return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
 | |
| }
 | |
| 
 | |
| STATIC_INLINE int
 | |
| xfs_iomap_valid(
 | |
| 	xfs_iomap_t		*iomapp,
 | |
| 	loff_t			offset)
 | |
| {
 | |
| 	return offset >= iomapp->iomap_offset &&
 | |
| 		offset < iomapp->iomap_offset + iomapp->iomap_bsize;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * BIO completion handler for buffered IO.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_end_bio(
 | |
| 	struct bio		*bio,
 | |
| 	int			error)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend = bio->bi_private;
 | |
| 
 | |
| 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 | |
| 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 | |
| 
 | |
| 	/* Toss bio and pass work off to an xfsdatad thread */
 | |
| 	bio->bi_private = NULL;
 | |
| 	bio->bi_end_io = NULL;
 | |
| 	bio_put(bio);
 | |
| 
 | |
| 	xfs_finish_ioend(ioend, 0);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_submit_ioend_bio(
 | |
| 	xfs_ioend_t	*ioend,
 | |
| 	struct bio	*bio)
 | |
| {
 | |
| 	atomic_inc(&ioend->io_remaining);
 | |
| 	bio->bi_private = ioend;
 | |
| 	bio->bi_end_io = xfs_end_bio;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the I/O is beyond EOF we mark the inode dirty immediately
 | |
| 	 * but don't update the inode size until I/O completion.
 | |
| 	 */
 | |
| 	if (xfs_ioend_new_eof(ioend))
 | |
| 		xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
 | |
| 
 | |
| 	submit_bio(WRITE, bio);
 | |
| 	ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| STATIC struct bio *
 | |
| xfs_alloc_ioend_bio(
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	struct bio		*bio;
 | |
| 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
 | |
| 
 | |
| 	do {
 | |
| 		bio = bio_alloc(GFP_NOIO, nvecs);
 | |
| 		nvecs >>= 1;
 | |
| 	} while (!bio);
 | |
| 
 | |
| 	ASSERT(bio->bi_private == NULL);
 | |
| 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 | |
| 	bio->bi_bdev = bh->b_bdev;
 | |
| 	bio_get(bio);
 | |
| 	return bio;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_start_buffer_writeback(
 | |
| 	struct buffer_head	*bh)
 | |
| {
 | |
| 	ASSERT(buffer_mapped(bh));
 | |
| 	ASSERT(buffer_locked(bh));
 | |
| 	ASSERT(!buffer_delay(bh));
 | |
| 	ASSERT(!buffer_unwritten(bh));
 | |
| 
 | |
| 	mark_buffer_async_write(bh);
 | |
| 	set_buffer_uptodate(bh);
 | |
| 	clear_buffer_dirty(bh);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_start_page_writeback(
 | |
| 	struct page		*page,
 | |
| 	int			clear_dirty,
 | |
| 	int			buffers)
 | |
| {
 | |
| 	ASSERT(PageLocked(page));
 | |
| 	ASSERT(!PageWriteback(page));
 | |
| 	if (clear_dirty)
 | |
| 		clear_page_dirty_for_io(page);
 | |
| 	set_page_writeback(page);
 | |
| 	unlock_page(page);
 | |
| 	/* If no buffers on the page are to be written, finish it here */
 | |
| 	if (!buffers)
 | |
| 		end_page_writeback(page);
 | |
| }
 | |
| 
 | |
| static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 | |
| {
 | |
| 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Submit all of the bios for all of the ioends we have saved up, covering the
 | |
|  * initial writepage page and also any probed pages.
 | |
|  *
 | |
|  * Because we may have multiple ioends spanning a page, we need to start
 | |
|  * writeback on all the buffers before we submit them for I/O. If we mark the
 | |
|  * buffers as we got, then we can end up with a page that only has buffers
 | |
|  * marked async write and I/O complete on can occur before we mark the other
 | |
|  * buffers async write.
 | |
|  *
 | |
|  * The end result of this is that we trip a bug in end_page_writeback() because
 | |
|  * we call it twice for the one page as the code in end_buffer_async_write()
 | |
|  * assumes that all buffers on the page are started at the same time.
 | |
|  *
 | |
|  * The fix is two passes across the ioend list - one to start writeback on the
 | |
|  * buffer_heads, and then submit them for I/O on the second pass.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_submit_ioend(
 | |
| 	xfs_ioend_t		*ioend)
 | |
| {
 | |
| 	xfs_ioend_t		*head = ioend;
 | |
| 	xfs_ioend_t		*next;
 | |
| 	struct buffer_head	*bh;
 | |
| 	struct bio		*bio;
 | |
| 	sector_t		lastblock = 0;
 | |
| 
 | |
| 	/* Pass 1 - start writeback */
 | |
| 	do {
 | |
| 		next = ioend->io_list;
 | |
| 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 | |
| 			xfs_start_buffer_writeback(bh);
 | |
| 		}
 | |
| 	} while ((ioend = next) != NULL);
 | |
| 
 | |
| 	/* Pass 2 - submit I/O */
 | |
| 	ioend = head;
 | |
| 	do {
 | |
| 		next = ioend->io_list;
 | |
| 		bio = NULL;
 | |
| 
 | |
| 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 | |
| 
 | |
| 			if (!bio) {
 | |
|  retry:
 | |
| 				bio = xfs_alloc_ioend_bio(bh);
 | |
| 			} else if (bh->b_blocknr != lastblock + 1) {
 | |
| 				xfs_submit_ioend_bio(ioend, bio);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 
 | |
| 			if (bio_add_buffer(bio, bh) != bh->b_size) {
 | |
| 				xfs_submit_ioend_bio(ioend, bio);
 | |
| 				goto retry;
 | |
| 			}
 | |
| 
 | |
| 			lastblock = bh->b_blocknr;
 | |
| 		}
 | |
| 		if (bio)
 | |
| 			xfs_submit_ioend_bio(ioend, bio);
 | |
| 		xfs_finish_ioend(ioend, 0);
 | |
| 	} while ((ioend = next) != NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Cancel submission of all buffer_heads so far in this endio.
 | |
|  * Toss the endio too.  Only ever called for the initial page
 | |
|  * in a writepage request, so only ever one page.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_cancel_ioend(
 | |
| 	xfs_ioend_t		*ioend)
 | |
| {
 | |
| 	xfs_ioend_t		*next;
 | |
| 	struct buffer_head	*bh, *next_bh;
 | |
| 
 | |
| 	do {
 | |
| 		next = ioend->io_list;
 | |
| 		bh = ioend->io_buffer_head;
 | |
| 		do {
 | |
| 			next_bh = bh->b_private;
 | |
| 			clear_buffer_async_write(bh);
 | |
| 			unlock_buffer(bh);
 | |
| 		} while ((bh = next_bh) != NULL);
 | |
| 
 | |
| 		xfs_ioend_wake(XFS_I(ioend->io_inode));
 | |
| 		mempool_free(ioend, xfs_ioend_pool);
 | |
| 	} while ((ioend = next) != NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test to see if we've been building up a completion structure for
 | |
|  * earlier buffers -- if so, we try to append to this ioend if we
 | |
|  * can, otherwise we finish off any current ioend and start another.
 | |
|  * Return true if we've finished the given ioend.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_add_to_ioend(
 | |
| 	struct inode		*inode,
 | |
| 	struct buffer_head	*bh,
 | |
| 	xfs_off_t		offset,
 | |
| 	unsigned int		type,
 | |
| 	xfs_ioend_t		**result,
 | |
| 	int			need_ioend)
 | |
| {
 | |
| 	xfs_ioend_t		*ioend = *result;
 | |
| 
 | |
| 	if (!ioend || need_ioend || type != ioend->io_type) {
 | |
| 		xfs_ioend_t	*previous = *result;
 | |
| 
 | |
| 		ioend = xfs_alloc_ioend(inode, type);
 | |
| 		ioend->io_offset = offset;
 | |
| 		ioend->io_buffer_head = bh;
 | |
| 		ioend->io_buffer_tail = bh;
 | |
| 		if (previous)
 | |
| 			previous->io_list = ioend;
 | |
| 		*result = ioend;
 | |
| 	} else {
 | |
| 		ioend->io_buffer_tail->b_private = bh;
 | |
| 		ioend->io_buffer_tail = bh;
 | |
| 	}
 | |
| 
 | |
| 	bh->b_private = NULL;
 | |
| 	ioend->io_size += bh->b_size;
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_map_buffer(
 | |
| 	struct buffer_head	*bh,
 | |
| 	xfs_iomap_t		*mp,
 | |
| 	xfs_off_t		offset,
 | |
| 	uint			block_bits)
 | |
| {
 | |
| 	sector_t		bn;
 | |
| 
 | |
| 	ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
 | |
| 
 | |
| 	bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
 | |
| 	      ((offset - mp->iomap_offset) >> block_bits);
 | |
| 
 | |
| 	ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
 | |
| 
 | |
| 	bh->b_blocknr = bn;
 | |
| 	set_buffer_mapped(bh);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_map_at_offset(
 | |
| 	struct buffer_head	*bh,
 | |
| 	loff_t			offset,
 | |
| 	int			block_bits,
 | |
| 	xfs_iomap_t		*iomapp)
 | |
| {
 | |
| 	ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
 | |
| 	ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
 | |
| 
 | |
| 	lock_buffer(bh);
 | |
| 	xfs_map_buffer(bh, iomapp, offset, block_bits);
 | |
| 	bh->b_bdev = iomapp->iomap_target->bt_bdev;
 | |
| 	set_buffer_mapped(bh);
 | |
| 	clear_buffer_delay(bh);
 | |
| 	clear_buffer_unwritten(bh);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Look for a page at index that is suitable for clustering.
 | |
|  */
 | |
| STATIC unsigned int
 | |
| xfs_probe_page(
 | |
| 	struct page		*page,
 | |
| 	unsigned int		pg_offset,
 | |
| 	int			mapped)
 | |
| {
 | |
| 	int			ret = 0;
 | |
| 
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page->mapping && PageDirty(page)) {
 | |
| 		if (page_has_buffers(page)) {
 | |
| 			struct buffer_head	*bh, *head;
 | |
| 
 | |
| 			bh = head = page_buffers(page);
 | |
| 			do {
 | |
| 				if (!buffer_uptodate(bh))
 | |
| 					break;
 | |
| 				if (mapped != buffer_mapped(bh))
 | |
| 					break;
 | |
| 				ret += bh->b_size;
 | |
| 				if (ret >= pg_offset)
 | |
| 					break;
 | |
| 			} while ((bh = bh->b_this_page) != head);
 | |
| 		} else
 | |
| 			ret = mapped ? 0 : PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC size_t
 | |
| xfs_probe_cluster(
 | |
| 	struct inode		*inode,
 | |
| 	struct page		*startpage,
 | |
| 	struct buffer_head	*bh,
 | |
| 	struct buffer_head	*head,
 | |
| 	int			mapped)
 | |
| {
 | |
| 	struct pagevec		pvec;
 | |
| 	pgoff_t			tindex, tlast, tloff;
 | |
| 	size_t			total = 0;
 | |
| 	int			done = 0, i;
 | |
| 
 | |
| 	/* First sum forwards in this page */
 | |
| 	do {
 | |
| 		if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
 | |
| 			return total;
 | |
| 		total += bh->b_size;
 | |
| 	} while ((bh = bh->b_this_page) != head);
 | |
| 
 | |
| 	/* if we reached the end of the page, sum forwards in following pages */
 | |
| 	tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
 | |
| 	tindex = startpage->index + 1;
 | |
| 
 | |
| 	/* Prune this back to avoid pathological behavior */
 | |
| 	tloff = min(tlast, startpage->index + 64);
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	while (!done && tindex <= tloff) {
 | |
| 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 | |
| 
 | |
| 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			struct page *page = pvec.pages[i];
 | |
| 			size_t pg_offset, pg_len = 0;
 | |
| 
 | |
| 			if (tindex == tlast) {
 | |
| 				pg_offset =
 | |
| 				    i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
 | |
| 				if (!pg_offset) {
 | |
| 					done = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 			} else
 | |
| 				pg_offset = PAGE_CACHE_SIZE;
 | |
| 
 | |
| 			if (page->index == tindex && trylock_page(page)) {
 | |
| 				pg_len = xfs_probe_page(page, pg_offset, mapped);
 | |
| 				unlock_page(page);
 | |
| 			}
 | |
| 
 | |
| 			if (!pg_len) {
 | |
| 				done = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			total += pg_len;
 | |
| 			tindex++;
 | |
| 		}
 | |
| 
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Test if a given page is suitable for writing as part of an unwritten
 | |
|  * or delayed allocate extent.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_is_delayed_page(
 | |
| 	struct page		*page,
 | |
| 	unsigned int		type)
 | |
| {
 | |
| 	if (PageWriteback(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (page->mapping && page_has_buffers(page)) {
 | |
| 		struct buffer_head	*bh, *head;
 | |
| 		int			acceptable = 0;
 | |
| 
 | |
| 		bh = head = page_buffers(page);
 | |
| 		do {
 | |
| 			if (buffer_unwritten(bh))
 | |
| 				acceptable = (type == IOMAP_UNWRITTEN);
 | |
| 			else if (buffer_delay(bh))
 | |
| 				acceptable = (type == IOMAP_DELAY);
 | |
| 			else if (buffer_dirty(bh) && buffer_mapped(bh))
 | |
| 				acceptable = (type == IOMAP_NEW);
 | |
| 			else
 | |
| 				break;
 | |
| 		} while ((bh = bh->b_this_page) != head);
 | |
| 
 | |
| 		if (acceptable)
 | |
| 			return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate & map buffers for page given the extent map. Write it out.
 | |
|  * except for the original page of a writepage, this is called on
 | |
|  * delalloc/unwritten pages only, for the original page it is possible
 | |
|  * that the page has no mapping at all.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_convert_page(
 | |
| 	struct inode		*inode,
 | |
| 	struct page		*page,
 | |
| 	loff_t			tindex,
 | |
| 	xfs_iomap_t		*mp,
 | |
| 	xfs_ioend_t		**ioendp,
 | |
| 	struct writeback_control *wbc,
 | |
| 	int			startio,
 | |
| 	int			all_bh)
 | |
| {
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 	xfs_off_t		end_offset;
 | |
| 	unsigned long		p_offset;
 | |
| 	unsigned int		type;
 | |
| 	int			bbits = inode->i_blkbits;
 | |
| 	int			len, page_dirty;
 | |
| 	int			count = 0, done = 0, uptodate = 1;
 | |
|  	xfs_off_t		offset = page_offset(page);
 | |
| 
 | |
| 	if (page->index != tindex)
 | |
| 		goto fail;
 | |
| 	if (!trylock_page(page))
 | |
| 		goto fail;
 | |
| 	if (PageWriteback(page))
 | |
| 		goto fail_unlock_page;
 | |
| 	if (page->mapping != inode->i_mapping)
 | |
| 		goto fail_unlock_page;
 | |
| 	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
 | |
| 		goto fail_unlock_page;
 | |
| 
 | |
| 	/*
 | |
| 	 * page_dirty is initially a count of buffers on the page before
 | |
| 	 * EOF and is decremented as we move each into a cleanable state.
 | |
| 	 *
 | |
| 	 * Derivation:
 | |
| 	 *
 | |
| 	 * End offset is the highest offset that this page should represent.
 | |
| 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 | |
| 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 | |
| 	 * hence give us the correct page_dirty count. On any other page,
 | |
| 	 * it will be zero and in that case we need page_dirty to be the
 | |
| 	 * count of buffers on the page.
 | |
| 	 */
 | |
| 	end_offset = min_t(unsigned long long,
 | |
| 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 | |
| 			i_size_read(inode));
 | |
| 
 | |
| 	len = 1 << inode->i_blkbits;
 | |
| 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 | |
| 					PAGE_CACHE_SIZE);
 | |
| 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 | |
| 	page_dirty = p_offset / len;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	do {
 | |
| 		if (offset >= end_offset)
 | |
| 			break;
 | |
| 		if (!buffer_uptodate(bh))
 | |
| 			uptodate = 0;
 | |
| 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 | |
| 			done = 1;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (buffer_unwritten(bh) || buffer_delay(bh)) {
 | |
| 			if (buffer_unwritten(bh))
 | |
| 				type = IOMAP_UNWRITTEN;
 | |
| 			else
 | |
| 				type = IOMAP_DELAY;
 | |
| 
 | |
| 			if (!xfs_iomap_valid(mp, offset)) {
 | |
| 				done = 1;
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
 | |
| 			ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
 | |
| 
 | |
| 			xfs_map_at_offset(bh, offset, bbits, mp);
 | |
| 			if (startio) {
 | |
| 				xfs_add_to_ioend(inode, bh, offset,
 | |
| 						type, ioendp, done);
 | |
| 			} else {
 | |
| 				set_buffer_dirty(bh);
 | |
| 				unlock_buffer(bh);
 | |
| 				mark_buffer_dirty(bh);
 | |
| 			}
 | |
| 			page_dirty--;
 | |
| 			count++;
 | |
| 		} else {
 | |
| 			type = IOMAP_NEW;
 | |
| 			if (buffer_mapped(bh) && all_bh && startio) {
 | |
| 				lock_buffer(bh);
 | |
| 				xfs_add_to_ioend(inode, bh, offset,
 | |
| 						type, ioendp, done);
 | |
| 				count++;
 | |
| 				page_dirty--;
 | |
| 			} else {
 | |
| 				done = 1;
 | |
| 			}
 | |
| 		}
 | |
| 	} while (offset += len, (bh = bh->b_this_page) != head);
 | |
| 
 | |
| 	if (uptodate && bh == head)
 | |
| 		SetPageUptodate(page);
 | |
| 
 | |
| 	if (startio) {
 | |
| 		if (count) {
 | |
| 			struct backing_dev_info *bdi;
 | |
| 
 | |
| 			bdi = inode->i_mapping->backing_dev_info;
 | |
| 			wbc->nr_to_write--;
 | |
| 			if (bdi_write_congested(bdi)) {
 | |
| 				wbc->encountered_congestion = 1;
 | |
| 				done = 1;
 | |
| 			} else if (wbc->nr_to_write <= 0) {
 | |
| 				done = 1;
 | |
| 			}
 | |
| 		}
 | |
| 		xfs_start_page_writeback(page, !page_dirty, count);
 | |
| 	}
 | |
| 
 | |
| 	return done;
 | |
|  fail_unlock_page:
 | |
| 	unlock_page(page);
 | |
|  fail:
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert & write out a cluster of pages in the same extent as defined
 | |
|  * by mp and following the start page.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_cluster_write(
 | |
| 	struct inode		*inode,
 | |
| 	pgoff_t			tindex,
 | |
| 	xfs_iomap_t		*iomapp,
 | |
| 	xfs_ioend_t		**ioendp,
 | |
| 	struct writeback_control *wbc,
 | |
| 	int			startio,
 | |
| 	int			all_bh,
 | |
| 	pgoff_t			tlast)
 | |
| {
 | |
| 	struct pagevec		pvec;
 | |
| 	int			done = 0, i;
 | |
| 
 | |
| 	pagevec_init(&pvec, 0);
 | |
| 	while (!done && tindex <= tlast) {
 | |
| 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 | |
| 
 | |
| 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 | |
| 			break;
 | |
| 
 | |
| 		for (i = 0; i < pagevec_count(&pvec); i++) {
 | |
| 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 | |
| 					iomapp, ioendp, wbc, startio, all_bh);
 | |
| 			if (done)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		pagevec_release(&pvec);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calling this without startio set means we are being asked to make a dirty
 | |
|  * page ready for freeing it's buffers.  When called with startio set then
 | |
|  * we are coming from writepage.
 | |
|  *
 | |
|  * When called with startio set it is important that we write the WHOLE
 | |
|  * page if possible.
 | |
|  * The bh->b_state's cannot know if any of the blocks or which block for
 | |
|  * that matter are dirty due to mmap writes, and therefore bh uptodate is
 | |
|  * only valid if the page itself isn't completely uptodate.  Some layers
 | |
|  * may clear the page dirty flag prior to calling write page, under the
 | |
|  * assumption the entire page will be written out; by not writing out the
 | |
|  * whole page the page can be reused before all valid dirty data is
 | |
|  * written out.  Note: in the case of a page that has been dirty'd by
 | |
|  * mapwrite and but partially setup by block_prepare_write the
 | |
|  * bh->b_states's will not agree and only ones setup by BPW/BCW will have
 | |
|  * valid state, thus the whole page must be written out thing.
 | |
|  */
 | |
| 
 | |
| STATIC int
 | |
| xfs_page_state_convert(
 | |
| 	struct inode	*inode,
 | |
| 	struct page	*page,
 | |
| 	struct writeback_control *wbc,
 | |
| 	int		startio,
 | |
| 	int		unmapped) /* also implies page uptodate */
 | |
| {
 | |
| 	struct buffer_head	*bh, *head;
 | |
| 	xfs_iomap_t		iomap;
 | |
| 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
 | |
| 	loff_t			offset;
 | |
| 	unsigned long           p_offset = 0;
 | |
| 	unsigned int		type;
 | |
| 	__uint64_t              end_offset;
 | |
| 	pgoff_t                 end_index, last_index, tlast;
 | |
| 	ssize_t			size, len;
 | |
| 	int			flags, err, iomap_valid = 0, uptodate = 1;
 | |
| 	int			page_dirty, count = 0;
 | |
| 	int			trylock = 0;
 | |
| 	int			all_bh = unmapped;
 | |
| 
 | |
| 	if (startio) {
 | |
| 		if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
 | |
| 			trylock |= BMAPI_TRYLOCK;
 | |
| 	}
 | |
| 
 | |
| 	/* Is this page beyond the end of the file? */
 | |
| 	offset = i_size_read(inode);
 | |
| 	end_index = offset >> PAGE_CACHE_SHIFT;
 | |
| 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	if (page->index >= end_index) {
 | |
| 		if ((page->index >= end_index + 1) ||
 | |
| 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
 | |
| 			if (startio)
 | |
| 				unlock_page(page);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * page_dirty is initially a count of buffers on the page before
 | |
| 	 * EOF and is decremented as we move each into a cleanable state.
 | |
| 	 *
 | |
| 	 * Derivation:
 | |
| 	 *
 | |
| 	 * End offset is the highest offset that this page should represent.
 | |
| 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 | |
| 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 | |
| 	 * hence give us the correct page_dirty count. On any other page,
 | |
| 	 * it will be zero and in that case we need page_dirty to be the
 | |
| 	 * count of buffers on the page.
 | |
|  	 */
 | |
| 	end_offset = min_t(unsigned long long,
 | |
| 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
 | |
| 	len = 1 << inode->i_blkbits;
 | |
| 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 | |
| 					PAGE_CACHE_SIZE);
 | |
| 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 | |
| 	page_dirty = p_offset / len;
 | |
| 
 | |
| 	bh = head = page_buffers(page);
 | |
| 	offset = page_offset(page);
 | |
| 	flags = BMAPI_READ;
 | |
| 	type = IOMAP_NEW;
 | |
| 
 | |
| 	/* TODO: cleanup count and page_dirty */
 | |
| 
 | |
| 	do {
 | |
| 		if (offset >= end_offset)
 | |
| 			break;
 | |
| 		if (!buffer_uptodate(bh))
 | |
| 			uptodate = 0;
 | |
| 		if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
 | |
| 			/*
 | |
| 			 * the iomap is actually still valid, but the ioend
 | |
| 			 * isn't.  shouldn't happen too often.
 | |
| 			 */
 | |
| 			iomap_valid = 0;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (iomap_valid)
 | |
| 			iomap_valid = xfs_iomap_valid(&iomap, offset);
 | |
| 
 | |
| 		/*
 | |
| 		 * First case, map an unwritten extent and prepare for
 | |
| 		 * extent state conversion transaction on completion.
 | |
| 		 *
 | |
| 		 * Second case, allocate space for a delalloc buffer.
 | |
| 		 * We can return EAGAIN here in the release page case.
 | |
| 		 *
 | |
| 		 * Third case, an unmapped buffer was found, and we are
 | |
| 		 * in a path where we need to write the whole page out.
 | |
| 		 */
 | |
| 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
 | |
| 		    ((buffer_uptodate(bh) || PageUptodate(page)) &&
 | |
| 		     !buffer_mapped(bh) && (unmapped || startio))) {
 | |
| 			int new_ioend = 0;
 | |
| 
 | |
| 			/*
 | |
| 			 * Make sure we don't use a read-only iomap
 | |
| 			 */
 | |
| 			if (flags == BMAPI_READ)
 | |
| 				iomap_valid = 0;
 | |
| 
 | |
| 			if (buffer_unwritten(bh)) {
 | |
| 				type = IOMAP_UNWRITTEN;
 | |
| 				flags = BMAPI_WRITE | BMAPI_IGNSTATE;
 | |
| 			} else if (buffer_delay(bh)) {
 | |
| 				type = IOMAP_DELAY;
 | |
| 				flags = BMAPI_ALLOCATE | trylock;
 | |
| 			} else {
 | |
| 				type = IOMAP_NEW;
 | |
| 				flags = BMAPI_WRITE | BMAPI_MMAP;
 | |
| 			}
 | |
| 
 | |
| 			if (!iomap_valid) {
 | |
| 				/*
 | |
| 				 * if we didn't have a valid mapping then we
 | |
| 				 * need to ensure that we put the new mapping
 | |
| 				 * in a new ioend structure. This needs to be
 | |
| 				 * done to ensure that the ioends correctly
 | |
| 				 * reflect the block mappings at io completion
 | |
| 				 * for unwritten extent conversion.
 | |
| 				 */
 | |
| 				new_ioend = 1;
 | |
| 				if (type == IOMAP_NEW) {
 | |
| 					size = xfs_probe_cluster(inode,
 | |
| 							page, bh, head, 0);
 | |
| 				} else {
 | |
| 					size = len;
 | |
| 				}
 | |
| 
 | |
| 				err = xfs_map_blocks(inode, offset, size,
 | |
| 						&iomap, flags);
 | |
| 				if (err)
 | |
| 					goto error;
 | |
| 				iomap_valid = xfs_iomap_valid(&iomap, offset);
 | |
| 			}
 | |
| 			if (iomap_valid) {
 | |
| 				xfs_map_at_offset(bh, offset,
 | |
| 						inode->i_blkbits, &iomap);
 | |
| 				if (startio) {
 | |
| 					xfs_add_to_ioend(inode, bh, offset,
 | |
| 							type, &ioend,
 | |
| 							new_ioend);
 | |
| 				} else {
 | |
| 					set_buffer_dirty(bh);
 | |
| 					unlock_buffer(bh);
 | |
| 					mark_buffer_dirty(bh);
 | |
| 				}
 | |
| 				page_dirty--;
 | |
| 				count++;
 | |
| 			}
 | |
| 		} else if (buffer_uptodate(bh) && startio) {
 | |
| 			/*
 | |
| 			 * we got here because the buffer is already mapped.
 | |
| 			 * That means it must already have extents allocated
 | |
| 			 * underneath it. Map the extent by reading it.
 | |
| 			 */
 | |
| 			if (!iomap_valid || flags != BMAPI_READ) {
 | |
| 				flags = BMAPI_READ;
 | |
| 				size = xfs_probe_cluster(inode, page, bh,
 | |
| 								head, 1);
 | |
| 				err = xfs_map_blocks(inode, offset, size,
 | |
| 						&iomap, flags);
 | |
| 				if (err)
 | |
| 					goto error;
 | |
| 				iomap_valid = xfs_iomap_valid(&iomap, offset);
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * We set the type to IOMAP_NEW in case we are doing a
 | |
| 			 * small write at EOF that is extending the file but
 | |
| 			 * without needing an allocation. We need to update the
 | |
| 			 * file size on I/O completion in this case so it is
 | |
| 			 * the same case as having just allocated a new extent
 | |
| 			 * that we are writing into for the first time.
 | |
| 			 */
 | |
| 			type = IOMAP_NEW;
 | |
| 			if (trylock_buffer(bh)) {
 | |
| 				ASSERT(buffer_mapped(bh));
 | |
| 				if (iomap_valid)
 | |
| 					all_bh = 1;
 | |
| 				xfs_add_to_ioend(inode, bh, offset, type,
 | |
| 						&ioend, !iomap_valid);
 | |
| 				page_dirty--;
 | |
| 				count++;
 | |
| 			} else {
 | |
| 				iomap_valid = 0;
 | |
| 			}
 | |
| 		} else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
 | |
| 			   (unmapped || startio)) {
 | |
| 			iomap_valid = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (!iohead)
 | |
| 			iohead = ioend;
 | |
| 
 | |
| 	} while (offset += len, ((bh = bh->b_this_page) != head));
 | |
| 
 | |
| 	if (uptodate && bh == head)
 | |
| 		SetPageUptodate(page);
 | |
| 
 | |
| 	if (startio)
 | |
| 		xfs_start_page_writeback(page, 1, count);
 | |
| 
 | |
| 	if (ioend && iomap_valid) {
 | |
| 		offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
 | |
| 					PAGE_CACHE_SHIFT;
 | |
| 		tlast = min_t(pgoff_t, offset, last_index);
 | |
| 		xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
 | |
| 					wbc, startio, all_bh, tlast);
 | |
| 	}
 | |
| 
 | |
| 	if (iohead)
 | |
| 		xfs_submit_ioend(iohead);
 | |
| 
 | |
| 	return page_dirty;
 | |
| 
 | |
| error:
 | |
| 	if (iohead)
 | |
| 		xfs_cancel_ioend(iohead);
 | |
| 
 | |
| 	/*
 | |
| 	 * If it's delalloc and we have nowhere to put it,
 | |
| 	 * throw it away, unless the lower layers told
 | |
| 	 * us to try again.
 | |
| 	 */
 | |
| 	if (err != -EAGAIN) {
 | |
| 		if (!unmapped)
 | |
| 			block_invalidatepage(page, 0);
 | |
| 		ClearPageUptodate(page);
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * writepage: Called from one of two places:
 | |
|  *
 | |
|  * 1. we are flushing a delalloc buffer head.
 | |
|  *
 | |
|  * 2. we are writing out a dirty page. Typically the page dirty
 | |
|  *    state is cleared before we get here. In this case is it
 | |
|  *    conceivable we have no buffer heads.
 | |
|  *
 | |
|  * For delalloc space on the page we need to allocate space and
 | |
|  * flush it. For unmapped buffer heads on the page we should
 | |
|  * allocate space if the page is uptodate. For any other dirty
 | |
|  * buffer heads on the page we should flush them.
 | |
|  *
 | |
|  * If we detect that a transaction would be required to flush
 | |
|  * the page, we have to check the process flags first, if we
 | |
|  * are already in a transaction or disk I/O during allocations
 | |
|  * is off, we need to fail the writepage and redirty the page.
 | |
|  */
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_writepage(
 | |
| 	struct page		*page,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	int			error;
 | |
| 	int			need_trans;
 | |
| 	int			delalloc, unmapped, unwritten;
 | |
| 	struct inode		*inode = page->mapping->host;
 | |
| 
 | |
| 	xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * We need a transaction if:
 | |
| 	 *  1. There are delalloc buffers on the page
 | |
| 	 *  2. The page is uptodate and we have unmapped buffers
 | |
| 	 *  3. The page is uptodate and we have no buffers
 | |
| 	 *  4. There are unwritten buffers on the page
 | |
| 	 */
 | |
| 
 | |
| 	if (!page_has_buffers(page)) {
 | |
| 		unmapped = 1;
 | |
| 		need_trans = 1;
 | |
| 	} else {
 | |
| 		xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
 | |
| 		if (!PageUptodate(page))
 | |
| 			unmapped = 0;
 | |
| 		need_trans = delalloc + unmapped + unwritten;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If we need a transaction and the process flags say
 | |
| 	 * we are already in a transaction, or no IO is allowed
 | |
| 	 * then mark the page dirty again and leave the page
 | |
| 	 * as is.
 | |
| 	 */
 | |
| 	if (current_test_flags(PF_FSTRANS) && need_trans)
 | |
| 		goto out_fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * Delay hooking up buffer heads until we have
 | |
| 	 * made our go/no-go decision.
 | |
| 	 */
 | |
| 	if (!page_has_buffers(page))
 | |
| 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 *  VM calculation for nr_to_write seems off.  Bump it way
 | |
| 	 *  up, this gets simple streaming writes zippy again.
 | |
| 	 *  To be reviewed again after Jens' writeback changes.
 | |
| 	 */
 | |
| 	wbc->nr_to_write *= 4;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert delayed allocate, unwritten or unmapped space
 | |
| 	 * to real space and flush out to disk.
 | |
| 	 */
 | |
| 	error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
 | |
| 	if (error == -EAGAIN)
 | |
| 		goto out_fail;
 | |
| 	if (unlikely(error < 0))
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out_fail:
 | |
| 	redirty_page_for_writepage(wbc, page);
 | |
| 	unlock_page(page);
 | |
| 	return 0;
 | |
| out_unlock:
 | |
| 	unlock_page(page);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_writepages(
 | |
| 	struct address_space	*mapping,
 | |
| 	struct writeback_control *wbc)
 | |
| {
 | |
| 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
 | |
| 	return generic_writepages(mapping, wbc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called to move a page into cleanable state - and from there
 | |
|  * to be released. Possibly the page is already clean. We always
 | |
|  * have buffer heads in this call.
 | |
|  *
 | |
|  * Returns 0 if the page is ok to release, 1 otherwise.
 | |
|  *
 | |
|  * Possible scenarios are:
 | |
|  *
 | |
|  * 1. We are being called to release a page which has been written
 | |
|  *    to via regular I/O. buffer heads will be dirty and possibly
 | |
|  *    delalloc. If no delalloc buffer heads in this case then we
 | |
|  *    can just return zero.
 | |
|  *
 | |
|  * 2. We are called to release a page which has been written via
 | |
|  *    mmap, all we need to do is ensure there is no delalloc
 | |
|  *    state in the buffer heads, if not we can let the caller
 | |
|  *    free them and we should come back later via writepage.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_vm_releasepage(
 | |
| 	struct page		*page,
 | |
| 	gfp_t			gfp_mask)
 | |
| {
 | |
| 	struct inode		*inode = page->mapping->host;
 | |
| 	int			dirty, delalloc, unmapped, unwritten;
 | |
| 	struct writeback_control wbc = {
 | |
| 		.sync_mode = WB_SYNC_ALL,
 | |
| 		.nr_to_write = 1,
 | |
| 	};
 | |
| 
 | |
| 	xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
 | |
| 
 | |
| 	if (!page_has_buffers(page))
 | |
| 		return 0;
 | |
| 
 | |
| 	xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
 | |
| 	if (!delalloc && !unwritten)
 | |
| 		goto free_buffers;
 | |
| 
 | |
| 	if (!(gfp_mask & __GFP_FS))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* If we are already inside a transaction or the thread cannot
 | |
| 	 * do I/O, we cannot release this page.
 | |
| 	 */
 | |
| 	if (current_test_flags(PF_FSTRANS))
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert delalloc space to real space, do not flush the
 | |
| 	 * data out to disk, that will be done by the caller.
 | |
| 	 * Never need to allocate space here - we will always
 | |
| 	 * come back to writepage in that case.
 | |
| 	 */
 | |
| 	dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
 | |
| 	if (dirty == 0 && !unwritten)
 | |
| 		goto free_buffers;
 | |
| 	return 0;
 | |
| 
 | |
| free_buffers:
 | |
| 	return try_to_free_buffers(page);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| __xfs_get_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	int			create,
 | |
| 	int			direct,
 | |
| 	bmapi_flags_t		flags)
 | |
| {
 | |
| 	xfs_iomap_t		iomap;
 | |
| 	xfs_off_t		offset;
 | |
| 	ssize_t			size;
 | |
| 	int			niomap = 1;
 | |
| 	int			error;
 | |
| 
 | |
| 	offset = (xfs_off_t)iblock << inode->i_blkbits;
 | |
| 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
 | |
| 	size = bh_result->b_size;
 | |
| 
 | |
| 	if (!create && direct && offset >= i_size_read(inode))
 | |
| 		return 0;
 | |
| 
 | |
| 	error = xfs_iomap(XFS_I(inode), offset, size,
 | |
| 			     create ? flags : BMAPI_READ, &iomap, &niomap);
 | |
| 	if (error)
 | |
| 		return -error;
 | |
| 	if (niomap == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
 | |
| 		/*
 | |
| 		 * For unwritten extents do not report a disk address on
 | |
| 		 * the read case (treat as if we're reading into a hole).
 | |
| 		 */
 | |
| 		if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
 | |
| 			xfs_map_buffer(bh_result, &iomap, offset,
 | |
| 				       inode->i_blkbits);
 | |
| 		}
 | |
| 		if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
 | |
| 			if (direct)
 | |
| 				bh_result->b_private = inode;
 | |
| 			set_buffer_unwritten(bh_result);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a realtime file, data may be on a different device.
 | |
| 	 * to that pointed to from the buffer_head b_bdev currently.
 | |
| 	 */
 | |
| 	bh_result->b_bdev = iomap.iomap_target->bt_bdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we previously allocated a block out beyond eof and we are now
 | |
| 	 * coming back to use it then we will need to flag it as new even if it
 | |
| 	 * has a disk address.
 | |
| 	 *
 | |
| 	 * With sub-block writes into unwritten extents we also need to mark
 | |
| 	 * the buffer as new so that the unwritten parts of the buffer gets
 | |
| 	 * correctly zeroed.
 | |
| 	 */
 | |
| 	if (create &&
 | |
| 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
 | |
| 	     (offset >= i_size_read(inode)) ||
 | |
| 	     (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
 | |
| 		set_buffer_new(bh_result);
 | |
| 
 | |
| 	if (iomap.iomap_flags & IOMAP_DELAY) {
 | |
| 		BUG_ON(direct);
 | |
| 		if (create) {
 | |
| 			set_buffer_uptodate(bh_result);
 | |
| 			set_buffer_mapped(bh_result);
 | |
| 			set_buffer_delay(bh_result);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (direct || size > (1 << inode->i_blkbits)) {
 | |
| 		ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
 | |
| 		offset = min_t(xfs_off_t,
 | |
| 				iomap.iomap_bsize - iomap.iomap_delta, size);
 | |
| 		bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_get_blocks(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	int			create)
 | |
| {
 | |
| 	return __xfs_get_blocks(inode, iblock,
 | |
| 				bh_result, create, 0, BMAPI_WRITE);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_get_blocks_direct(
 | |
| 	struct inode		*inode,
 | |
| 	sector_t		iblock,
 | |
| 	struct buffer_head	*bh_result,
 | |
| 	int			create)
 | |
| {
 | |
| 	return __xfs_get_blocks(inode, iblock,
 | |
| 				bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_end_io_direct(
 | |
| 	struct kiocb	*iocb,
 | |
| 	loff_t		offset,
 | |
| 	ssize_t		size,
 | |
| 	void		*private)
 | |
| {
 | |
| 	xfs_ioend_t	*ioend = iocb->private;
 | |
| 
 | |
| 	/*
 | |
| 	 * Non-NULL private data means we need to issue a transaction to
 | |
| 	 * convert a range from unwritten to written extents.  This needs
 | |
| 	 * to happen from process context but aio+dio I/O completion
 | |
| 	 * happens from irq context so we need to defer it to a workqueue.
 | |
| 	 * This is not necessary for synchronous direct I/O, but we do
 | |
| 	 * it anyway to keep the code uniform and simpler.
 | |
| 	 *
 | |
| 	 * Well, if only it were that simple. Because synchronous direct I/O
 | |
| 	 * requires extent conversion to occur *before* we return to userspace,
 | |
| 	 * we have to wait for extent conversion to complete. Look at the
 | |
| 	 * iocb that has been passed to us to determine if this is AIO or
 | |
| 	 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
 | |
| 	 * workqueue and wait for it to complete.
 | |
| 	 *
 | |
| 	 * The core direct I/O code might be changed to always call the
 | |
| 	 * completion handler in the future, in which case all this can
 | |
| 	 * go away.
 | |
| 	 */
 | |
| 	ioend->io_offset = offset;
 | |
| 	ioend->io_size = size;
 | |
| 	if (ioend->io_type == IOMAP_READ) {
 | |
| 		xfs_finish_ioend(ioend, 0);
 | |
| 	} else if (private && size > 0) {
 | |
| 		xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * A direct I/O write ioend starts it's life in unwritten
 | |
| 		 * state in case they map an unwritten extent.  This write
 | |
| 		 * didn't map an unwritten extent so switch it's completion
 | |
| 		 * handler.
 | |
| 		 */
 | |
| 		INIT_WORK(&ioend->io_work, xfs_end_bio_written);
 | |
| 		xfs_finish_ioend(ioend, 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * blockdev_direct_IO can return an error even after the I/O
 | |
| 	 * completion handler was called.  Thus we need to protect
 | |
| 	 * against double-freeing.
 | |
| 	 */
 | |
| 	iocb->private = NULL;
 | |
| }
 | |
| 
 | |
| STATIC ssize_t
 | |
| xfs_vm_direct_IO(
 | |
| 	int			rw,
 | |
| 	struct kiocb		*iocb,
 | |
| 	const struct iovec	*iov,
 | |
| 	loff_t			offset,
 | |
| 	unsigned long		nr_segs)
 | |
| {
 | |
| 	struct file	*file = iocb->ki_filp;
 | |
| 	struct inode	*inode = file->f_mapping->host;
 | |
| 	struct block_device *bdev;
 | |
| 	ssize_t		ret;
 | |
| 
 | |
| 	bdev = xfs_find_bdev_for_inode(XFS_I(inode));
 | |
| 
 | |
| 	if (rw == WRITE) {
 | |
| 		iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
 | |
| 		ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
 | |
| 			bdev, iov, offset, nr_segs,
 | |
| 			xfs_get_blocks_direct,
 | |
| 			xfs_end_io_direct);
 | |
| 	} else {
 | |
| 		iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
 | |
| 		ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
 | |
| 			bdev, iov, offset, nr_segs,
 | |
| 			xfs_get_blocks_direct,
 | |
| 			xfs_end_io_direct);
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(ret != -EIOCBQUEUED && iocb->private))
 | |
| 		xfs_destroy_ioend(iocb->private);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_write_begin(
 | |
| 	struct file		*file,
 | |
| 	struct address_space	*mapping,
 | |
| 	loff_t			pos,
 | |
| 	unsigned		len,
 | |
| 	unsigned		flags,
 | |
| 	struct page		**pagep,
 | |
| 	void			**fsdata)
 | |
| {
 | |
| 	*pagep = NULL;
 | |
| 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
 | |
| 								xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC sector_t
 | |
| xfs_vm_bmap(
 | |
| 	struct address_space	*mapping,
 | |
| 	sector_t		block)
 | |
| {
 | |
| 	struct inode		*inode = (struct inode *)mapping->host;
 | |
| 	struct xfs_inode	*ip = XFS_I(inode);
 | |
| 
 | |
| 	xfs_itrace_entry(XFS_I(inode));
 | |
| 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
 | |
| 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
 | |
| 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
 | |
| 	return generic_block_bmap(mapping, block, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_readpage(
 | |
| 	struct file		*unused,
 | |
| 	struct page		*page)
 | |
| {
 | |
| 	return mpage_readpage(page, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_vm_readpages(
 | |
| 	struct file		*unused,
 | |
| 	struct address_space	*mapping,
 | |
| 	struct list_head	*pages,
 | |
| 	unsigned		nr_pages)
 | |
| {
 | |
| 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_vm_invalidatepage(
 | |
| 	struct page		*page,
 | |
| 	unsigned long		offset)
 | |
| {
 | |
| 	xfs_page_trace(XFS_INVALIDPAGE_ENTER,
 | |
| 			page->mapping->host, page, offset);
 | |
| 	block_invalidatepage(page, offset);
 | |
| }
 | |
| 
 | |
| const struct address_space_operations xfs_address_space_operations = {
 | |
| 	.readpage		= xfs_vm_readpage,
 | |
| 	.readpages		= xfs_vm_readpages,
 | |
| 	.writepage		= xfs_vm_writepage,
 | |
| 	.writepages		= xfs_vm_writepages,
 | |
| 	.sync_page		= block_sync_page,
 | |
| 	.releasepage		= xfs_vm_releasepage,
 | |
| 	.invalidatepage		= xfs_vm_invalidatepage,
 | |
| 	.write_begin		= xfs_vm_write_begin,
 | |
| 	.write_end		= generic_write_end,
 | |
| 	.bmap			= xfs_vm_bmap,
 | |
| 	.direct_IO		= xfs_vm_direct_IO,
 | |
| 	.migratepage		= buffer_migrate_page,
 | |
| 	.is_partially_uptodate  = block_is_partially_uptodate,
 | |
| 	.error_remove_page	= generic_error_remove_page,
 | |
| };
 |