1723 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1723 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Procedures for creating, accessing and interpreting the device tree.
 | |
|  *
 | |
|  * Paul Mackerras	August 1996.
 | |
|  * Copyright (C) 1996-2005 Paul Mackerras.
 | |
|  * 
 | |
|  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
 | |
|  *    {engebret|bergner}@us.ibm.com 
 | |
|  *
 | |
|  *      This program is free software; you can redistribute it and/or
 | |
|  *      modify it under the terms of the GNU General Public License
 | |
|  *      as published by the Free Software Foundation; either version
 | |
|  *      2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #undef DEBUG
 | |
| 
 | |
| #include <stdarg.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/stringify.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kexec.h>
 | |
| #include <linux/debugfs.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/lmb.h>
 | |
| 
 | |
| #include <asm/prom.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/kdump.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pci.h>
 | |
| #include <asm/iommu.h>
 | |
| #include <asm/btext.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/pSeries_reconfig.h>
 | |
| #include <asm/pci-bridge.h>
 | |
| #include <asm/phyp_dump.h>
 | |
| #include <asm/kexec.h>
 | |
| #include <mm/mmu_decl.h>
 | |
| 
 | |
| #ifdef DEBUG
 | |
| #define DBG(fmt...) printk(KERN_ERR fmt)
 | |
| #else
 | |
| #define DBG(fmt...)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| static int __initdata dt_root_addr_cells;
 | |
| static int __initdata dt_root_size_cells;
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| int __initdata iommu_is_off;
 | |
| int __initdata iommu_force_on;
 | |
| unsigned long tce_alloc_start, tce_alloc_end;
 | |
| #endif
 | |
| 
 | |
| typedef u32 cell_t;
 | |
| 
 | |
| #if 0
 | |
| static struct boot_param_header *initial_boot_params __initdata;
 | |
| #else
 | |
| struct boot_param_header *initial_boot_params;
 | |
| #endif
 | |
| 
 | |
| extern struct device_node *allnodes;	/* temporary while merging */
 | |
| 
 | |
| extern rwlock_t devtree_lock;	/* temporary while merging */
 | |
| 
 | |
| /* export that to outside world */
 | |
| struct device_node *of_chosen;
 | |
| 
 | |
| static inline char *find_flat_dt_string(u32 offset)
 | |
| {
 | |
| 	return ((char *)initial_boot_params) +
 | |
| 		initial_boot_params->off_dt_strings + offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This function is used to scan the flattened device-tree, it is
 | |
|  * used to extract the memory informations at boot before we can
 | |
|  * unflatten the tree
 | |
|  */
 | |
| int __init of_scan_flat_dt(int (*it)(unsigned long node,
 | |
| 				     const char *uname, int depth,
 | |
| 				     void *data),
 | |
| 			   void *data)
 | |
| {
 | |
| 	unsigned long p = ((unsigned long)initial_boot_params) +
 | |
| 		initial_boot_params->off_dt_struct;
 | |
| 	int rc = 0;
 | |
| 	int depth = -1;
 | |
| 
 | |
| 	do {
 | |
| 		u32 tag = *((u32 *)p);
 | |
| 		char *pathp;
 | |
| 		
 | |
| 		p += 4;
 | |
| 		if (tag == OF_DT_END_NODE) {
 | |
| 			depth --;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (tag == OF_DT_NOP)
 | |
| 			continue;
 | |
| 		if (tag == OF_DT_END)
 | |
| 			break;
 | |
| 		if (tag == OF_DT_PROP) {
 | |
| 			u32 sz = *((u32 *)p);
 | |
| 			p += 8;
 | |
| 			if (initial_boot_params->version < 0x10)
 | |
| 				p = _ALIGN(p, sz >= 8 ? 8 : 4);
 | |
| 			p += sz;
 | |
| 			p = _ALIGN(p, 4);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (tag != OF_DT_BEGIN_NODE) {
 | |
| 			printk(KERN_WARNING "Invalid tag %x scanning flattened"
 | |
| 			       " device tree !\n", tag);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		depth++;
 | |
| 		pathp = (char *)p;
 | |
| 		p = _ALIGN(p + strlen(pathp) + 1, 4);
 | |
| 		if ((*pathp) == '/') {
 | |
| 			char *lp, *np;
 | |
| 			for (lp = NULL, np = pathp; *np; np++)
 | |
| 				if ((*np) == '/')
 | |
| 					lp = np+1;
 | |
| 			if (lp != NULL)
 | |
| 				pathp = lp;
 | |
| 		}
 | |
| 		rc = it(p, pathp, depth, data);
 | |
| 		if (rc != 0)
 | |
| 			break;		
 | |
| 	} while(1);
 | |
| 
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| unsigned long __init of_get_flat_dt_root(void)
 | |
| {
 | |
| 	unsigned long p = ((unsigned long)initial_boot_params) +
 | |
| 		initial_boot_params->off_dt_struct;
 | |
| 
 | |
| 	while(*((u32 *)p) == OF_DT_NOP)
 | |
| 		p += 4;
 | |
| 	BUG_ON (*((u32 *)p) != OF_DT_BEGIN_NODE);
 | |
| 	p += 4;
 | |
| 	return _ALIGN(p + strlen((char *)p) + 1, 4);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This  function can be used within scan_flattened_dt callback to get
 | |
|  * access to properties
 | |
|  */
 | |
| void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
 | |
| 				 unsigned long *size)
 | |
| {
 | |
| 	unsigned long p = node;
 | |
| 
 | |
| 	do {
 | |
| 		u32 tag = *((u32 *)p);
 | |
| 		u32 sz, noff;
 | |
| 		const char *nstr;
 | |
| 
 | |
| 		p += 4;
 | |
| 		if (tag == OF_DT_NOP)
 | |
| 			continue;
 | |
| 		if (tag != OF_DT_PROP)
 | |
| 			return NULL;
 | |
| 
 | |
| 		sz = *((u32 *)p);
 | |
| 		noff = *((u32 *)(p + 4));
 | |
| 		p += 8;
 | |
| 		if (initial_boot_params->version < 0x10)
 | |
| 			p = _ALIGN(p, sz >= 8 ? 8 : 4);
 | |
| 
 | |
| 		nstr = find_flat_dt_string(noff);
 | |
| 		if (nstr == NULL) {
 | |
| 			printk(KERN_WARNING "Can't find property index"
 | |
| 			       " name !\n");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		if (strcmp(name, nstr) == 0) {
 | |
| 			if (size)
 | |
| 				*size = sz;
 | |
| 			return (void *)p;
 | |
| 		}
 | |
| 		p += sz;
 | |
| 		p = _ALIGN(p, 4);
 | |
| 	} while(1);
 | |
| }
 | |
| 
 | |
| int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
 | |
| {
 | |
| 	const char* cp;
 | |
| 	unsigned long cplen, l;
 | |
| 
 | |
| 	cp = of_get_flat_dt_prop(node, "compatible", &cplen);
 | |
| 	if (cp == NULL)
 | |
| 		return 0;
 | |
| 	while (cplen > 0) {
 | |
| 		if (strncasecmp(cp, compat, strlen(compat)) == 0)
 | |
| 			return 1;
 | |
| 		l = strlen(cp) + 1;
 | |
| 		cp += l;
 | |
| 		cplen -= l;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
 | |
| 				       unsigned long align)
 | |
| {
 | |
| 	void *res;
 | |
| 
 | |
| 	*mem = _ALIGN(*mem, align);
 | |
| 	res = (void *)*mem;
 | |
| 	*mem += size;
 | |
| 
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| static unsigned long __init unflatten_dt_node(unsigned long mem,
 | |
| 					      unsigned long *p,
 | |
| 					      struct device_node *dad,
 | |
| 					      struct device_node ***allnextpp,
 | |
| 					      unsigned long fpsize)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 	struct property *pp, **prev_pp = NULL;
 | |
| 	char *pathp;
 | |
| 	u32 tag;
 | |
| 	unsigned int l, allocl;
 | |
| 	int has_name = 0;
 | |
| 	int new_format = 0;
 | |
| 
 | |
| 	tag = *((u32 *)(*p));
 | |
| 	if (tag != OF_DT_BEGIN_NODE) {
 | |
| 		printk("Weird tag at start of node: %x\n", tag);
 | |
| 		return mem;
 | |
| 	}
 | |
| 	*p += 4;
 | |
| 	pathp = (char *)*p;
 | |
| 	l = allocl = strlen(pathp) + 1;
 | |
| 	*p = _ALIGN(*p + l, 4);
 | |
| 
 | |
| 	/* version 0x10 has a more compact unit name here instead of the full
 | |
| 	 * path. we accumulate the full path size using "fpsize", we'll rebuild
 | |
| 	 * it later. We detect this because the first character of the name is
 | |
| 	 * not '/'.
 | |
| 	 */
 | |
| 	if ((*pathp) != '/') {
 | |
| 		new_format = 1;
 | |
| 		if (fpsize == 0) {
 | |
| 			/* root node: special case. fpsize accounts for path
 | |
| 			 * plus terminating zero. root node only has '/', so
 | |
| 			 * fpsize should be 2, but we want to avoid the first
 | |
| 			 * level nodes to have two '/' so we use fpsize 1 here
 | |
| 			 */
 | |
| 			fpsize = 1;
 | |
| 			allocl = 2;
 | |
| 		} else {
 | |
| 			/* account for '/' and path size minus terminal 0
 | |
| 			 * already in 'l'
 | |
| 			 */
 | |
| 			fpsize += l;
 | |
| 			allocl = fpsize;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
 | |
| 				__alignof__(struct device_node));
 | |
| 	if (allnextpp) {
 | |
| 		memset(np, 0, sizeof(*np));
 | |
| 		np->full_name = ((char*)np) + sizeof(struct device_node);
 | |
| 		if (new_format) {
 | |
| 			char *p = np->full_name;
 | |
| 			/* rebuild full path for new format */
 | |
| 			if (dad && dad->parent) {
 | |
| 				strcpy(p, dad->full_name);
 | |
| #ifdef DEBUG
 | |
| 				if ((strlen(p) + l + 1) != allocl) {
 | |
| 					DBG("%s: p: %d, l: %d, a: %d\n",
 | |
| 					    pathp, (int)strlen(p), l, allocl);
 | |
| 				}
 | |
| #endif
 | |
| 				p += strlen(p);
 | |
| 			}
 | |
| 			*(p++) = '/';
 | |
| 			memcpy(p, pathp, l);
 | |
| 		} else
 | |
| 			memcpy(np->full_name, pathp, l);
 | |
| 		prev_pp = &np->properties;
 | |
| 		**allnextpp = np;
 | |
| 		*allnextpp = &np->allnext;
 | |
| 		if (dad != NULL) {
 | |
| 			np->parent = dad;
 | |
| 			/* we temporarily use the next field as `last_child'*/
 | |
| 			if (dad->next == 0)
 | |
| 				dad->child = np;
 | |
| 			else
 | |
| 				dad->next->sibling = np;
 | |
| 			dad->next = np;
 | |
| 		}
 | |
| 		kref_init(&np->kref);
 | |
| 	}
 | |
| 	while(1) {
 | |
| 		u32 sz, noff;
 | |
| 		char *pname;
 | |
| 
 | |
| 		tag = *((u32 *)(*p));
 | |
| 		if (tag == OF_DT_NOP) {
 | |
| 			*p += 4;
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (tag != OF_DT_PROP)
 | |
| 			break;
 | |
| 		*p += 4;
 | |
| 		sz = *((u32 *)(*p));
 | |
| 		noff = *((u32 *)((*p) + 4));
 | |
| 		*p += 8;
 | |
| 		if (initial_boot_params->version < 0x10)
 | |
| 			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
 | |
| 
 | |
| 		pname = find_flat_dt_string(noff);
 | |
| 		if (pname == NULL) {
 | |
| 			printk("Can't find property name in list !\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		if (strcmp(pname, "name") == 0)
 | |
| 			has_name = 1;
 | |
| 		l = strlen(pname) + 1;
 | |
| 		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
 | |
| 					__alignof__(struct property));
 | |
| 		if (allnextpp) {
 | |
| 			if (strcmp(pname, "linux,phandle") == 0) {
 | |
| 				np->node = *((u32 *)*p);
 | |
| 				if (np->linux_phandle == 0)
 | |
| 					np->linux_phandle = np->node;
 | |
| 			}
 | |
| 			if (strcmp(pname, "ibm,phandle") == 0)
 | |
| 				np->linux_phandle = *((u32 *)*p);
 | |
| 			pp->name = pname;
 | |
| 			pp->length = sz;
 | |
| 			pp->value = (void *)*p;
 | |
| 			*prev_pp = pp;
 | |
| 			prev_pp = &pp->next;
 | |
| 		}
 | |
| 		*p = _ALIGN((*p) + sz, 4);
 | |
| 	}
 | |
| 	/* with version 0x10 we may not have the name property, recreate
 | |
| 	 * it here from the unit name if absent
 | |
| 	 */
 | |
| 	if (!has_name) {
 | |
| 		char *p = pathp, *ps = pathp, *pa = NULL;
 | |
| 		int sz;
 | |
| 
 | |
| 		while (*p) {
 | |
| 			if ((*p) == '@')
 | |
| 				pa = p;
 | |
| 			if ((*p) == '/')
 | |
| 				ps = p + 1;
 | |
| 			p++;
 | |
| 		}
 | |
| 		if (pa < ps)
 | |
| 			pa = p;
 | |
| 		sz = (pa - ps) + 1;
 | |
| 		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
 | |
| 					__alignof__(struct property));
 | |
| 		if (allnextpp) {
 | |
| 			pp->name = "name";
 | |
| 			pp->length = sz;
 | |
| 			pp->value = pp + 1;
 | |
| 			*prev_pp = pp;
 | |
| 			prev_pp = &pp->next;
 | |
| 			memcpy(pp->value, ps, sz - 1);
 | |
| 			((char *)pp->value)[sz - 1] = 0;
 | |
| 			DBG("fixed up name for %s -> %s\n", pathp,
 | |
| 				(char *)pp->value);
 | |
| 		}
 | |
| 	}
 | |
| 	if (allnextpp) {
 | |
| 		*prev_pp = NULL;
 | |
| 		np->name = of_get_property(np, "name", NULL);
 | |
| 		np->type = of_get_property(np, "device_type", NULL);
 | |
| 
 | |
| 		if (!np->name)
 | |
| 			np->name = "<NULL>";
 | |
| 		if (!np->type)
 | |
| 			np->type = "<NULL>";
 | |
| 	}
 | |
| 	while (tag == OF_DT_BEGIN_NODE) {
 | |
| 		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
 | |
| 		tag = *((u32 *)(*p));
 | |
| 	}
 | |
| 	if (tag != OF_DT_END_NODE) {
 | |
| 		printk("Weird tag at end of node: %x\n", tag);
 | |
| 		return mem;
 | |
| 	}
 | |
| 	*p += 4;
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| static int __init early_parse_mem(char *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return 1;
 | |
| 
 | |
| 	memory_limit = PAGE_ALIGN(memparse(p, &p));
 | |
| 	DBG("memory limit = 0x%llx\n", (unsigned long long)memory_limit);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("mem", early_parse_mem);
 | |
| 
 | |
| /**
 | |
|  * move_device_tree - move tree to an unused area, if needed.
 | |
|  *
 | |
|  * The device tree may be allocated beyond our memory limit, or inside the
 | |
|  * crash kernel region for kdump. If so, move it out of the way.
 | |
|  */
 | |
| static void __init move_device_tree(void)
 | |
| {
 | |
| 	unsigned long start, size;
 | |
| 	void *p;
 | |
| 
 | |
| 	DBG("-> move_device_tree\n");
 | |
| 
 | |
| 	start = __pa(initial_boot_params);
 | |
| 	size = initial_boot_params->totalsize;
 | |
| 
 | |
| 	if ((memory_limit && (start + size) > memory_limit) ||
 | |
| 			overlaps_crashkernel(start, size)) {
 | |
| 		p = __va(lmb_alloc_base(size, PAGE_SIZE, lmb.rmo_size));
 | |
| 		memcpy(p, initial_boot_params, size);
 | |
| 		initial_boot_params = (struct boot_param_header *)p;
 | |
| 		DBG("Moved device tree to 0x%p\n", p);
 | |
| 	}
 | |
| 
 | |
| 	DBG("<- move_device_tree\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unflattens the device-tree passed by the firmware, creating the
 | |
|  * tree of struct device_node. It also fills the "name" and "type"
 | |
|  * pointers of the nodes so the normal device-tree walking functions
 | |
|  * can be used (this used to be done by finish_device_tree)
 | |
|  */
 | |
| void __init unflatten_device_tree(void)
 | |
| {
 | |
| 	unsigned long start, mem, size;
 | |
| 	struct device_node **allnextp = &allnodes;
 | |
| 
 | |
| 	DBG(" -> unflatten_device_tree()\n");
 | |
| 
 | |
| 	/* First pass, scan for size */
 | |
| 	start = ((unsigned long)initial_boot_params) +
 | |
| 		initial_boot_params->off_dt_struct;
 | |
| 	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
 | |
| 	size = (size | 3) + 1;
 | |
| 
 | |
| 	DBG("  size is %lx, allocating...\n", size);
 | |
| 
 | |
| 	/* Allocate memory for the expanded device tree */
 | |
| 	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
 | |
| 	mem = (unsigned long) __va(mem);
 | |
| 
 | |
| 	((u32 *)mem)[size / 4] = 0xdeadbeef;
 | |
| 
 | |
| 	DBG("  unflattening %lx...\n", mem);
 | |
| 
 | |
| 	/* Second pass, do actual unflattening */
 | |
| 	start = ((unsigned long)initial_boot_params) +
 | |
| 		initial_boot_params->off_dt_struct;
 | |
| 	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
 | |
| 	if (*((u32 *)start) != OF_DT_END)
 | |
| 		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
 | |
| 	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
 | |
| 		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
 | |
| 		       ((u32 *)mem)[size / 4] );
 | |
| 	*allnextp = NULL;
 | |
| 
 | |
| 	/* Get pointer to OF "/chosen" node for use everywhere */
 | |
| 	of_chosen = of_find_node_by_path("/chosen");
 | |
| 	if (of_chosen == NULL)
 | |
| 		of_chosen = of_find_node_by_path("/chosen@0");
 | |
| 
 | |
| 	DBG(" <- unflatten_device_tree()\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ibm,pa-features is a per-cpu property that contains a string of
 | |
|  * attribute descriptors, each of which has a 2 byte header plus up
 | |
|  * to 254 bytes worth of processor attribute bits.  First header
 | |
|  * byte specifies the number of bytes following the header.
 | |
|  * Second header byte is an "attribute-specifier" type, of which
 | |
|  * zero is the only currently-defined value.
 | |
|  * Implementation:  Pass in the byte and bit offset for the feature
 | |
|  * that we are interested in.  The function will return -1 if the
 | |
|  * pa-features property is missing, or a 1/0 to indicate if the feature
 | |
|  * is supported/not supported.  Note that the bit numbers are
 | |
|  * big-endian to match the definition in PAPR.
 | |
|  */
 | |
| static struct ibm_pa_feature {
 | |
| 	unsigned long	cpu_features;	/* CPU_FTR_xxx bit */
 | |
| 	unsigned int	cpu_user_ftrs;	/* PPC_FEATURE_xxx bit */
 | |
| 	unsigned char	pabyte;		/* byte number in ibm,pa-features */
 | |
| 	unsigned char	pabit;		/* bit number (big-endian) */
 | |
| 	unsigned char	invert;		/* if 1, pa bit set => clear feature */
 | |
| } ibm_pa_features[] __initdata = {
 | |
| 	{0, PPC_FEATURE_HAS_MMU,	0, 0, 0},
 | |
| 	{0, PPC_FEATURE_HAS_FPU,	0, 1, 0},
 | |
| 	{CPU_FTR_SLB, 0,		0, 2, 0},
 | |
| 	{CPU_FTR_CTRL, 0,		0, 3, 0},
 | |
| 	{CPU_FTR_NOEXECUTE, 0,		0, 6, 0},
 | |
| 	{CPU_FTR_NODSISRALIGN, 0,	1, 1, 1},
 | |
| 	{CPU_FTR_CI_LARGE_PAGE, 0,	1, 2, 0},
 | |
| 	{CPU_FTR_REAL_LE, PPC_FEATURE_TRUE_LE, 5, 0, 0},
 | |
| };
 | |
| 
 | |
| static void __init scan_features(unsigned long node, unsigned char *ftrs,
 | |
| 				 unsigned long tablelen,
 | |
| 				 struct ibm_pa_feature *fp,
 | |
| 				 unsigned long ft_size)
 | |
| {
 | |
| 	unsigned long i, len, bit;
 | |
| 
 | |
| 	/* find descriptor with type == 0 */
 | |
| 	for (;;) {
 | |
| 		if (tablelen < 3)
 | |
| 			return;
 | |
| 		len = 2 + ftrs[0];
 | |
| 		if (tablelen < len)
 | |
| 			return;		/* descriptor 0 not found */
 | |
| 		if (ftrs[1] == 0)
 | |
| 			break;
 | |
| 		tablelen -= len;
 | |
| 		ftrs += len;
 | |
| 	}
 | |
| 
 | |
| 	/* loop over bits we know about */
 | |
| 	for (i = 0; i < ft_size; ++i, ++fp) {
 | |
| 		if (fp->pabyte >= ftrs[0])
 | |
| 			continue;
 | |
| 		bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
 | |
| 		if (bit ^ fp->invert) {
 | |
| 			cur_cpu_spec->cpu_features |= fp->cpu_features;
 | |
| 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
 | |
| 		} else {
 | |
| 			cur_cpu_spec->cpu_features &= ~fp->cpu_features;
 | |
| 			cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init check_cpu_pa_features(unsigned long node)
 | |
| {
 | |
| 	unsigned char *pa_ftrs;
 | |
| 	unsigned long tablelen;
 | |
| 
 | |
| 	pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
 | |
| 	if (pa_ftrs == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	scan_features(node, pa_ftrs, tablelen,
 | |
| 		      ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_STD_MMU_64
 | |
| static void __init check_cpu_slb_size(unsigned long node)
 | |
| {
 | |
| 	u32 *slb_size_ptr;
 | |
| 
 | |
| 	slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL);
 | |
| 	if (slb_size_ptr != NULL) {
 | |
| 		mmu_slb_size = *slb_size_ptr;
 | |
| 		return;
 | |
| 	}
 | |
| 	slb_size_ptr = of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
 | |
| 	if (slb_size_ptr != NULL) {
 | |
| 		mmu_slb_size = *slb_size_ptr;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define check_cpu_slb_size(node) do { } while(0)
 | |
| #endif
 | |
| 
 | |
| static struct feature_property {
 | |
| 	const char *name;
 | |
| 	u32 min_value;
 | |
| 	unsigned long cpu_feature;
 | |
| 	unsigned long cpu_user_ftr;
 | |
| } feature_properties[] __initdata = {
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	{"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
 | |
| 	{"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_VSX
 | |
| 	/* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
 | |
| 	{"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
 | |
| #endif /* CONFIG_VSX */
 | |
| #ifdef CONFIG_PPC64
 | |
| 	{"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
 | |
| 	{"ibm,purr", 1, CPU_FTR_PURR, 0},
 | |
| 	{"ibm,spurr", 1, CPU_FTR_SPURR, 0},
 | |
| #endif /* CONFIG_PPC64 */
 | |
| };
 | |
| 
 | |
| #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
 | |
| static inline void identical_pvr_fixup(unsigned long node)
 | |
| {
 | |
| 	unsigned int pvr;
 | |
| 	char *model = of_get_flat_dt_prop(node, "model", NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Since 440GR(x)/440EP(x) processors have the same pvr,
 | |
| 	 * we check the node path and set bit 28 in the cur_cpu_spec
 | |
| 	 * pvr for EP(x) processor version. This bit is always 0 in
 | |
| 	 * the "real" pvr. Then we call identify_cpu again with
 | |
| 	 * the new logical pvr to enable FPU support.
 | |
| 	 */
 | |
| 	if (model && strstr(model, "440EP")) {
 | |
| 		pvr = cur_cpu_spec->pvr_value | 0x8;
 | |
| 		identify_cpu(0, pvr);
 | |
| 		DBG("Using logical pvr %x for %s\n", pvr, model);
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| #define identical_pvr_fixup(node) do { } while(0)
 | |
| #endif
 | |
| 
 | |
| static void __init check_cpu_feature_properties(unsigned long node)
 | |
| {
 | |
| 	unsigned long i;
 | |
| 	struct feature_property *fp = feature_properties;
 | |
| 	const u32 *prop;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(feature_properties); ++i, ++fp) {
 | |
| 		prop = of_get_flat_dt_prop(node, fp->name, NULL);
 | |
| 		if (prop && *prop >= fp->min_value) {
 | |
| 			cur_cpu_spec->cpu_features |= fp->cpu_feature;
 | |
| 			cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init early_init_dt_scan_cpus(unsigned long node,
 | |
| 					  const char *uname, int depth,
 | |
| 					  void *data)
 | |
| {
 | |
| 	static int logical_cpuid = 0;
 | |
| 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	const u32 *prop;
 | |
| 	const u32 *intserv;
 | |
| 	int i, nthreads;
 | |
| 	unsigned long len;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	/* We are scanning "cpu" nodes only */
 | |
| 	if (type == NULL || strcmp(type, "cpu") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Get physical cpuid */
 | |
| 	intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
 | |
| 	if (intserv) {
 | |
| 		nthreads = len / sizeof(int);
 | |
| 	} else {
 | |
| 		intserv = of_get_flat_dt_prop(node, "reg", NULL);
 | |
| 		nthreads = 1;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now see if any of these threads match our boot cpu.
 | |
| 	 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
 | |
| 	 */
 | |
| 	for (i = 0; i < nthreads; i++) {
 | |
| 		/*
 | |
| 		 * version 2 of the kexec param format adds the phys cpuid of
 | |
| 		 * booted proc.
 | |
| 		 */
 | |
| 		if (initial_boot_params && initial_boot_params->version >= 2) {
 | |
| 			if (intserv[i] ==
 | |
| 					initial_boot_params->boot_cpuid_phys) {
 | |
| 				found = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Check if it's the boot-cpu, set it's hw index now,
 | |
| 			 * unfortunately this format did not support booting
 | |
| 			 * off secondary threads.
 | |
| 			 */
 | |
| 			if (of_get_flat_dt_prop(node,
 | |
| 					"linux,boot-cpu", NULL) != NULL) {
 | |
| 				found = 1;
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 		/* logical cpu id is always 0 on UP kernels */
 | |
| 		logical_cpuid++;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	if (found) {
 | |
| 		DBG("boot cpu: logical %d physical %d\n", logical_cpuid,
 | |
| 			intserv[i]);
 | |
| 		boot_cpuid = logical_cpuid;
 | |
| 		set_hard_smp_processor_id(boot_cpuid, intserv[i]);
 | |
| 
 | |
| 		/*
 | |
| 		 * PAPR defines "logical" PVR values for cpus that
 | |
| 		 * meet various levels of the architecture:
 | |
| 		 * 0x0f000001	Architecture version 2.04
 | |
| 		 * 0x0f000002	Architecture version 2.05
 | |
| 		 * If the cpu-version property in the cpu node contains
 | |
| 		 * such a value, we call identify_cpu again with the
 | |
| 		 * logical PVR value in order to use the cpu feature
 | |
| 		 * bits appropriate for the architecture level.
 | |
| 		 *
 | |
| 		 * A POWER6 partition in "POWER6 architected" mode
 | |
| 		 * uses the 0x0f000002 PVR value; in POWER5+ mode
 | |
| 		 * it uses 0x0f000001.
 | |
| 		 */
 | |
| 		prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
 | |
| 		if (prop && (*prop & 0xff000000) == 0x0f000000)
 | |
| 			identify_cpu(0, *prop);
 | |
| 
 | |
| 		identical_pvr_fixup(node);
 | |
| 	}
 | |
| 
 | |
| 	check_cpu_feature_properties(node);
 | |
| 	check_cpu_pa_features(node);
 | |
| 	check_cpu_slb_size(node);
 | |
| 
 | |
| #ifdef CONFIG_PPC_PSERIES
 | |
| 	if (nthreads > 1)
 | |
| 		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
 | |
| 	else
 | |
| 		cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| static void __init early_init_dt_check_for_initrd(unsigned long node)
 | |
| {
 | |
| 	unsigned long l;
 | |
| 	u32 *prop;
 | |
| 
 | |
| 	DBG("Looking for initrd properties... ");
 | |
| 
 | |
| 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &l);
 | |
| 	if (prop) {
 | |
| 		initrd_start = (unsigned long)__va(of_read_ulong(prop, l/4));
 | |
| 
 | |
| 		prop = of_get_flat_dt_prop(node, "linux,initrd-end", &l);
 | |
| 		if (prop) {
 | |
| 			initrd_end = (unsigned long)
 | |
| 					__va(of_read_ulong(prop, l/4));
 | |
| 			initrd_below_start_ok = 1;
 | |
| 		} else {
 | |
| 			initrd_start = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	DBG("initrd_start=0x%lx  initrd_end=0x%lx\n", initrd_start, initrd_end);
 | |
| }
 | |
| #else
 | |
| static inline void early_init_dt_check_for_initrd(unsigned long node)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG_BLK_DEV_INITRD */
 | |
| 
 | |
| static int __init early_init_dt_scan_chosen(unsigned long node,
 | |
| 					    const char *uname, int depth, void *data)
 | |
| {
 | |
| 	unsigned long *lprop;
 | |
| 	unsigned long l;
 | |
| 	char *p;
 | |
| 
 | |
| 	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
 | |
| 
 | |
| 	if (depth != 1 ||
 | |
| 	    (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
 | |
| 		return 0;
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| 	/* check if iommu is forced on or off */
 | |
| 	if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
 | |
| 		iommu_is_off = 1;
 | |
| 	if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
 | |
| 		iommu_force_on = 1;
 | |
| #endif
 | |
| 
 | |
| 	/* mem=x on the command line is the preferred mechanism */
 | |
|  	lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
 | |
|  	if (lprop)
 | |
|  		memory_limit = *lprop;
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
|  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
 | |
|  	if (lprop)
 | |
|  		tce_alloc_start = *lprop;
 | |
|  	lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
 | |
|  	if (lprop)
 | |
|  		tce_alloc_end = *lprop;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_KEXEC
 | |
| 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
 | |
| 	if (lprop)
 | |
| 		crashk_res.start = *lprop;
 | |
| 
 | |
| 	lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
 | |
| 	if (lprop)
 | |
| 		crashk_res.end = crashk_res.start + *lprop - 1;
 | |
| #endif
 | |
| 
 | |
| 	early_init_dt_check_for_initrd(node);
 | |
| 
 | |
| 	/* Retreive command line */
 | |
|  	p = of_get_flat_dt_prop(node, "bootargs", &l);
 | |
| 	if (p != NULL && l > 0)
 | |
| 		strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
 | |
| 
 | |
| #ifdef CONFIG_CMDLINE
 | |
| 	if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
 | |
| 		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
 | |
| #endif /* CONFIG_CMDLINE */
 | |
| 
 | |
| 	DBG("Command line is: %s\n", cmd_line);
 | |
| 
 | |
| 	/* break now */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int __init early_init_dt_scan_root(unsigned long node,
 | |
| 					  const char *uname, int depth, void *data)
 | |
| {
 | |
| 	u32 *prop;
 | |
| 
 | |
| 	if (depth != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
 | |
| 	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
 | |
| 	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
 | |
| 
 | |
| 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
 | |
| 	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
 | |
| 	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
 | |
| 	
 | |
| 	/* break now */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static u64 __init dt_mem_next_cell(int s, cell_t **cellp)
 | |
| {
 | |
| 	cell_t *p = *cellp;
 | |
| 
 | |
| 	*cellp = p + s;
 | |
| 	return of_read_number(p, s);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_PSERIES
 | |
| /*
 | |
|  * Interpret the ibm,dynamic-memory property in the
 | |
|  * /ibm,dynamic-reconfiguration-memory node.
 | |
|  * This contains a list of memory blocks along with NUMA affinity
 | |
|  * information.
 | |
|  */
 | |
| static int __init early_init_dt_scan_drconf_memory(unsigned long node)
 | |
| {
 | |
| 	cell_t *dm, *ls, *usm;
 | |
| 	unsigned long l, n, flags;
 | |
| 	u64 base, size, lmb_size;
 | |
| 	unsigned int is_kexec_kdump = 0, rngs;
 | |
| 
 | |
| 	ls = of_get_flat_dt_prop(node, "ibm,lmb-size", &l);
 | |
| 	if (ls == NULL || l < dt_root_size_cells * sizeof(cell_t))
 | |
| 		return 0;
 | |
| 	lmb_size = dt_mem_next_cell(dt_root_size_cells, &ls);
 | |
| 
 | |
| 	dm = of_get_flat_dt_prop(node, "ibm,dynamic-memory", &l);
 | |
| 	if (dm == NULL || l < sizeof(cell_t))
 | |
| 		return 0;
 | |
| 
 | |
| 	n = *dm++;	/* number of entries */
 | |
| 	if (l < (n * (dt_root_addr_cells + 4) + 1) * sizeof(cell_t))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* check if this is a kexec/kdump kernel. */
 | |
| 	usm = of_get_flat_dt_prop(node, "linux,drconf-usable-memory",
 | |
| 						 &l);
 | |
| 	if (usm != NULL)
 | |
| 		is_kexec_kdump = 1;
 | |
| 
 | |
| 	for (; n != 0; --n) {
 | |
| 		base = dt_mem_next_cell(dt_root_addr_cells, &dm);
 | |
| 		flags = dm[3];
 | |
| 		/* skip DRC index, pad, assoc. list index, flags */
 | |
| 		dm += 4;
 | |
| 		/* skip this block if the reserved bit is set in flags (0x80)
 | |
| 		   or if the block is not assigned to this partition (0x8) */
 | |
| 		if ((flags & 0x80) || !(flags & 0x8))
 | |
| 			continue;
 | |
| 		size = lmb_size;
 | |
| 		rngs = 1;
 | |
| 		if (is_kexec_kdump) {
 | |
| 			/*
 | |
| 			 * For each lmb in ibm,dynamic-memory, a corresponding
 | |
| 			 * entry in linux,drconf-usable-memory property contains
 | |
| 			 * a counter 'p' followed by 'p' (base, size) duple.
 | |
| 			 * Now read the counter from
 | |
| 			 * linux,drconf-usable-memory property
 | |
| 			 */
 | |
| 			rngs = dt_mem_next_cell(dt_root_size_cells, &usm);
 | |
| 			if (!rngs) /* there are no (base, size) duple */
 | |
| 				continue;
 | |
| 		}
 | |
| 		do {
 | |
| 			if (is_kexec_kdump) {
 | |
| 				base = dt_mem_next_cell(dt_root_addr_cells,
 | |
| 							 &usm);
 | |
| 				size = dt_mem_next_cell(dt_root_size_cells,
 | |
| 							 &usm);
 | |
| 			}
 | |
| 			if (iommu_is_off) {
 | |
| 				if (base >= 0x80000000ul)
 | |
| 					continue;
 | |
| 				if ((base + size) > 0x80000000ul)
 | |
| 					size = 0x80000000ul - base;
 | |
| 			}
 | |
| 			lmb_add(base, size);
 | |
| 		} while (--rngs);
 | |
| 	}
 | |
| 	lmb_dump_all();
 | |
| 	return 0;
 | |
| }
 | |
| #else
 | |
| #define early_init_dt_scan_drconf_memory(node)	0
 | |
| #endif /* CONFIG_PPC_PSERIES */
 | |
| 
 | |
| static int __init early_init_dt_scan_memory(unsigned long node,
 | |
| 					    const char *uname, int depth, void *data)
 | |
| {
 | |
| 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 | |
| 	cell_t *reg, *endp;
 | |
| 	unsigned long l;
 | |
| 
 | |
| 	/* Look for the ibm,dynamic-reconfiguration-memory node */
 | |
| 	if (depth == 1 &&
 | |
| 	    strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
 | |
| 		return early_init_dt_scan_drconf_memory(node);
 | |
| 
 | |
| 	/* We are scanning "memory" nodes only */
 | |
| 	if (type == NULL) {
 | |
| 		/*
 | |
| 		 * The longtrail doesn't have a device_type on the
 | |
| 		 * /memory node, so look for the node called /memory@0.
 | |
| 		 */
 | |
| 		if (depth != 1 || strcmp(uname, "memory@0") != 0)
 | |
| 			return 0;
 | |
| 	} else if (strcmp(type, "memory") != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
 | |
| 	if (reg == NULL)
 | |
| 		reg = of_get_flat_dt_prop(node, "reg", &l);
 | |
| 	if (reg == NULL)
 | |
| 		return 0;
 | |
| 
 | |
| 	endp = reg + (l / sizeof(cell_t));
 | |
| 
 | |
| 	DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
 | |
| 	    uname, l, reg[0], reg[1], reg[2], reg[3]);
 | |
| 
 | |
| 	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
 | |
| 		u64 base, size;
 | |
| 
 | |
| 		base = dt_mem_next_cell(dt_root_addr_cells, ®);
 | |
| 		size = dt_mem_next_cell(dt_root_size_cells, ®);
 | |
| 
 | |
| 		if (size == 0)
 | |
| 			continue;
 | |
| 		DBG(" - %llx ,  %llx\n", (unsigned long long)base,
 | |
| 		    (unsigned long long)size);
 | |
| #ifdef CONFIG_PPC64
 | |
| 		if (iommu_is_off) {
 | |
| 			if (base >= 0x80000000ul)
 | |
| 				continue;
 | |
| 			if ((base + size) > 0x80000000ul)
 | |
| 				size = 0x80000000ul - base;
 | |
| 		}
 | |
| #endif
 | |
| 		lmb_add(base, size);
 | |
| 
 | |
| 		memstart_addr = min((u64)memstart_addr, base);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init early_reserve_mem(void)
 | |
| {
 | |
| 	u64 base, size;
 | |
| 	u64 *reserve_map;
 | |
| 	unsigned long self_base;
 | |
| 	unsigned long self_size;
 | |
| 
 | |
| 	reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
 | |
| 					initial_boot_params->off_mem_rsvmap);
 | |
| 
 | |
| 	/* before we do anything, lets reserve the dt blob */
 | |
| 	self_base = __pa((unsigned long)initial_boot_params);
 | |
| 	self_size = initial_boot_params->totalsize;
 | |
| 	lmb_reserve(self_base, self_size);
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	/* then reserve the initrd, if any */
 | |
| 	if (initrd_start && (initrd_end > initrd_start))
 | |
| 		lmb_reserve(__pa(initrd_start), initrd_end - initrd_start);
 | |
| #endif /* CONFIG_BLK_DEV_INITRD */
 | |
| 
 | |
| #ifdef CONFIG_PPC32
 | |
| 	/* 
 | |
| 	 * Handle the case where we might be booting from an old kexec
 | |
| 	 * image that setup the mem_rsvmap as pairs of 32-bit values
 | |
| 	 */
 | |
| 	if (*reserve_map > 0xffffffffull) {
 | |
| 		u32 base_32, size_32;
 | |
| 		u32 *reserve_map_32 = (u32 *)reserve_map;
 | |
| 
 | |
| 		while (1) {
 | |
| 			base_32 = *(reserve_map_32++);
 | |
| 			size_32 = *(reserve_map_32++);
 | |
| 			if (size_32 == 0)
 | |
| 				break;
 | |
| 			/* skip if the reservation is for the blob */
 | |
| 			if (base_32 == self_base && size_32 == self_size)
 | |
| 				continue;
 | |
| 			DBG("reserving: %x -> %x\n", base_32, size_32);
 | |
| 			lmb_reserve(base_32, size_32);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| #endif
 | |
| 	while (1) {
 | |
| 		base = *(reserve_map++);
 | |
| 		size = *(reserve_map++);
 | |
| 		if (size == 0)
 | |
| 			break;
 | |
| 		DBG("reserving: %llx -> %llx\n", base, size);
 | |
| 		lmb_reserve(base, size);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PHYP_DUMP
 | |
| /**
 | |
|  * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg
 | |
|  *
 | |
|  * Function to find the largest size we need to reserve
 | |
|  * during early boot process.
 | |
|  *
 | |
|  * It either looks for boot param and returns that OR
 | |
|  * returns larger of 256 or 5% rounded down to multiples of 256MB.
 | |
|  *
 | |
|  */
 | |
| static inline unsigned long phyp_dump_calculate_reserve_size(void)
 | |
| {
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	if (phyp_dump_info->reserve_bootvar)
 | |
| 		return phyp_dump_info->reserve_bootvar;
 | |
| 
 | |
| 	/* divide by 20 to get 5% of value */
 | |
| 	tmp = lmb_end_of_DRAM();
 | |
| 	do_div(tmp, 20);
 | |
| 
 | |
| 	/* round it down in multiples of 256 */
 | |
| 	tmp = tmp & ~0x0FFFFFFFUL;
 | |
| 
 | |
| 	return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory
 | |
|  *
 | |
|  * This routine may reserve memory regions in the kernel only
 | |
|  * if the system is supported and a dump was taken in last
 | |
|  * boot instance or if the hardware is supported and the
 | |
|  * scratch area needs to be setup. In other instances it returns
 | |
|  * without reserving anything. The memory in case of dump being
 | |
|  * active is freed when the dump is collected (by userland tools).
 | |
|  */
 | |
| static void __init phyp_dump_reserve_mem(void)
 | |
| {
 | |
| 	unsigned long base, size;
 | |
| 	unsigned long variable_reserve_size;
 | |
| 
 | |
| 	if (!phyp_dump_info->phyp_dump_configured) {
 | |
| 		printk(KERN_ERR "Phyp-dump not supported on this hardware\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!phyp_dump_info->phyp_dump_at_boot) {
 | |
| 		printk(KERN_INFO "Phyp-dump disabled at boot time\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	variable_reserve_size = phyp_dump_calculate_reserve_size();
 | |
| 
 | |
| 	if (phyp_dump_info->phyp_dump_is_active) {
 | |
| 		/* Reserve *everything* above RMR.Area freed by userland tools*/
 | |
| 		base = variable_reserve_size;
 | |
| 		size = lmb_end_of_DRAM() - base;
 | |
| 
 | |
| 		/* XXX crashed_ram_end is wrong, since it may be beyond
 | |
| 		 * the memory_limit, it will need to be adjusted. */
 | |
| 		lmb_reserve(base, size);
 | |
| 
 | |
| 		phyp_dump_info->init_reserve_start = base;
 | |
| 		phyp_dump_info->init_reserve_size = size;
 | |
| 	} else {
 | |
| 		size = phyp_dump_info->cpu_state_size +
 | |
| 			phyp_dump_info->hpte_region_size +
 | |
| 			variable_reserve_size;
 | |
| 		base = lmb_end_of_DRAM() - size;
 | |
| 		lmb_reserve(base, size);
 | |
| 		phyp_dump_info->init_reserve_start = base;
 | |
| 		phyp_dump_info->init_reserve_size = size;
 | |
| 	}
 | |
| }
 | |
| #else
 | |
| static inline void __init phyp_dump_reserve_mem(void) {}
 | |
| #endif /* CONFIG_PHYP_DUMP  && CONFIG_PPC_RTAS */
 | |
| 
 | |
| 
 | |
| void __init early_init_devtree(void *params)
 | |
| {
 | |
| 	phys_addr_t limit;
 | |
| 
 | |
| 	DBG(" -> early_init_devtree(%p)\n", params);
 | |
| 
 | |
| 	/* Setup flat device-tree pointer */
 | |
| 	initial_boot_params = params;
 | |
| 
 | |
| #ifdef CONFIG_PPC_RTAS
 | |
| 	/* Some machines might need RTAS info for debugging, grab it now. */
 | |
| 	of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PHYP_DUMP
 | |
| 	/* scan tree to see if dump occured during last boot */
 | |
| 	of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL);
 | |
| #endif
 | |
| 
 | |
| 	/* Retrieve various informations from the /chosen node of the
 | |
| 	 * device-tree, including the platform type, initrd location and
 | |
| 	 * size, TCE reserve, and more ...
 | |
| 	 */
 | |
| 	of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
 | |
| 
 | |
| 	/* Scan memory nodes and rebuild LMBs */
 | |
| 	lmb_init();
 | |
| 	of_scan_flat_dt(early_init_dt_scan_root, NULL);
 | |
| 	of_scan_flat_dt(early_init_dt_scan_memory, NULL);
 | |
| 
 | |
| 	/* Save command line for /proc/cmdline and then parse parameters */
 | |
| 	strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
 | |
| 	parse_early_param();
 | |
| 
 | |
| 	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
 | |
| 	lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
 | |
| 	/* If relocatable, reserve first 32k for interrupt vectors etc. */
 | |
| 	if (PHYSICAL_START > MEMORY_START)
 | |
| 		lmb_reserve(MEMORY_START, 0x8000);
 | |
| 	reserve_kdump_trampoline();
 | |
| 	reserve_crashkernel();
 | |
| 	early_reserve_mem();
 | |
| 	phyp_dump_reserve_mem();
 | |
| 
 | |
| 	limit = memory_limit;
 | |
| 	if (! limit) {
 | |
| 		phys_addr_t memsize;
 | |
| 
 | |
| 		/* Ensure that total memory size is page-aligned, because
 | |
| 		 * otherwise mark_bootmem() gets upset. */
 | |
| 		lmb_analyze();
 | |
| 		memsize = lmb_phys_mem_size();
 | |
| 		if ((memsize & PAGE_MASK) != memsize)
 | |
| 			limit = memsize & PAGE_MASK;
 | |
| 	}
 | |
| 	lmb_enforce_memory_limit(limit);
 | |
| 
 | |
| 	lmb_analyze();
 | |
| 	lmb_dump_all();
 | |
| 
 | |
| 	DBG("Phys. mem: %llx\n", lmb_phys_mem_size());
 | |
| 
 | |
| 	/* We may need to relocate the flat tree, do it now.
 | |
| 	 * FIXME .. and the initrd too? */
 | |
| 	move_device_tree();
 | |
| 
 | |
| 	DBG("Scanning CPUs ...\n");
 | |
| 
 | |
| 	/* Retreive CPU related informations from the flat tree
 | |
| 	 * (altivec support, boot CPU ID, ...)
 | |
| 	 */
 | |
| 	of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
 | |
| 
 | |
| 	DBG(" <- early_init_devtree()\n");
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Indicates whether the root node has a given value in its
 | |
|  * compatible property.
 | |
|  */
 | |
| int machine_is_compatible(const char *compat)
 | |
| {
 | |
| 	struct device_node *root;
 | |
| 	int rc = 0;
 | |
| 
 | |
| 	root = of_find_node_by_path("/");
 | |
| 	if (root) {
 | |
| 		rc = of_device_is_compatible(root, compat);
 | |
| 		of_node_put(root);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL(machine_is_compatible);
 | |
| 
 | |
| /*******
 | |
|  *
 | |
|  * New implementation of the OF "find" APIs, return a refcounted
 | |
|  * object, call of_node_put() when done.  The device tree and list
 | |
|  * are protected by a rw_lock.
 | |
|  *
 | |
|  * Note that property management will need some locking as well,
 | |
|  * this isn't dealt with yet.
 | |
|  *
 | |
|  *******/
 | |
| 
 | |
| /**
 | |
|  *	of_find_node_by_phandle - Find a node given a phandle
 | |
|  *	@handle:	phandle of the node to find
 | |
|  *
 | |
|  *	Returns a node pointer with refcount incremented, use
 | |
|  *	of_node_put() on it when done.
 | |
|  */
 | |
| struct device_node *of_find_node_by_phandle(phandle handle)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 
 | |
| 	read_lock(&devtree_lock);
 | |
| 	for (np = allnodes; np != 0; np = np->allnext)
 | |
| 		if (np->linux_phandle == handle)
 | |
| 			break;
 | |
| 	of_node_get(np);
 | |
| 	read_unlock(&devtree_lock);
 | |
| 	return np;
 | |
| }
 | |
| EXPORT_SYMBOL(of_find_node_by_phandle);
 | |
| 
 | |
| /**
 | |
|  *	of_find_next_cache_node - Find a node's subsidiary cache
 | |
|  *	@np:	node of type "cpu" or "cache"
 | |
|  *
 | |
|  *	Returns a node pointer with refcount incremented, use
 | |
|  *	of_node_put() on it when done.  Caller should hold a reference
 | |
|  *	to np.
 | |
|  */
 | |
| struct device_node *of_find_next_cache_node(struct device_node *np)
 | |
| {
 | |
| 	struct device_node *child;
 | |
| 	const phandle *handle;
 | |
| 
 | |
| 	handle = of_get_property(np, "l2-cache", NULL);
 | |
| 	if (!handle)
 | |
| 		handle = of_get_property(np, "next-level-cache", NULL);
 | |
| 
 | |
| 	if (handle)
 | |
| 		return of_find_node_by_phandle(*handle);
 | |
| 
 | |
| 	/* OF on pmac has nodes instead of properties named "l2-cache"
 | |
| 	 * beneath CPU nodes.
 | |
| 	 */
 | |
| 	if (!strcmp(np->type, "cpu"))
 | |
| 		for_each_child_of_node(np, child)
 | |
| 			if (!strcmp(child->type, "cache"))
 | |
| 				return child;
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	of_find_all_nodes - Get next node in global list
 | |
|  *	@prev:	Previous node or NULL to start iteration
 | |
|  *		of_node_put() will be called on it
 | |
|  *
 | |
|  *	Returns a node pointer with refcount incremented, use
 | |
|  *	of_node_put() on it when done.
 | |
|  */
 | |
| struct device_node *of_find_all_nodes(struct device_node *prev)
 | |
| {
 | |
| 	struct device_node *np;
 | |
| 
 | |
| 	read_lock(&devtree_lock);
 | |
| 	np = prev ? prev->allnext : allnodes;
 | |
| 	for (; np != 0; np = np->allnext)
 | |
| 		if (of_node_get(np))
 | |
| 			break;
 | |
| 	of_node_put(prev);
 | |
| 	read_unlock(&devtree_lock);
 | |
| 	return np;
 | |
| }
 | |
| EXPORT_SYMBOL(of_find_all_nodes);
 | |
| 
 | |
| /**
 | |
|  *	of_node_get - Increment refcount of a node
 | |
|  *	@node:	Node to inc refcount, NULL is supported to
 | |
|  *		simplify writing of callers
 | |
|  *
 | |
|  *	Returns node.
 | |
|  */
 | |
| struct device_node *of_node_get(struct device_node *node)
 | |
| {
 | |
| 	if (node)
 | |
| 		kref_get(&node->kref);
 | |
| 	return node;
 | |
| }
 | |
| EXPORT_SYMBOL(of_node_get);
 | |
| 
 | |
| static inline struct device_node * kref_to_device_node(struct kref *kref)
 | |
| {
 | |
| 	return container_of(kref, struct device_node, kref);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	of_node_release - release a dynamically allocated node
 | |
|  *	@kref:  kref element of the node to be released
 | |
|  *
 | |
|  *	In of_node_put() this function is passed to kref_put()
 | |
|  *	as the destructor.
 | |
|  */
 | |
| static void of_node_release(struct kref *kref)
 | |
| {
 | |
| 	struct device_node *node = kref_to_device_node(kref);
 | |
| 	struct property *prop = node->properties;
 | |
| 
 | |
| 	/* We should never be releasing nodes that haven't been detached. */
 | |
| 	if (!of_node_check_flag(node, OF_DETACHED)) {
 | |
| 		printk("WARNING: Bad of_node_put() on %s\n", node->full_name);
 | |
| 		dump_stack();
 | |
| 		kref_init(&node->kref);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!of_node_check_flag(node, OF_DYNAMIC))
 | |
| 		return;
 | |
| 
 | |
| 	while (prop) {
 | |
| 		struct property *next = prop->next;
 | |
| 		kfree(prop->name);
 | |
| 		kfree(prop->value);
 | |
| 		kfree(prop);
 | |
| 		prop = next;
 | |
| 
 | |
| 		if (!prop) {
 | |
| 			prop = node->deadprops;
 | |
| 			node->deadprops = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	kfree(node->full_name);
 | |
| 	kfree(node->data);
 | |
| 	kfree(node);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	of_node_put - Decrement refcount of a node
 | |
|  *	@node:	Node to dec refcount, NULL is supported to
 | |
|  *		simplify writing of callers
 | |
|  *
 | |
|  */
 | |
| void of_node_put(struct device_node *node)
 | |
| {
 | |
| 	if (node)
 | |
| 		kref_put(&node->kref, of_node_release);
 | |
| }
 | |
| EXPORT_SYMBOL(of_node_put);
 | |
| 
 | |
| /*
 | |
|  * Plug a device node into the tree and global list.
 | |
|  */
 | |
| void of_attach_node(struct device_node *np)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	write_lock_irqsave(&devtree_lock, flags);
 | |
| 	np->sibling = np->parent->child;
 | |
| 	np->allnext = allnodes;
 | |
| 	np->parent->child = np;
 | |
| 	allnodes = np;
 | |
| 	write_unlock_irqrestore(&devtree_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * "Unplug" a node from the device tree.  The caller must hold
 | |
|  * a reference to the node.  The memory associated with the node
 | |
|  * is not freed until its refcount goes to zero.
 | |
|  */
 | |
| void of_detach_node(struct device_node *np)
 | |
| {
 | |
| 	struct device_node *parent;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	write_lock_irqsave(&devtree_lock, flags);
 | |
| 
 | |
| 	parent = np->parent;
 | |
| 	if (!parent)
 | |
| 		goto out_unlock;
 | |
| 
 | |
| 	if (allnodes == np)
 | |
| 		allnodes = np->allnext;
 | |
| 	else {
 | |
| 		struct device_node *prev;
 | |
| 		for (prev = allnodes;
 | |
| 		     prev->allnext != np;
 | |
| 		     prev = prev->allnext)
 | |
| 			;
 | |
| 		prev->allnext = np->allnext;
 | |
| 	}
 | |
| 
 | |
| 	if (parent->child == np)
 | |
| 		parent->child = np->sibling;
 | |
| 	else {
 | |
| 		struct device_node *prevsib;
 | |
| 		for (prevsib = np->parent->child;
 | |
| 		     prevsib->sibling != np;
 | |
| 		     prevsib = prevsib->sibling)
 | |
| 			;
 | |
| 		prevsib->sibling = np->sibling;
 | |
| 	}
 | |
| 
 | |
| 	of_node_set_flag(np, OF_DETACHED);
 | |
| 
 | |
| out_unlock:
 | |
| 	write_unlock_irqrestore(&devtree_lock, flags);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_PSERIES
 | |
| /*
 | |
|  * Fix up the uninitialized fields in a new device node:
 | |
|  * name, type and pci-specific fields
 | |
|  */
 | |
| 
 | |
| static int of_finish_dynamic_node(struct device_node *node)
 | |
| {
 | |
| 	struct device_node *parent = of_get_parent(node);
 | |
| 	int err = 0;
 | |
| 	const phandle *ibm_phandle;
 | |
| 
 | |
| 	node->name = of_get_property(node, "name", NULL);
 | |
| 	node->type = of_get_property(node, "device_type", NULL);
 | |
| 
 | |
| 	if (!node->name)
 | |
| 		node->name = "<NULL>";
 | |
| 	if (!node->type)
 | |
| 		node->type = "<NULL>";
 | |
| 
 | |
| 	if (!parent) {
 | |
| 		err = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* We don't support that function on PowerMac, at least
 | |
| 	 * not yet
 | |
| 	 */
 | |
| 	if (machine_is(powermac))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* fix up new node's linux_phandle field */
 | |
| 	if ((ibm_phandle = of_get_property(node, "ibm,phandle", NULL)))
 | |
| 		node->linux_phandle = *ibm_phandle;
 | |
| 
 | |
| out:
 | |
| 	of_node_put(parent);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int prom_reconfig_notifier(struct notifier_block *nb,
 | |
| 				  unsigned long action, void *node)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case PSERIES_RECONFIG_ADD:
 | |
| 		err = of_finish_dynamic_node(node);
 | |
| 		if (err < 0) {
 | |
| 			printk(KERN_ERR "finish_node returned %d\n", err);
 | |
| 			err = NOTIFY_BAD;
 | |
| 		}
 | |
| 		break;
 | |
| 	default:
 | |
| 		err = NOTIFY_DONE;
 | |
| 		break;
 | |
| 	}
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct notifier_block prom_reconfig_nb = {
 | |
| 	.notifier_call = prom_reconfig_notifier,
 | |
| 	.priority = 10, /* This one needs to run first */
 | |
| };
 | |
| 
 | |
| static int __init prom_reconfig_setup(void)
 | |
| {
 | |
| 	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
 | |
| }
 | |
| __initcall(prom_reconfig_setup);
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Add a property to a node
 | |
|  */
 | |
| int prom_add_property(struct device_node* np, struct property* prop)
 | |
| {
 | |
| 	struct property **next;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	prop->next = NULL;	
 | |
| 	write_lock_irqsave(&devtree_lock, flags);
 | |
| 	next = &np->properties;
 | |
| 	while (*next) {
 | |
| 		if (strcmp(prop->name, (*next)->name) == 0) {
 | |
| 			/* duplicate ! don't insert it */
 | |
| 			write_unlock_irqrestore(&devtree_lock, flags);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		next = &(*next)->next;
 | |
| 	}
 | |
| 	*next = prop;
 | |
| 	write_unlock_irqrestore(&devtree_lock, flags);
 | |
| 
 | |
| #ifdef CONFIG_PROC_DEVICETREE
 | |
| 	/* try to add to proc as well if it was initialized */
 | |
| 	if (np->pde)
 | |
| 		proc_device_tree_add_prop(np->pde, prop);
 | |
| #endif /* CONFIG_PROC_DEVICETREE */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a property from a node.  Note that we don't actually
 | |
|  * remove it, since we have given out who-knows-how-many pointers
 | |
|  * to the data using get-property.  Instead we just move the property
 | |
|  * to the "dead properties" list, so it won't be found any more.
 | |
|  */
 | |
| int prom_remove_property(struct device_node *np, struct property *prop)
 | |
| {
 | |
| 	struct property **next;
 | |
| 	unsigned long flags;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	write_lock_irqsave(&devtree_lock, flags);
 | |
| 	next = &np->properties;
 | |
| 	while (*next) {
 | |
| 		if (*next == prop) {
 | |
| 			/* found the node */
 | |
| 			*next = prop->next;
 | |
| 			prop->next = np->deadprops;
 | |
| 			np->deadprops = prop;
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		next = &(*next)->next;
 | |
| 	}
 | |
| 	write_unlock_irqrestore(&devtree_lock, flags);
 | |
| 
 | |
| 	if (!found)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| #ifdef CONFIG_PROC_DEVICETREE
 | |
| 	/* try to remove the proc node as well */
 | |
| 	if (np->pde)
 | |
| 		proc_device_tree_remove_prop(np->pde, prop);
 | |
| #endif /* CONFIG_PROC_DEVICETREE */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Update a property in a node.  Note that we don't actually
 | |
|  * remove it, since we have given out who-knows-how-many pointers
 | |
|  * to the data using get-property.  Instead we just move the property
 | |
|  * to the "dead properties" list, and add the new property to the
 | |
|  * property list
 | |
|  */
 | |
| int prom_update_property(struct device_node *np,
 | |
| 			 struct property *newprop,
 | |
| 			 struct property *oldprop)
 | |
| {
 | |
| 	struct property **next;
 | |
| 	unsigned long flags;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	write_lock_irqsave(&devtree_lock, flags);
 | |
| 	next = &np->properties;
 | |
| 	while (*next) {
 | |
| 		if (*next == oldprop) {
 | |
| 			/* found the node */
 | |
| 			newprop->next = oldprop->next;
 | |
| 			*next = newprop;
 | |
| 			oldprop->next = np->deadprops;
 | |
| 			np->deadprops = oldprop;
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 		next = &(*next)->next;
 | |
| 	}
 | |
| 	write_unlock_irqrestore(&devtree_lock, flags);
 | |
| 
 | |
| 	if (!found)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| #ifdef CONFIG_PROC_DEVICETREE
 | |
| 	/* try to add to proc as well if it was initialized */
 | |
| 	if (np->pde)
 | |
| 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
 | |
| #endif /* CONFIG_PROC_DEVICETREE */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Find the device node for a given logical cpu number, also returns the cpu
 | |
|  * local thread number (index in ibm,interrupt-server#s) if relevant and
 | |
|  * asked for (non NULL)
 | |
|  */
 | |
| struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 | |
| {
 | |
| 	int hardid;
 | |
| 	struct device_node *np;
 | |
| 
 | |
| 	hardid = get_hard_smp_processor_id(cpu);
 | |
| 
 | |
| 	for_each_node_by_type(np, "cpu") {
 | |
| 		const u32 *intserv;
 | |
| 		unsigned int plen, t;
 | |
| 
 | |
| 		/* Check for ibm,ppc-interrupt-server#s. If it doesn't exist
 | |
| 		 * fallback to "reg" property and assume no threads
 | |
| 		 */
 | |
| 		intserv = of_get_property(np, "ibm,ppc-interrupt-server#s",
 | |
| 				&plen);
 | |
| 		if (intserv == NULL) {
 | |
| 			const u32 *reg = of_get_property(np, "reg", NULL);
 | |
| 			if (reg == NULL)
 | |
| 				continue;
 | |
| 			if (*reg == hardid) {
 | |
| 				if (thread)
 | |
| 					*thread = 0;
 | |
| 				return np;
 | |
| 			}
 | |
| 		} else {
 | |
| 			plen /= sizeof(u32);
 | |
| 			for (t = 0; t < plen; t++) {
 | |
| 				if (hardid == intserv[t]) {
 | |
| 					if (thread)
 | |
| 						*thread = t;
 | |
| 					return np;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(of_get_cpu_node);
 | |
| 
 | |
| #if defined(CONFIG_DEBUG_FS) && defined(DEBUG)
 | |
| static struct debugfs_blob_wrapper flat_dt_blob;
 | |
| 
 | |
| static int __init export_flat_device_tree(void)
 | |
| {
 | |
| 	struct dentry *d;
 | |
| 
 | |
| 	flat_dt_blob.data = initial_boot_params;
 | |
| 	flat_dt_blob.size = initial_boot_params->totalsize;
 | |
| 
 | |
| 	d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
 | |
| 				powerpc_debugfs_root, &flat_dt_blob);
 | |
| 	if (!d)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| __initcall(export_flat_device_tree);
 | |
| #endif
 |