2365 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2365 lines
		
	
	
		
			66 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * NAND flash simulator.
 | |
|  *
 | |
|  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
 | |
|  *
 | |
|  * Copyright (C) 2004 Nokia Corporation
 | |
|  *
 | |
|  * Note: NS means "NAND Simulator".
 | |
|  * Note: Input means input TO flash chip, output means output FROM chip.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the
 | |
|  * Free Software Foundation; either version 2, or (at your option) any later
 | |
|  * version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but
 | |
|  * WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
 | |
|  * Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <asm/div64.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/random.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/pagemap.h>
 | |
| 
 | |
| /* Default simulator parameters values */
 | |
| #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
 | |
|     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
 | |
|     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
 | |
|     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
 | |
| #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
 | |
| #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
 | |
| #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
 | |
| #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_NANDSIM_ACCESS_DELAY
 | |
| #define CONFIG_NANDSIM_ACCESS_DELAY 25
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
 | |
| #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_ERASE_DELAY
 | |
| #define CONFIG_NANDSIM_ERASE_DELAY 2
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
 | |
| #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_INPUT_CYCLE
 | |
| #define CONFIG_NANDSIM_INPUT_CYCLE  50
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_BUS_WIDTH
 | |
| #define CONFIG_NANDSIM_BUS_WIDTH  8
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_DO_DELAYS
 | |
| #define CONFIG_NANDSIM_DO_DELAYS  0
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_LOG
 | |
| #define CONFIG_NANDSIM_LOG        0
 | |
| #endif
 | |
| #ifndef CONFIG_NANDSIM_DBG
 | |
| #define CONFIG_NANDSIM_DBG        0
 | |
| #endif
 | |
| 
 | |
| static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
 | |
| static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
 | |
| static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
 | |
| static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
 | |
| static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
 | |
| static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
 | |
| static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
 | |
| static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
 | |
| static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
 | |
| static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
 | |
| static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
 | |
| static uint log            = CONFIG_NANDSIM_LOG;
 | |
| static uint dbg            = CONFIG_NANDSIM_DBG;
 | |
| static unsigned long parts[MAX_MTD_DEVICES];
 | |
| static unsigned int parts_num;
 | |
| static char *badblocks = NULL;
 | |
| static char *weakblocks = NULL;
 | |
| static char *weakpages = NULL;
 | |
| static unsigned int bitflips = 0;
 | |
| static char *gravepages = NULL;
 | |
| static unsigned int rptwear = 0;
 | |
| static unsigned int overridesize = 0;
 | |
| static char *cache_file = NULL;
 | |
| 
 | |
| module_param(first_id_byte,  uint, 0400);
 | |
| module_param(second_id_byte, uint, 0400);
 | |
| module_param(third_id_byte,  uint, 0400);
 | |
| module_param(fourth_id_byte, uint, 0400);
 | |
| module_param(access_delay,   uint, 0400);
 | |
| module_param(programm_delay, uint, 0400);
 | |
| module_param(erase_delay,    uint, 0400);
 | |
| module_param(output_cycle,   uint, 0400);
 | |
| module_param(input_cycle,    uint, 0400);
 | |
| module_param(bus_width,      uint, 0400);
 | |
| module_param(do_delays,      uint, 0400);
 | |
| module_param(log,            uint, 0400);
 | |
| module_param(dbg,            uint, 0400);
 | |
| module_param_array(parts, ulong, &parts_num, 0400);
 | |
| module_param(badblocks,      charp, 0400);
 | |
| module_param(weakblocks,     charp, 0400);
 | |
| module_param(weakpages,      charp, 0400);
 | |
| module_param(bitflips,       uint, 0400);
 | |
| module_param(gravepages,     charp, 0400);
 | |
| module_param(rptwear,        uint, 0400);
 | |
| module_param(overridesize,   uint, 0400);
 | |
| module_param(cache_file,     charp, 0400);
 | |
| 
 | |
| MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
 | |
| MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
 | |
| MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
 | |
| MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
 | |
| MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
 | |
| MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
 | |
| MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
 | |
| MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
 | |
| MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
 | |
| MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
 | |
| MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
 | |
| MODULE_PARM_DESC(log,            "Perform logging if not zero");
 | |
| MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
 | |
| MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
 | |
| /* Page and erase block positions for the following parameters are independent of any partitions */
 | |
| MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
 | |
| MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
 | |
| 				 " separated by commas e.g. 113:2 means eb 113"
 | |
| 				 " can be erased only twice before failing");
 | |
| MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
 | |
| 				 " separated by commas e.g. 1401:2 means page 1401"
 | |
| 				 " can be written only twice before failing");
 | |
| MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
 | |
| MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
 | |
| 				 " separated by commas e.g. 1401:2 means page 1401"
 | |
| 				 " can be read only twice before failing");
 | |
| MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
 | |
| MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
 | |
| 				 "The size is specified in erase blocks and as the exponent of a power of two"
 | |
| 				 " e.g. 5 means a size of 32 erase blocks");
 | |
| MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
 | |
| 
 | |
| /* The largest possible page size */
 | |
| #define NS_LARGEST_PAGE_SIZE	2048
 | |
| 
 | |
| /* The prefix for simulator output */
 | |
| #define NS_OUTPUT_PREFIX "[nandsim]"
 | |
| 
 | |
| /* Simulator's output macros (logging, debugging, warning, error) */
 | |
| #define NS_LOG(args...) \
 | |
| 	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
 | |
| #define NS_DBG(args...) \
 | |
| 	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
 | |
| #define NS_WARN(args...) \
 | |
| 	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
 | |
| #define NS_ERR(args...) \
 | |
| 	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
 | |
| #define NS_INFO(args...) \
 | |
| 	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
 | |
| 
 | |
| /* Busy-wait delay macros (microseconds, milliseconds) */
 | |
| #define NS_UDELAY(us) \
 | |
|         do { if (do_delays) udelay(us); } while(0)
 | |
| #define NS_MDELAY(us) \
 | |
|         do { if (do_delays) mdelay(us); } while(0)
 | |
| 
 | |
| /* Is the nandsim structure initialized ? */
 | |
| #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
 | |
| 
 | |
| /* Good operation completion status */
 | |
| #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
 | |
| 
 | |
| /* Operation failed completion status */
 | |
| #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
 | |
| 
 | |
| /* Calculate the page offset in flash RAM image by (row, column) address */
 | |
| #define NS_RAW_OFFSET(ns) \
 | |
| 	(((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
 | |
| 
 | |
| /* Calculate the OOB offset in flash RAM image by (row, column) address */
 | |
| #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
 | |
| 
 | |
| /* After a command is input, the simulator goes to one of the following states */
 | |
| #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
 | |
| #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
 | |
| #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
 | |
| #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
 | |
| #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
 | |
| #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
 | |
| #define STATE_CMD_STATUS       0x00000007 /* read status */
 | |
| #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
 | |
| #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
 | |
| #define STATE_CMD_READID       0x0000000A /* read ID */
 | |
| #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
 | |
| #define STATE_CMD_RESET        0x0000000C /* reset */
 | |
| #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
 | |
| #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
 | |
| #define STATE_CMD_MASK         0x0000000F /* command states mask */
 | |
| 
 | |
| /* After an address is input, the simulator goes to one of these states */
 | |
| #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
 | |
| #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
 | |
| #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
 | |
| #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
 | |
| #define STATE_ADDR_MASK        0x00000070 /* address states mask */
 | |
| 
 | |
| /* Durind data input/output the simulator is in these states */
 | |
| #define STATE_DATAIN           0x00000100 /* waiting for data input */
 | |
| #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
 | |
| 
 | |
| #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
 | |
| #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
 | |
| #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
 | |
| #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
 | |
| #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
 | |
| 
 | |
| /* Previous operation is done, ready to accept new requests */
 | |
| #define STATE_READY            0x00000000
 | |
| 
 | |
| /* This state is used to mark that the next state isn't known yet */
 | |
| #define STATE_UNKNOWN          0x10000000
 | |
| 
 | |
| /* Simulator's actions bit masks */
 | |
| #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
 | |
| #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
 | |
| #define ACTION_SECERASE  0x00300000 /* erase sector */
 | |
| #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
 | |
| #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
 | |
| #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
 | |
| #define ACTION_MASK      0x00700000 /* action mask */
 | |
| 
 | |
| #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
 | |
| #define NS_OPER_STATES   6  /* Maximum number of states in operation */
 | |
| 
 | |
| #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
 | |
| #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
 | |
| #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
 | |
| #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
 | |
| #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
 | |
| #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
 | |
| #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
 | |
| #define OPT_LARGEPAGE    (OPT_PAGE2048) /* 2048-byte page chips */
 | |
| #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
 | |
| 
 | |
| /* Remove action bits ftom state */
 | |
| #define NS_STATE(x) ((x) & ~ACTION_MASK)
 | |
| 
 | |
| /*
 | |
|  * Maximum previous states which need to be saved. Currently saving is
 | |
|  * only needed for page programm operation with preceeded read command
 | |
|  * (which is only valid for 512-byte pages).
 | |
|  */
 | |
| #define NS_MAX_PREVSTATES 1
 | |
| 
 | |
| /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
 | |
| #define NS_MAX_HELD_PAGES 16
 | |
| 
 | |
| /*
 | |
|  * A union to represent flash memory contents and flash buffer.
 | |
|  */
 | |
| union ns_mem {
 | |
| 	u_char *byte;    /* for byte access */
 | |
| 	uint16_t *word;  /* for 16-bit word access */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The structure which describes all the internal simulator data.
 | |
|  */
 | |
| struct nandsim {
 | |
| 	struct mtd_partition partitions[MAX_MTD_DEVICES];
 | |
| 	unsigned int nbparts;
 | |
| 
 | |
| 	uint busw;              /* flash chip bus width (8 or 16) */
 | |
| 	u_char ids[4];          /* chip's ID bytes */
 | |
| 	uint32_t options;       /* chip's characteristic bits */
 | |
| 	uint32_t state;         /* current chip state */
 | |
| 	uint32_t nxstate;       /* next expected state */
 | |
| 
 | |
| 	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
 | |
| 	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
 | |
| 	uint16_t npstates;      /* number of previous states saved */
 | |
| 	uint16_t stateidx;      /* current state index */
 | |
| 
 | |
| 	/* The simulated NAND flash pages array */
 | |
| 	union ns_mem *pages;
 | |
| 
 | |
| 	/* Slab allocator for nand pages */
 | |
| 	struct kmem_cache *nand_pages_slab;
 | |
| 
 | |
| 	/* Internal buffer of page + OOB size bytes */
 | |
| 	union ns_mem buf;
 | |
| 
 | |
| 	/* NAND flash "geometry" */
 | |
| 	struct nandsin_geometry {
 | |
| 		uint64_t totsz;     /* total flash size, bytes */
 | |
| 		uint32_t secsz;     /* flash sector (erase block) size, bytes */
 | |
| 		uint pgsz;          /* NAND flash page size, bytes */
 | |
| 		uint oobsz;         /* page OOB area size, bytes */
 | |
| 		uint64_t totszoob;  /* total flash size including OOB, bytes */
 | |
| 		uint pgszoob;       /* page size including OOB , bytes*/
 | |
| 		uint secszoob;      /* sector size including OOB, bytes */
 | |
| 		uint pgnum;         /* total number of pages */
 | |
| 		uint pgsec;         /* number of pages per sector */
 | |
| 		uint secshift;      /* bits number in sector size */
 | |
| 		uint pgshift;       /* bits number in page size */
 | |
| 		uint oobshift;      /* bits number in OOB size */
 | |
| 		uint pgaddrbytes;   /* bytes per page address */
 | |
| 		uint secaddrbytes;  /* bytes per sector address */
 | |
| 		uint idbytes;       /* the number ID bytes that this chip outputs */
 | |
| 	} geom;
 | |
| 
 | |
| 	/* NAND flash internal registers */
 | |
| 	struct nandsim_regs {
 | |
| 		unsigned command; /* the command register */
 | |
| 		u_char   status;  /* the status register */
 | |
| 		uint     row;     /* the page number */
 | |
| 		uint     column;  /* the offset within page */
 | |
| 		uint     count;   /* internal counter */
 | |
| 		uint     num;     /* number of bytes which must be processed */
 | |
| 		uint     off;     /* fixed page offset */
 | |
| 	} regs;
 | |
| 
 | |
| 	/* NAND flash lines state */
 | |
|         struct ns_lines_status {
 | |
|                 int ce;  /* chip Enable */
 | |
|                 int cle; /* command Latch Enable */
 | |
|                 int ale; /* address Latch Enable */
 | |
|                 int wp;  /* write Protect */
 | |
|         } lines;
 | |
| 
 | |
| 	/* Fields needed when using a cache file */
 | |
| 	struct file *cfile; /* Open file */
 | |
| 	unsigned char *pages_written; /* Which pages have been written */
 | |
| 	void *file_buf;
 | |
| 	struct page *held_pages[NS_MAX_HELD_PAGES];
 | |
| 	int held_cnt;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Operations array. To perform any operation the simulator must pass
 | |
|  * through the correspondent states chain.
 | |
|  */
 | |
| static struct nandsim_operations {
 | |
| 	uint32_t reqopts;  /* options which are required to perform the operation */
 | |
| 	uint32_t states[NS_OPER_STATES]; /* operation's states */
 | |
| } ops[NS_OPER_NUM] = {
 | |
| 	/* Read page + OOB from the beginning */
 | |
| 	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
 | |
| 			STATE_DATAOUT, STATE_READY}},
 | |
| 	/* Read page + OOB from the second half */
 | |
| 	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
 | |
| 			STATE_DATAOUT, STATE_READY}},
 | |
| 	/* Read OOB */
 | |
| 	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
 | |
| 			STATE_DATAOUT, STATE_READY}},
 | |
| 	/* Programm page starting from the beginning */
 | |
| 	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
 | |
| 			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 | |
| 	/* Programm page starting from the beginning */
 | |
| 	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
 | |
| 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 | |
| 	/* Programm page starting from the second half */
 | |
| 	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
 | |
| 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 | |
| 	/* Programm OOB */
 | |
| 	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
 | |
| 			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
 | |
| 	/* Erase sector */
 | |
| 	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
 | |
| 	/* Read status */
 | |
| 	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
 | |
| 	/* Read multi-plane status */
 | |
| 	{OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
 | |
| 	/* Read ID */
 | |
| 	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
 | |
| 	/* Large page devices read page */
 | |
| 	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
 | |
| 			       STATE_DATAOUT, STATE_READY}},
 | |
| 	/* Large page devices random page read */
 | |
| 	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
 | |
| 			       STATE_DATAOUT, STATE_READY}},
 | |
| };
 | |
| 
 | |
| struct weak_block {
 | |
| 	struct list_head list;
 | |
| 	unsigned int erase_block_no;
 | |
| 	unsigned int max_erases;
 | |
| 	unsigned int erases_done;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(weak_blocks);
 | |
| 
 | |
| struct weak_page {
 | |
| 	struct list_head list;
 | |
| 	unsigned int page_no;
 | |
| 	unsigned int max_writes;
 | |
| 	unsigned int writes_done;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(weak_pages);
 | |
| 
 | |
| struct grave_page {
 | |
| 	struct list_head list;
 | |
| 	unsigned int page_no;
 | |
| 	unsigned int max_reads;
 | |
| 	unsigned int reads_done;
 | |
| };
 | |
| 
 | |
| static LIST_HEAD(grave_pages);
 | |
| 
 | |
| static unsigned long *erase_block_wear = NULL;
 | |
| static unsigned int wear_eb_count = 0;
 | |
| static unsigned long total_wear = 0;
 | |
| static unsigned int rptwear_cnt = 0;
 | |
| 
 | |
| /* MTD structure for NAND controller */
 | |
| static struct mtd_info *nsmtd;
 | |
| 
 | |
| static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
 | |
| 
 | |
| /*
 | |
|  * Allocate array of page pointers, create slab allocation for an array
 | |
|  * and initialize the array by NULL pointers.
 | |
|  *
 | |
|  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
 | |
|  */
 | |
| static int alloc_device(struct nandsim *ns)
 | |
| {
 | |
| 	struct file *cfile;
 | |
| 	int i, err;
 | |
| 
 | |
| 	if (cache_file) {
 | |
| 		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
 | |
| 		if (IS_ERR(cfile))
 | |
| 			return PTR_ERR(cfile);
 | |
| 		if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
 | |
| 			NS_ERR("alloc_device: cache file not readable\n");
 | |
| 			err = -EINVAL;
 | |
| 			goto err_close;
 | |
| 		}
 | |
| 		if (!cfile->f_op->write && !cfile->f_op->aio_write) {
 | |
| 			NS_ERR("alloc_device: cache file not writeable\n");
 | |
| 			err = -EINVAL;
 | |
| 			goto err_close;
 | |
| 		}
 | |
| 		ns->pages_written = vmalloc(ns->geom.pgnum);
 | |
| 		if (!ns->pages_written) {
 | |
| 			NS_ERR("alloc_device: unable to allocate pages written array\n");
 | |
| 			err = -ENOMEM;
 | |
| 			goto err_close;
 | |
| 		}
 | |
| 		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 | |
| 		if (!ns->file_buf) {
 | |
| 			NS_ERR("alloc_device: unable to allocate file buf\n");
 | |
| 			err = -ENOMEM;
 | |
| 			goto err_free;
 | |
| 		}
 | |
| 		ns->cfile = cfile;
 | |
| 		memset(ns->pages_written, 0, ns->geom.pgnum);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
 | |
| 	if (!ns->pages) {
 | |
| 		NS_ERR("alloc_device: unable to allocate page array\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	for (i = 0; i < ns->geom.pgnum; i++) {
 | |
| 		ns->pages[i].byte = NULL;
 | |
| 	}
 | |
| 	ns->nand_pages_slab = kmem_cache_create("nandsim",
 | |
| 						ns->geom.pgszoob, 0, 0, NULL);
 | |
| 	if (!ns->nand_pages_slab) {
 | |
| 		NS_ERR("cache_create: unable to create kmem_cache\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_free:
 | |
| 	vfree(ns->pages_written);
 | |
| err_close:
 | |
| 	filp_close(cfile, NULL);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free any allocated pages, and free the array of page pointers.
 | |
|  */
 | |
| static void free_device(struct nandsim *ns)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (ns->cfile) {
 | |
| 		kfree(ns->file_buf);
 | |
| 		vfree(ns->pages_written);
 | |
| 		filp_close(ns->cfile, NULL);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ns->pages) {
 | |
| 		for (i = 0; i < ns->geom.pgnum; i++) {
 | |
| 			if (ns->pages[i].byte)
 | |
| 				kmem_cache_free(ns->nand_pages_slab,
 | |
| 						ns->pages[i].byte);
 | |
| 		}
 | |
| 		kmem_cache_destroy(ns->nand_pages_slab);
 | |
| 		vfree(ns->pages);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static char *get_partition_name(int i)
 | |
| {
 | |
| 	char buf[64];
 | |
| 	sprintf(buf, "NAND simulator partition %d", i);
 | |
| 	return kstrdup(buf, GFP_KERNEL);
 | |
| }
 | |
| 
 | |
| static uint64_t divide(uint64_t n, uint32_t d)
 | |
| {
 | |
| 	do_div(n, d);
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initialize the nandsim structure.
 | |
|  *
 | |
|  * RETURNS: 0 if success, -ERRNO if failure.
 | |
|  */
 | |
| static int init_nandsim(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
 | |
| 	struct nandsim   *ns   = (struct nandsim *)(chip->priv);
 | |
| 	int i, ret = 0;
 | |
| 	uint64_t remains;
 | |
| 	uint64_t next_offset;
 | |
| 
 | |
| 	if (NS_IS_INITIALIZED(ns)) {
 | |
| 		NS_ERR("init_nandsim: nandsim is already initialized\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* Force mtd to not do delays */
 | |
| 	chip->chip_delay = 0;
 | |
| 
 | |
| 	/* Initialize the NAND flash parameters */
 | |
| 	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
 | |
| 	ns->geom.totsz    = mtd->size;
 | |
| 	ns->geom.pgsz     = mtd->writesize;
 | |
| 	ns->geom.oobsz    = mtd->oobsize;
 | |
| 	ns->geom.secsz    = mtd->erasesize;
 | |
| 	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
 | |
| 	ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
 | |
| 	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
 | |
| 	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
 | |
| 	ns->geom.pgshift  = chip->page_shift;
 | |
| 	ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
 | |
| 	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
 | |
| 	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
 | |
| 	ns->options = 0;
 | |
| 
 | |
| 	if (ns->geom.pgsz == 256) {
 | |
| 		ns->options |= OPT_PAGE256;
 | |
| 	}
 | |
| 	else if (ns->geom.pgsz == 512) {
 | |
| 		ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
 | |
| 		if (ns->busw == 8)
 | |
| 			ns->options |= OPT_PAGE512_8BIT;
 | |
| 	} else if (ns->geom.pgsz == 2048) {
 | |
| 		ns->options |= OPT_PAGE2048;
 | |
| 	} else {
 | |
| 		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (ns->options & OPT_SMALLPAGE) {
 | |
| 		if (ns->geom.totsz <= (32 << 20)) {
 | |
| 			ns->geom.pgaddrbytes  = 3;
 | |
| 			ns->geom.secaddrbytes = 2;
 | |
| 		} else {
 | |
| 			ns->geom.pgaddrbytes  = 4;
 | |
| 			ns->geom.secaddrbytes = 3;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (ns->geom.totsz <= (128 << 20)) {
 | |
| 			ns->geom.pgaddrbytes  = 4;
 | |
| 			ns->geom.secaddrbytes = 2;
 | |
| 		} else {
 | |
| 			ns->geom.pgaddrbytes  = 5;
 | |
| 			ns->geom.secaddrbytes = 3;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Fill the partition_info structure */
 | |
| 	if (parts_num > ARRAY_SIZE(ns->partitions)) {
 | |
| 		NS_ERR("too many partitions.\n");
 | |
| 		ret = -EINVAL;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	remains = ns->geom.totsz;
 | |
| 	next_offset = 0;
 | |
| 	for (i = 0; i < parts_num; ++i) {
 | |
| 		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
 | |
| 
 | |
| 		if (!part_sz || part_sz > remains) {
 | |
| 			NS_ERR("bad partition size.\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto error;
 | |
| 		}
 | |
| 		ns->partitions[i].name   = get_partition_name(i);
 | |
| 		ns->partitions[i].offset = next_offset;
 | |
| 		ns->partitions[i].size   = part_sz;
 | |
| 		next_offset += ns->partitions[i].size;
 | |
| 		remains -= ns->partitions[i].size;
 | |
| 	}
 | |
| 	ns->nbparts = parts_num;
 | |
| 	if (remains) {
 | |
| 		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
 | |
| 			NS_ERR("too many partitions.\n");
 | |
| 			ret = -EINVAL;
 | |
| 			goto error;
 | |
| 		}
 | |
| 		ns->partitions[i].name   = get_partition_name(i);
 | |
| 		ns->partitions[i].offset = next_offset;
 | |
| 		ns->partitions[i].size   = remains;
 | |
| 		ns->nbparts += 1;
 | |
| 	}
 | |
| 
 | |
| 	/* Detect how many ID bytes the NAND chip outputs */
 | |
|         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 | |
|                 if (second_id_byte != nand_flash_ids[i].id)
 | |
|                         continue;
 | |
| 		if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
 | |
| 			ns->options |= OPT_AUTOINCR;
 | |
| 	}
 | |
| 
 | |
| 	if (ns->busw == 16)
 | |
| 		NS_WARN("16-bit flashes support wasn't tested\n");
 | |
| 
 | |
| 	printk("flash size: %llu MiB\n",
 | |
| 			(unsigned long long)ns->geom.totsz >> 20);
 | |
| 	printk("page size: %u bytes\n",         ns->geom.pgsz);
 | |
| 	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
 | |
| 	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
 | |
| 	printk("pages number: %u\n",            ns->geom.pgnum);
 | |
| 	printk("pages per sector: %u\n",        ns->geom.pgsec);
 | |
| 	printk("bus width: %u\n",               ns->busw);
 | |
| 	printk("bits in sector size: %u\n",     ns->geom.secshift);
 | |
| 	printk("bits in page size: %u\n",       ns->geom.pgshift);
 | |
| 	printk("bits in OOB size: %u\n",	ns->geom.oobshift);
 | |
| 	printk("flash size with OOB: %llu KiB\n",
 | |
| 			(unsigned long long)ns->geom.totszoob >> 10);
 | |
| 	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
 | |
| 	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
 | |
| 	printk("options: %#x\n",                ns->options);
 | |
| 
 | |
| 	if ((ret = alloc_device(ns)) != 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	/* Allocate / initialize the internal buffer */
 | |
| 	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
 | |
| 	if (!ns->buf.byte) {
 | |
| 		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
 | |
| 			ns->geom.pgszoob);
 | |
| 		ret = -ENOMEM;
 | |
| 		goto error;
 | |
| 	}
 | |
| 	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error:
 | |
| 	free_device(ns);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free the nandsim structure.
 | |
|  */
 | |
| static void free_nandsim(struct nandsim *ns)
 | |
| {
 | |
| 	kfree(ns->buf.byte);
 | |
| 	free_device(ns);
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
 | |
| {
 | |
| 	char *w;
 | |
| 	int zero_ok;
 | |
| 	unsigned int erase_block_no;
 | |
| 	loff_t offset;
 | |
| 
 | |
| 	if (!badblocks)
 | |
| 		return 0;
 | |
| 	w = badblocks;
 | |
| 	do {
 | |
| 		zero_ok = (*w == '0' ? 1 : 0);
 | |
| 		erase_block_no = simple_strtoul(w, &w, 0);
 | |
| 		if (!zero_ok && !erase_block_no) {
 | |
| 			NS_ERR("invalid badblocks.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		offset = erase_block_no * ns->geom.secsz;
 | |
| 		if (mtd->block_markbad(mtd, offset)) {
 | |
| 			NS_ERR("invalid badblocks.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		if (*w == ',')
 | |
| 			w += 1;
 | |
| 	} while (*w);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_weakblocks(void)
 | |
| {
 | |
| 	char *w;
 | |
| 	int zero_ok;
 | |
| 	unsigned int erase_block_no;
 | |
| 	unsigned int max_erases;
 | |
| 	struct weak_block *wb;
 | |
| 
 | |
| 	if (!weakblocks)
 | |
| 		return 0;
 | |
| 	w = weakblocks;
 | |
| 	do {
 | |
| 		zero_ok = (*w == '0' ? 1 : 0);
 | |
| 		erase_block_no = simple_strtoul(w, &w, 0);
 | |
| 		if (!zero_ok && !erase_block_no) {
 | |
| 			NS_ERR("invalid weakblocks.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		max_erases = 3;
 | |
| 		if (*w == ':') {
 | |
| 			w += 1;
 | |
| 			max_erases = simple_strtoul(w, &w, 0);
 | |
| 		}
 | |
| 		if (*w == ',')
 | |
| 			w += 1;
 | |
| 		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
 | |
| 		if (!wb) {
 | |
| 			NS_ERR("unable to allocate memory.\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		wb->erase_block_no = erase_block_no;
 | |
| 		wb->max_erases = max_erases;
 | |
| 		list_add(&wb->list, &weak_blocks);
 | |
| 	} while (*w);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int erase_error(unsigned int erase_block_no)
 | |
| {
 | |
| 	struct weak_block *wb;
 | |
| 
 | |
| 	list_for_each_entry(wb, &weak_blocks, list)
 | |
| 		if (wb->erase_block_no == erase_block_no) {
 | |
| 			if (wb->erases_done >= wb->max_erases)
 | |
| 				return 1;
 | |
| 			wb->erases_done += 1;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_weakpages(void)
 | |
| {
 | |
| 	char *w;
 | |
| 	int zero_ok;
 | |
| 	unsigned int page_no;
 | |
| 	unsigned int max_writes;
 | |
| 	struct weak_page *wp;
 | |
| 
 | |
| 	if (!weakpages)
 | |
| 		return 0;
 | |
| 	w = weakpages;
 | |
| 	do {
 | |
| 		zero_ok = (*w == '0' ? 1 : 0);
 | |
| 		page_no = simple_strtoul(w, &w, 0);
 | |
| 		if (!zero_ok && !page_no) {
 | |
| 			NS_ERR("invalid weakpagess.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		max_writes = 3;
 | |
| 		if (*w == ':') {
 | |
| 			w += 1;
 | |
| 			max_writes = simple_strtoul(w, &w, 0);
 | |
| 		}
 | |
| 		if (*w == ',')
 | |
| 			w += 1;
 | |
| 		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
 | |
| 		if (!wp) {
 | |
| 			NS_ERR("unable to allocate memory.\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		wp->page_no = page_no;
 | |
| 		wp->max_writes = max_writes;
 | |
| 		list_add(&wp->list, &weak_pages);
 | |
| 	} while (*w);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int write_error(unsigned int page_no)
 | |
| {
 | |
| 	struct weak_page *wp;
 | |
| 
 | |
| 	list_for_each_entry(wp, &weak_pages, list)
 | |
| 		if (wp->page_no == page_no) {
 | |
| 			if (wp->writes_done >= wp->max_writes)
 | |
| 				return 1;
 | |
| 			wp->writes_done += 1;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int parse_gravepages(void)
 | |
| {
 | |
| 	char *g;
 | |
| 	int zero_ok;
 | |
| 	unsigned int page_no;
 | |
| 	unsigned int max_reads;
 | |
| 	struct grave_page *gp;
 | |
| 
 | |
| 	if (!gravepages)
 | |
| 		return 0;
 | |
| 	g = gravepages;
 | |
| 	do {
 | |
| 		zero_ok = (*g == '0' ? 1 : 0);
 | |
| 		page_no = simple_strtoul(g, &g, 0);
 | |
| 		if (!zero_ok && !page_no) {
 | |
| 			NS_ERR("invalid gravepagess.\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		max_reads = 3;
 | |
| 		if (*g == ':') {
 | |
| 			g += 1;
 | |
| 			max_reads = simple_strtoul(g, &g, 0);
 | |
| 		}
 | |
| 		if (*g == ',')
 | |
| 			g += 1;
 | |
| 		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
 | |
| 		if (!gp) {
 | |
| 			NS_ERR("unable to allocate memory.\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 		gp->page_no = page_no;
 | |
| 		gp->max_reads = max_reads;
 | |
| 		list_add(&gp->list, &grave_pages);
 | |
| 	} while (*g);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int read_error(unsigned int page_no)
 | |
| {
 | |
| 	struct grave_page *gp;
 | |
| 
 | |
| 	list_for_each_entry(gp, &grave_pages, list)
 | |
| 		if (gp->page_no == page_no) {
 | |
| 			if (gp->reads_done >= gp->max_reads)
 | |
| 				return 1;
 | |
| 			gp->reads_done += 1;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_lists(void)
 | |
| {
 | |
| 	struct list_head *pos, *n;
 | |
| 	list_for_each_safe(pos, n, &weak_blocks) {
 | |
| 		list_del(pos);
 | |
| 		kfree(list_entry(pos, struct weak_block, list));
 | |
| 	}
 | |
| 	list_for_each_safe(pos, n, &weak_pages) {
 | |
| 		list_del(pos);
 | |
| 		kfree(list_entry(pos, struct weak_page, list));
 | |
| 	}
 | |
| 	list_for_each_safe(pos, n, &grave_pages) {
 | |
| 		list_del(pos);
 | |
| 		kfree(list_entry(pos, struct grave_page, list));
 | |
| 	}
 | |
| 	kfree(erase_block_wear);
 | |
| }
 | |
| 
 | |
| static int setup_wear_reporting(struct mtd_info *mtd)
 | |
| {
 | |
| 	size_t mem;
 | |
| 
 | |
| 	if (!rptwear)
 | |
| 		return 0;
 | |
| 	wear_eb_count = divide(mtd->size, mtd->erasesize);
 | |
| 	mem = wear_eb_count * sizeof(unsigned long);
 | |
| 	if (mem / sizeof(unsigned long) != wear_eb_count) {
 | |
| 		NS_ERR("Too many erase blocks for wear reporting\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	erase_block_wear = kzalloc(mem, GFP_KERNEL);
 | |
| 	if (!erase_block_wear) {
 | |
| 		NS_ERR("Too many erase blocks for wear reporting\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void update_wear(unsigned int erase_block_no)
 | |
| {
 | |
| 	unsigned long wmin = -1, wmax = 0, avg;
 | |
| 	unsigned long deciles[10], decile_max[10], tot = 0;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	if (!erase_block_wear)
 | |
| 		return;
 | |
| 	total_wear += 1;
 | |
| 	if (total_wear == 0)
 | |
| 		NS_ERR("Erase counter total overflow\n");
 | |
| 	erase_block_wear[erase_block_no] += 1;
 | |
| 	if (erase_block_wear[erase_block_no] == 0)
 | |
| 		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
 | |
| 	rptwear_cnt += 1;
 | |
| 	if (rptwear_cnt < rptwear)
 | |
| 		return;
 | |
| 	rptwear_cnt = 0;
 | |
| 	/* Calc wear stats */
 | |
| 	for (i = 0; i < wear_eb_count; ++i) {
 | |
| 		unsigned long wear = erase_block_wear[i];
 | |
| 		if (wear < wmin)
 | |
| 			wmin = wear;
 | |
| 		if (wear > wmax)
 | |
| 			wmax = wear;
 | |
| 		tot += wear;
 | |
| 	}
 | |
| 	for (i = 0; i < 9; ++i) {
 | |
| 		deciles[i] = 0;
 | |
| 		decile_max[i] = (wmax * (i + 1) + 5) / 10;
 | |
| 	}
 | |
| 	deciles[9] = 0;
 | |
| 	decile_max[9] = wmax;
 | |
| 	for (i = 0; i < wear_eb_count; ++i) {
 | |
| 		int d;
 | |
| 		unsigned long wear = erase_block_wear[i];
 | |
| 		for (d = 0; d < 10; ++d)
 | |
| 			if (wear <= decile_max[d]) {
 | |
| 				deciles[d] += 1;
 | |
| 				break;
 | |
| 			}
 | |
| 	}
 | |
| 	avg = tot / wear_eb_count;
 | |
| 	/* Output wear report */
 | |
| 	NS_INFO("*** Wear Report ***\n");
 | |
| 	NS_INFO("Total numbers of erases:  %lu\n", tot);
 | |
| 	NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
 | |
| 	NS_INFO("Average number of erases: %lu\n", avg);
 | |
| 	NS_INFO("Maximum number of erases: %lu\n", wmax);
 | |
| 	NS_INFO("Minimum number of erases: %lu\n", wmin);
 | |
| 	for (i = 0; i < 10; ++i) {
 | |
| 		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
 | |
| 		if (from > decile_max[i])
 | |
| 			continue;
 | |
| 		NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
 | |
| 			from,
 | |
| 			decile_max[i],
 | |
| 			deciles[i]);
 | |
| 	}
 | |
| 	NS_INFO("*** End of Wear Report ***\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the string representation of 'state' state.
 | |
|  */
 | |
| static char *get_state_name(uint32_t state)
 | |
| {
 | |
| 	switch (NS_STATE(state)) {
 | |
| 		case STATE_CMD_READ0:
 | |
| 			return "STATE_CMD_READ0";
 | |
| 		case STATE_CMD_READ1:
 | |
| 			return "STATE_CMD_READ1";
 | |
| 		case STATE_CMD_PAGEPROG:
 | |
| 			return "STATE_CMD_PAGEPROG";
 | |
| 		case STATE_CMD_READOOB:
 | |
| 			return "STATE_CMD_READOOB";
 | |
| 		case STATE_CMD_READSTART:
 | |
| 			return "STATE_CMD_READSTART";
 | |
| 		case STATE_CMD_ERASE1:
 | |
| 			return "STATE_CMD_ERASE1";
 | |
| 		case STATE_CMD_STATUS:
 | |
| 			return "STATE_CMD_STATUS";
 | |
| 		case STATE_CMD_STATUS_M:
 | |
| 			return "STATE_CMD_STATUS_M";
 | |
| 		case STATE_CMD_SEQIN:
 | |
| 			return "STATE_CMD_SEQIN";
 | |
| 		case STATE_CMD_READID:
 | |
| 			return "STATE_CMD_READID";
 | |
| 		case STATE_CMD_ERASE2:
 | |
| 			return "STATE_CMD_ERASE2";
 | |
| 		case STATE_CMD_RESET:
 | |
| 			return "STATE_CMD_RESET";
 | |
| 		case STATE_CMD_RNDOUT:
 | |
| 			return "STATE_CMD_RNDOUT";
 | |
| 		case STATE_CMD_RNDOUTSTART:
 | |
| 			return "STATE_CMD_RNDOUTSTART";
 | |
| 		case STATE_ADDR_PAGE:
 | |
| 			return "STATE_ADDR_PAGE";
 | |
| 		case STATE_ADDR_SEC:
 | |
| 			return "STATE_ADDR_SEC";
 | |
| 		case STATE_ADDR_ZERO:
 | |
| 			return "STATE_ADDR_ZERO";
 | |
| 		case STATE_ADDR_COLUMN:
 | |
| 			return "STATE_ADDR_COLUMN";
 | |
| 		case STATE_DATAIN:
 | |
| 			return "STATE_DATAIN";
 | |
| 		case STATE_DATAOUT:
 | |
| 			return "STATE_DATAOUT";
 | |
| 		case STATE_DATAOUT_ID:
 | |
| 			return "STATE_DATAOUT_ID";
 | |
| 		case STATE_DATAOUT_STATUS:
 | |
| 			return "STATE_DATAOUT_STATUS";
 | |
| 		case STATE_DATAOUT_STATUS_M:
 | |
| 			return "STATE_DATAOUT_STATUS_M";
 | |
| 		case STATE_READY:
 | |
| 			return "STATE_READY";
 | |
| 		case STATE_UNKNOWN:
 | |
| 			return "STATE_UNKNOWN";
 | |
| 	}
 | |
| 
 | |
| 	NS_ERR("get_state_name: unknown state, BUG\n");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if command is valid.
 | |
|  *
 | |
|  * RETURNS: 1 if wrong command, 0 if right.
 | |
|  */
 | |
| static int check_command(int cmd)
 | |
| {
 | |
| 	switch (cmd) {
 | |
| 
 | |
| 	case NAND_CMD_READ0:
 | |
| 	case NAND_CMD_READ1:
 | |
| 	case NAND_CMD_READSTART:
 | |
| 	case NAND_CMD_PAGEPROG:
 | |
| 	case NAND_CMD_READOOB:
 | |
| 	case NAND_CMD_ERASE1:
 | |
| 	case NAND_CMD_STATUS:
 | |
| 	case NAND_CMD_SEQIN:
 | |
| 	case NAND_CMD_READID:
 | |
| 	case NAND_CMD_ERASE2:
 | |
| 	case NAND_CMD_RESET:
 | |
| 	case NAND_CMD_RNDOUT:
 | |
| 	case NAND_CMD_RNDOUTSTART:
 | |
| 		return 0;
 | |
| 
 | |
| 	case NAND_CMD_STATUS_MULTI:
 | |
| 	default:
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns state after command is accepted by command number.
 | |
|  */
 | |
| static uint32_t get_state_by_command(unsigned command)
 | |
| {
 | |
| 	switch (command) {
 | |
| 		case NAND_CMD_READ0:
 | |
| 			return STATE_CMD_READ0;
 | |
| 		case NAND_CMD_READ1:
 | |
| 			return STATE_CMD_READ1;
 | |
| 		case NAND_CMD_PAGEPROG:
 | |
| 			return STATE_CMD_PAGEPROG;
 | |
| 		case NAND_CMD_READSTART:
 | |
| 			return STATE_CMD_READSTART;
 | |
| 		case NAND_CMD_READOOB:
 | |
| 			return STATE_CMD_READOOB;
 | |
| 		case NAND_CMD_ERASE1:
 | |
| 			return STATE_CMD_ERASE1;
 | |
| 		case NAND_CMD_STATUS:
 | |
| 			return STATE_CMD_STATUS;
 | |
| 		case NAND_CMD_STATUS_MULTI:
 | |
| 			return STATE_CMD_STATUS_M;
 | |
| 		case NAND_CMD_SEQIN:
 | |
| 			return STATE_CMD_SEQIN;
 | |
| 		case NAND_CMD_READID:
 | |
| 			return STATE_CMD_READID;
 | |
| 		case NAND_CMD_ERASE2:
 | |
| 			return STATE_CMD_ERASE2;
 | |
| 		case NAND_CMD_RESET:
 | |
| 			return STATE_CMD_RESET;
 | |
| 		case NAND_CMD_RNDOUT:
 | |
| 			return STATE_CMD_RNDOUT;
 | |
| 		case NAND_CMD_RNDOUTSTART:
 | |
| 			return STATE_CMD_RNDOUTSTART;
 | |
| 	}
 | |
| 
 | |
| 	NS_ERR("get_state_by_command: unknown command, BUG\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move an address byte to the correspondent internal register.
 | |
|  */
 | |
| static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
 | |
| {
 | |
| 	uint byte = (uint)bt;
 | |
| 
 | |
| 	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
 | |
| 		ns->regs.column |= (byte << 8 * ns->regs.count);
 | |
| 	else {
 | |
| 		ns->regs.row |= (byte << 8 * (ns->regs.count -
 | |
| 						ns->geom.pgaddrbytes +
 | |
| 						ns->geom.secaddrbytes));
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch to STATE_READY state.
 | |
|  */
 | |
| static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
 | |
| {
 | |
| 	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
 | |
| 
 | |
| 	ns->state       = STATE_READY;
 | |
| 	ns->nxstate     = STATE_UNKNOWN;
 | |
| 	ns->op          = NULL;
 | |
| 	ns->npstates    = 0;
 | |
| 	ns->stateidx    = 0;
 | |
| 	ns->regs.num    = 0;
 | |
| 	ns->regs.count  = 0;
 | |
| 	ns->regs.off    = 0;
 | |
| 	ns->regs.row    = 0;
 | |
| 	ns->regs.column = 0;
 | |
| 	ns->regs.status = status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If the operation isn't known yet, try to find it in the global array
 | |
|  * of supported operations.
 | |
|  *
 | |
|  * Operation can be unknown because of the following.
 | |
|  *   1. New command was accepted and this is the firs call to find the
 | |
|  *      correspondent states chain. In this case ns->npstates = 0;
 | |
|  *   2. There is several operations which begin with the same command(s)
 | |
|  *      (for example program from the second half and read from the
 | |
|  *      second half operations both begin with the READ1 command). In this
 | |
|  *      case the ns->pstates[] array contains previous states.
 | |
|  *
 | |
|  * Thus, the function tries to find operation containing the following
 | |
|  * states (if the 'flag' parameter is 0):
 | |
|  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
 | |
|  *
 | |
|  * If (one and only one) matching operation is found, it is accepted (
 | |
|  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
 | |
|  * zeroed).
 | |
|  *
 | |
|  * If there are several maches, the current state is pushed to the
 | |
|  * ns->pstates.
 | |
|  *
 | |
|  * The operation can be unknown only while commands are input to the chip.
 | |
|  * As soon as address command is accepted, the operation must be known.
 | |
|  * In such situation the function is called with 'flag' != 0, and the
 | |
|  * operation is searched using the following pattern:
 | |
|  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
 | |
|  *
 | |
|  * It is supposed that this pattern must either match one operation on
 | |
|  * none. There can't be ambiguity in that case.
 | |
|  *
 | |
|  * If no matches found, the functions does the following:
 | |
|  *   1. if there are saved states present, try to ignore them and search
 | |
|  *      again only using the last command. If nothing was found, switch
 | |
|  *      to the STATE_READY state.
 | |
|  *   2. if there are no saved states, switch to the STATE_READY state.
 | |
|  *
 | |
|  * RETURNS: -2 - no matched operations found.
 | |
|  *          -1 - several matches.
 | |
|  *           0 - operation is found.
 | |
|  */
 | |
| static int find_operation(struct nandsim *ns, uint32_t flag)
 | |
| {
 | |
| 	int opsfound = 0;
 | |
| 	int i, j, idx = 0;
 | |
| 
 | |
| 	for (i = 0; i < NS_OPER_NUM; i++) {
 | |
| 
 | |
| 		int found = 1;
 | |
| 
 | |
| 		if (!(ns->options & ops[i].reqopts))
 | |
| 			/* Ignore operations we can't perform */
 | |
| 			continue;
 | |
| 
 | |
| 		if (flag) {
 | |
| 			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
 | |
| 				continue;
 | |
| 		} else {
 | |
| 			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		for (j = 0; j < ns->npstates; j++)
 | |
| 			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
 | |
| 				&& (ns->options & ops[idx].reqopts)) {
 | |
| 				found = 0;
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 		if (found) {
 | |
| 			idx = i;
 | |
| 			opsfound += 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (opsfound == 1) {
 | |
| 		/* Exact match */
 | |
| 		ns->op = &ops[idx].states[0];
 | |
| 		if (flag) {
 | |
| 			/*
 | |
| 			 * In this case the find_operation function was
 | |
| 			 * called when address has just began input. But it isn't
 | |
| 			 * yet fully input and the current state must
 | |
| 			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
 | |
| 			 * state must be the next state (ns->nxstate).
 | |
| 			 */
 | |
| 			ns->stateidx = ns->npstates - 1;
 | |
| 		} else {
 | |
| 			ns->stateidx = ns->npstates;
 | |
| 		}
 | |
| 		ns->npstates = 0;
 | |
| 		ns->state = ns->op[ns->stateidx];
 | |
| 		ns->nxstate = ns->op[ns->stateidx + 1];
 | |
| 		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
 | |
| 				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (opsfound == 0) {
 | |
| 		/* Nothing was found. Try to ignore previous commands (if any) and search again */
 | |
| 		if (ns->npstates != 0) {
 | |
| 			NS_DBG("find_operation: no operation found, try again with state %s\n",
 | |
| 					get_state_name(ns->state));
 | |
| 			ns->npstates = 0;
 | |
| 			return find_operation(ns, 0);
 | |
| 
 | |
| 		}
 | |
| 		NS_DBG("find_operation: no operations found\n");
 | |
| 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 		return -2;
 | |
| 	}
 | |
| 
 | |
| 	if (flag) {
 | |
| 		/* This shouldn't happen */
 | |
| 		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
 | |
| 		return -2;
 | |
| 	}
 | |
| 
 | |
| 	NS_DBG("find_operation: there is still ambiguity\n");
 | |
| 
 | |
| 	ns->pstates[ns->npstates++] = ns->state;
 | |
| 
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static void put_pages(struct nandsim *ns)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ns->held_cnt; i++)
 | |
| 		page_cache_release(ns->held_pages[i]);
 | |
| }
 | |
| 
 | |
| /* Get page cache pages in advance to provide NOFS memory allocation */
 | |
| static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
 | |
| {
 | |
| 	pgoff_t index, start_index, end_index;
 | |
| 	struct page *page;
 | |
| 	struct address_space *mapping = file->f_mapping;
 | |
| 
 | |
| 	start_index = pos >> PAGE_CACHE_SHIFT;
 | |
| 	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 | |
| 	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
 | |
| 		return -EINVAL;
 | |
| 	ns->held_cnt = 0;
 | |
| 	for (index = start_index; index <= end_index; index++) {
 | |
| 		page = find_get_page(mapping, index);
 | |
| 		if (page == NULL) {
 | |
| 			page = find_or_create_page(mapping, index, GFP_NOFS);
 | |
| 			if (page == NULL) {
 | |
| 				write_inode_now(mapping->host, 1);
 | |
| 				page = find_or_create_page(mapping, index, GFP_NOFS);
 | |
| 			}
 | |
| 			if (page == NULL) {
 | |
| 				put_pages(ns);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 			unlock_page(page);
 | |
| 		}
 | |
| 		ns->held_pages[ns->held_cnt++] = page;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_memalloc(void)
 | |
| {
 | |
| 	if (current->flags & PF_MEMALLOC)
 | |
| 		return 0;
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void clear_memalloc(int memalloc)
 | |
| {
 | |
| 	if (memalloc)
 | |
| 		current->flags &= ~PF_MEMALLOC;
 | |
| }
 | |
| 
 | |
| static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
 | |
| {
 | |
| 	mm_segment_t old_fs;
 | |
| 	ssize_t tx;
 | |
| 	int err, memalloc;
 | |
| 
 | |
| 	err = get_pages(ns, file, count, *pos);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	old_fs = get_fs();
 | |
| 	set_fs(get_ds());
 | |
| 	memalloc = set_memalloc();
 | |
| 	tx = vfs_read(file, (char __user *)buf, count, pos);
 | |
| 	clear_memalloc(memalloc);
 | |
| 	set_fs(old_fs);
 | |
| 	put_pages(ns);
 | |
| 	return tx;
 | |
| }
 | |
| 
 | |
| static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
 | |
| {
 | |
| 	mm_segment_t old_fs;
 | |
| 	ssize_t tx;
 | |
| 	int err, memalloc;
 | |
| 
 | |
| 	err = get_pages(ns, file, count, *pos);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 	old_fs = get_fs();
 | |
| 	set_fs(get_ds());
 | |
| 	memalloc = set_memalloc();
 | |
| 	tx = vfs_write(file, (char __user *)buf, count, pos);
 | |
| 	clear_memalloc(memalloc);
 | |
| 	set_fs(old_fs);
 | |
| 	put_pages(ns);
 | |
| 	return tx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns a pointer to the current page.
 | |
|  */
 | |
| static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
 | |
| {
 | |
| 	return &(ns->pages[ns->regs.row]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retuns a pointer to the current byte, within the current page.
 | |
|  */
 | |
| static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
 | |
| {
 | |
| 	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
 | |
| }
 | |
| 
 | |
| int do_read_error(struct nandsim *ns, int num)
 | |
| {
 | |
| 	unsigned int page_no = ns->regs.row;
 | |
| 
 | |
| 	if (read_error(page_no)) {
 | |
| 		int i;
 | |
| 		memset(ns->buf.byte, 0xFF, num);
 | |
| 		for (i = 0; i < num; ++i)
 | |
| 			ns->buf.byte[i] = random32();
 | |
| 		NS_WARN("simulating read error in page %u\n", page_no);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void do_bit_flips(struct nandsim *ns, int num)
 | |
| {
 | |
| 	if (bitflips && random32() < (1 << 22)) {
 | |
| 		int flips = 1;
 | |
| 		if (bitflips > 1)
 | |
| 			flips = (random32() % (int) bitflips) + 1;
 | |
| 		while (flips--) {
 | |
| 			int pos = random32() % (num * 8);
 | |
| 			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
 | |
| 			NS_WARN("read_page: flipping bit %d in page %d "
 | |
| 				"reading from %d ecc: corrected=%u failed=%u\n",
 | |
| 				pos, ns->regs.row, ns->regs.column + ns->regs.off,
 | |
| 				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Fill the NAND buffer with data read from the specified page.
 | |
|  */
 | |
| static void read_page(struct nandsim *ns, int num)
 | |
| {
 | |
| 	union ns_mem *mypage;
 | |
| 
 | |
| 	if (ns->cfile) {
 | |
| 		if (!ns->pages_written[ns->regs.row]) {
 | |
| 			NS_DBG("read_page: page %d not written\n", ns->regs.row);
 | |
| 			memset(ns->buf.byte, 0xFF, num);
 | |
| 		} else {
 | |
| 			loff_t pos;
 | |
| 			ssize_t tx;
 | |
| 
 | |
| 			NS_DBG("read_page: page %d written, reading from %d\n",
 | |
| 				ns->regs.row, ns->regs.column + ns->regs.off);
 | |
| 			if (do_read_error(ns, num))
 | |
| 				return;
 | |
| 			pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
 | |
| 			tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
 | |
| 			if (tx != num) {
 | |
| 				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
 | |
| 				return;
 | |
| 			}
 | |
| 			do_bit_flips(ns, num);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mypage = NS_GET_PAGE(ns);
 | |
| 	if (mypage->byte == NULL) {
 | |
| 		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
 | |
| 		memset(ns->buf.byte, 0xFF, num);
 | |
| 	} else {
 | |
| 		NS_DBG("read_page: page %d allocated, reading from %d\n",
 | |
| 			ns->regs.row, ns->regs.column + ns->regs.off);
 | |
| 		if (do_read_error(ns, num))
 | |
| 			return;
 | |
| 		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
 | |
| 		do_bit_flips(ns, num);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Erase all pages in the specified sector.
 | |
|  */
 | |
| static void erase_sector(struct nandsim *ns)
 | |
| {
 | |
| 	union ns_mem *mypage;
 | |
| 	int i;
 | |
| 
 | |
| 	if (ns->cfile) {
 | |
| 		for (i = 0; i < ns->geom.pgsec; i++)
 | |
| 			if (ns->pages_written[ns->regs.row + i]) {
 | |
| 				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
 | |
| 				ns->pages_written[ns->regs.row + i] = 0;
 | |
| 			}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mypage = NS_GET_PAGE(ns);
 | |
| 	for (i = 0; i < ns->geom.pgsec; i++) {
 | |
| 		if (mypage->byte != NULL) {
 | |
| 			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
 | |
| 			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
 | |
| 			mypage->byte = NULL;
 | |
| 		}
 | |
| 		mypage++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Program the specified page with the contents from the NAND buffer.
 | |
|  */
 | |
| static int prog_page(struct nandsim *ns, int num)
 | |
| {
 | |
| 	int i;
 | |
| 	union ns_mem *mypage;
 | |
| 	u_char *pg_off;
 | |
| 
 | |
| 	if (ns->cfile) {
 | |
| 		loff_t off, pos;
 | |
| 		ssize_t tx;
 | |
| 		int all;
 | |
| 
 | |
| 		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
 | |
| 		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
 | |
| 		off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
 | |
| 		if (!ns->pages_written[ns->regs.row]) {
 | |
| 			all = 1;
 | |
| 			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
 | |
| 		} else {
 | |
| 			all = 0;
 | |
| 			pos = off;
 | |
| 			tx = read_file(ns, ns->cfile, pg_off, num, &pos);
 | |
| 			if (tx != num) {
 | |
| 				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 		for (i = 0; i < num; i++)
 | |
| 			pg_off[i] &= ns->buf.byte[i];
 | |
| 		if (all) {
 | |
| 			pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
 | |
| 			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
 | |
| 			if (tx != ns->geom.pgszoob) {
 | |
| 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
 | |
| 				return -1;
 | |
| 			}
 | |
| 			ns->pages_written[ns->regs.row] = 1;
 | |
| 		} else {
 | |
| 			pos = off;
 | |
| 			tx = write_file(ns, ns->cfile, pg_off, num, &pos);
 | |
| 			if (tx != num) {
 | |
| 				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
 | |
| 				return -1;
 | |
| 			}
 | |
| 		}
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	mypage = NS_GET_PAGE(ns);
 | |
| 	if (mypage->byte == NULL) {
 | |
| 		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
 | |
| 		/*
 | |
| 		 * We allocate memory with GFP_NOFS because a flash FS may
 | |
| 		 * utilize this. If it is holding an FS lock, then gets here,
 | |
| 		 * then kernel memory alloc runs writeback which goes to the FS
 | |
| 		 * again and deadlocks. This was seen in practice.
 | |
| 		 */
 | |
| 		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
 | |
| 		if (mypage->byte == NULL) {
 | |
| 			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
 | |
| 			return -1;
 | |
| 		}
 | |
| 		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
 | |
| 	}
 | |
| 
 | |
| 	pg_off = NS_PAGE_BYTE_OFF(ns);
 | |
| 	for (i = 0; i < num; i++)
 | |
| 		pg_off[i] &= ns->buf.byte[i];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * If state has any action bit, perform this action.
 | |
|  *
 | |
|  * RETURNS: 0 if success, -1 if error.
 | |
|  */
 | |
| static int do_state_action(struct nandsim *ns, uint32_t action)
 | |
| {
 | |
| 	int num;
 | |
| 	int busdiv = ns->busw == 8 ? 1 : 2;
 | |
| 	unsigned int erase_block_no, page_no;
 | |
| 
 | |
| 	action &= ACTION_MASK;
 | |
| 
 | |
| 	/* Check that page address input is correct */
 | |
| 	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
 | |
| 		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	switch (action) {
 | |
| 
 | |
| 	case ACTION_CPY:
 | |
| 		/*
 | |
| 		 * Copy page data to the internal buffer.
 | |
| 		 */
 | |
| 
 | |
| 		/* Column shouldn't be very large */
 | |
| 		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
 | |
| 			NS_ERR("do_state_action: column number is too large\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
 | |
| 		read_page(ns, num);
 | |
| 
 | |
| 		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
 | |
| 			num, NS_RAW_OFFSET(ns) + ns->regs.off);
 | |
| 
 | |
| 		if (ns->regs.off == 0)
 | |
| 			NS_LOG("read page %d\n", ns->regs.row);
 | |
| 		else if (ns->regs.off < ns->geom.pgsz)
 | |
| 			NS_LOG("read page %d (second half)\n", ns->regs.row);
 | |
| 		else
 | |
| 			NS_LOG("read OOB of page %d\n", ns->regs.row);
 | |
| 
 | |
| 		NS_UDELAY(access_delay);
 | |
| 		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case ACTION_SECERASE:
 | |
| 		/*
 | |
| 		 * Erase sector.
 | |
| 		 */
 | |
| 
 | |
| 		if (ns->lines.wp) {
 | |
| 			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
 | |
| 			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
 | |
| 			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		ns->regs.row = (ns->regs.row <<
 | |
| 				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
 | |
| 		ns->regs.column = 0;
 | |
| 
 | |
| 		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
 | |
| 
 | |
| 		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
 | |
| 				ns->regs.row, NS_RAW_OFFSET(ns));
 | |
| 		NS_LOG("erase sector %u\n", erase_block_no);
 | |
| 
 | |
| 		erase_sector(ns);
 | |
| 
 | |
| 		NS_MDELAY(erase_delay);
 | |
| 
 | |
| 		if (erase_block_wear)
 | |
| 			update_wear(erase_block_no);
 | |
| 
 | |
| 		if (erase_error(erase_block_no)) {
 | |
| 			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case ACTION_PRGPAGE:
 | |
| 		/*
 | |
| 		 * Programm page - move internal buffer data to the page.
 | |
| 		 */
 | |
| 
 | |
| 		if (ns->lines.wp) {
 | |
| 			NS_WARN("do_state_action: device is write-protected, programm\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
 | |
| 		if (num != ns->regs.count) {
 | |
| 			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
 | |
| 					ns->regs.count, num);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		if (prog_page(ns, num) == -1)
 | |
| 			return -1;
 | |
| 
 | |
| 		page_no = ns->regs.row;
 | |
| 
 | |
| 		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
 | |
| 			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
 | |
| 		NS_LOG("programm page %d\n", ns->regs.row);
 | |
| 
 | |
| 		NS_UDELAY(programm_delay);
 | |
| 		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
 | |
| 
 | |
| 		if (write_error(page_no)) {
 | |
| 			NS_WARN("simulating write failure in page %u\n", page_no);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 
 | |
| 	case ACTION_ZEROOFF:
 | |
| 		NS_DBG("do_state_action: set internal offset to 0\n");
 | |
| 		ns->regs.off = 0;
 | |
| 		break;
 | |
| 
 | |
| 	case ACTION_HALFOFF:
 | |
| 		if (!(ns->options & OPT_PAGE512_8BIT)) {
 | |
| 			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
 | |
| 				"byte page size 8x chips\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
 | |
| 		ns->regs.off = ns->geom.pgsz/2;
 | |
| 		break;
 | |
| 
 | |
| 	case ACTION_OOBOFF:
 | |
| 		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
 | |
| 		ns->regs.off = ns->geom.pgsz;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		NS_DBG("do_state_action: BUG! unknown action\n");
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Switch simulator's state.
 | |
|  */
 | |
| static void switch_state(struct nandsim *ns)
 | |
| {
 | |
| 	if (ns->op) {
 | |
| 		/*
 | |
| 		 * The current operation have already been identified.
 | |
| 		 * Just follow the states chain.
 | |
| 		 */
 | |
| 
 | |
| 		ns->stateidx += 1;
 | |
| 		ns->state = ns->nxstate;
 | |
| 		ns->nxstate = ns->op[ns->stateidx + 1];
 | |
| 
 | |
| 		NS_DBG("switch_state: operation is known, switch to the next state, "
 | |
| 			"state: %s, nxstate: %s\n",
 | |
| 			get_state_name(ns->state), get_state_name(ns->nxstate));
 | |
| 
 | |
| 		/* See, whether we need to do some action */
 | |
| 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
 | |
| 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * We don't yet know which operation we perform.
 | |
| 		 * Try to identify it.
 | |
| 		 */
 | |
| 
 | |
| 		/*
 | |
| 		 *  The only event causing the switch_state function to
 | |
| 		 *  be called with yet unknown operation is new command.
 | |
| 		 */
 | |
| 		ns->state = get_state_by_command(ns->regs.command);
 | |
| 
 | |
| 		NS_DBG("switch_state: operation is unknown, try to find it\n");
 | |
| 
 | |
| 		if (find_operation(ns, 0) != 0)
 | |
| 			return;
 | |
| 
 | |
| 		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
 | |
| 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* For 16x devices column means the page offset in words */
 | |
| 	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
 | |
| 		NS_DBG("switch_state: double the column number for 16x device\n");
 | |
| 		ns->regs.column <<= 1;
 | |
| 	}
 | |
| 
 | |
| 	if (NS_STATE(ns->nxstate) == STATE_READY) {
 | |
| 		/*
 | |
| 		 * The current state is the last. Return to STATE_READY
 | |
| 		 */
 | |
| 
 | |
| 		u_char status = NS_STATUS_OK(ns);
 | |
| 
 | |
| 		/* In case of data states, see if all bytes were input/output */
 | |
| 		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
 | |
| 			&& ns->regs.count != ns->regs.num) {
 | |
| 			NS_WARN("switch_state: not all bytes were processed, %d left\n",
 | |
| 					ns->regs.num - ns->regs.count);
 | |
| 			status = NS_STATUS_FAILED(ns);
 | |
| 		}
 | |
| 
 | |
| 		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
 | |
| 
 | |
| 		switch_to_ready_state(ns, status);
 | |
| 
 | |
| 		return;
 | |
| 	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
 | |
| 		/*
 | |
| 		 * If the next state is data input/output, switch to it now
 | |
| 		 */
 | |
| 
 | |
| 		ns->state      = ns->nxstate;
 | |
| 		ns->nxstate    = ns->op[++ns->stateidx + 1];
 | |
| 		ns->regs.num   = ns->regs.count = 0;
 | |
| 
 | |
| 		NS_DBG("switch_state: the next state is data I/O, switch, "
 | |
| 			"state: %s, nxstate: %s\n",
 | |
| 			get_state_name(ns->state), get_state_name(ns->nxstate));
 | |
| 
 | |
| 		/*
 | |
| 		 * Set the internal register to the count of bytes which
 | |
| 		 * are expected to be input or output
 | |
| 		 */
 | |
| 		switch (NS_STATE(ns->state)) {
 | |
| 			case STATE_DATAIN:
 | |
| 			case STATE_DATAOUT:
 | |
| 				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
 | |
| 				break;
 | |
| 
 | |
| 			case STATE_DATAOUT_ID:
 | |
| 				ns->regs.num = ns->geom.idbytes;
 | |
| 				break;
 | |
| 
 | |
| 			case STATE_DATAOUT_STATUS:
 | |
| 			case STATE_DATAOUT_STATUS_M:
 | |
| 				ns->regs.count = ns->regs.num = 0;
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				NS_ERR("switch_state: BUG! unknown data state\n");
 | |
| 		}
 | |
| 
 | |
| 	} else if (ns->nxstate & STATE_ADDR_MASK) {
 | |
| 		/*
 | |
| 		 * If the next state is address input, set the internal
 | |
| 		 * register to the number of expected address bytes
 | |
| 		 */
 | |
| 
 | |
| 		ns->regs.count = 0;
 | |
| 
 | |
| 		switch (NS_STATE(ns->nxstate)) {
 | |
| 			case STATE_ADDR_PAGE:
 | |
| 				ns->regs.num = ns->geom.pgaddrbytes;
 | |
| 
 | |
| 				break;
 | |
| 			case STATE_ADDR_SEC:
 | |
| 				ns->regs.num = ns->geom.secaddrbytes;
 | |
| 				break;
 | |
| 
 | |
| 			case STATE_ADDR_ZERO:
 | |
| 				ns->regs.num = 1;
 | |
| 				break;
 | |
| 
 | |
| 			case STATE_ADDR_COLUMN:
 | |
| 				/* Column address is always 2 bytes */
 | |
| 				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
 | |
| 				break;
 | |
| 
 | |
| 			default:
 | |
| 				NS_ERR("switch_state: BUG! unknown address state\n");
 | |
| 		}
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Just reset internal counters.
 | |
| 		 */
 | |
| 
 | |
| 		ns->regs.num = 0;
 | |
| 		ns->regs.count = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u_char ns_nand_read_byte(struct mtd_info *mtd)
 | |
| {
 | |
|         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
 | |
| 	u_char outb = 0x00;
 | |
| 
 | |
| 	/* Sanity and correctness checks */
 | |
| 	if (!ns->lines.ce) {
 | |
| 		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
 | |
| 		return outb;
 | |
| 	}
 | |
| 	if (ns->lines.ale || ns->lines.cle) {
 | |
| 		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
 | |
| 		return outb;
 | |
| 	}
 | |
| 	if (!(ns->state & STATE_DATAOUT_MASK)) {
 | |
| 		NS_WARN("read_byte: unexpected data output cycle, state is %s "
 | |
| 			"return %#x\n", get_state_name(ns->state), (uint)outb);
 | |
| 		return outb;
 | |
| 	}
 | |
| 
 | |
| 	/* Status register may be read as many times as it is wanted */
 | |
| 	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
 | |
| 		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
 | |
| 		return ns->regs.status;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if there is any data in the internal buffer which may be read */
 | |
| 	if (ns->regs.count == ns->regs.num) {
 | |
| 		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
 | |
| 		return outb;
 | |
| 	}
 | |
| 
 | |
| 	switch (NS_STATE(ns->state)) {
 | |
| 		case STATE_DATAOUT:
 | |
| 			if (ns->busw == 8) {
 | |
| 				outb = ns->buf.byte[ns->regs.count];
 | |
| 				ns->regs.count += 1;
 | |
| 			} else {
 | |
| 				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
 | |
| 				ns->regs.count += 2;
 | |
| 			}
 | |
| 			break;
 | |
| 		case STATE_DATAOUT_ID:
 | |
| 			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
 | |
| 			outb = ns->ids[ns->regs.count];
 | |
| 			ns->regs.count += 1;
 | |
| 			break;
 | |
| 		default:
 | |
| 			BUG();
 | |
| 	}
 | |
| 
 | |
| 	if (ns->regs.count == ns->regs.num) {
 | |
| 		NS_DBG("read_byte: all bytes were read\n");
 | |
| 
 | |
| 		/*
 | |
| 		 * The OPT_AUTOINCR allows to read next conseqitive pages without
 | |
| 		 * new read operation cycle.
 | |
| 		 */
 | |
| 		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
 | |
| 			ns->regs.count = 0;
 | |
| 			if (ns->regs.row + 1 < ns->geom.pgnum)
 | |
| 				ns->regs.row += 1;
 | |
| 			NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
 | |
| 			do_state_action(ns, ACTION_CPY);
 | |
| 		}
 | |
| 		else if (NS_STATE(ns->nxstate) == STATE_READY)
 | |
| 			switch_state(ns);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	return outb;
 | |
| }
 | |
| 
 | |
| static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
 | |
| {
 | |
|         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
 | |
| 
 | |
| 	/* Sanity and correctness checks */
 | |
| 	if (!ns->lines.ce) {
 | |
| 		NS_ERR("write_byte: chip is disabled, ignore write\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (ns->lines.ale && ns->lines.cle) {
 | |
| 		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ns->lines.cle == 1) {
 | |
| 		/*
 | |
| 		 * The byte written is a command.
 | |
| 		 */
 | |
| 
 | |
| 		if (byte == NAND_CMD_RESET) {
 | |
| 			NS_LOG("reset chip\n");
 | |
| 			switch_to_ready_state(ns, NS_STATUS_OK(ns));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Check that the command byte is correct */
 | |
| 		if (check_command(byte)) {
 | |
| 			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
 | |
| 			|| NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
 | |
| 			|| NS_STATE(ns->state) == STATE_DATAOUT) {
 | |
| 			int row = ns->regs.row;
 | |
| 
 | |
| 			switch_state(ns);
 | |
| 			if (byte == NAND_CMD_RNDOUT)
 | |
| 				ns->regs.row = row;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if chip is expecting command */
 | |
| 		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
 | |
| 			/* Do not warn if only 2 id bytes are read */
 | |
| 			if (!(ns->regs.command == NAND_CMD_READID &&
 | |
| 			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
 | |
| 				/*
 | |
| 				 * We are in situation when something else (not command)
 | |
| 				 * was expected but command was input. In this case ignore
 | |
| 				 * previous command(s)/state(s) and accept the last one.
 | |
| 				 */
 | |
| 				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
 | |
| 					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
 | |
| 			}
 | |
| 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 		}
 | |
| 
 | |
| 		NS_DBG("command byte corresponding to %s state accepted\n",
 | |
| 			get_state_name(get_state_by_command(byte)));
 | |
| 		ns->regs.command = byte;
 | |
| 		switch_state(ns);
 | |
| 
 | |
| 	} else if (ns->lines.ale == 1) {
 | |
| 		/*
 | |
| 		 * The byte written is an address.
 | |
| 		 */
 | |
| 
 | |
| 		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
 | |
| 
 | |
| 			NS_DBG("write_byte: operation isn't known yet, identify it\n");
 | |
| 
 | |
| 			if (find_operation(ns, 1) < 0)
 | |
| 				return;
 | |
| 
 | |
| 			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
 | |
| 				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 				return;
 | |
| 			}
 | |
| 
 | |
| 			ns->regs.count = 0;
 | |
| 			switch (NS_STATE(ns->nxstate)) {
 | |
| 				case STATE_ADDR_PAGE:
 | |
| 					ns->regs.num = ns->geom.pgaddrbytes;
 | |
| 					break;
 | |
| 				case STATE_ADDR_SEC:
 | |
| 					ns->regs.num = ns->geom.secaddrbytes;
 | |
| 					break;
 | |
| 				case STATE_ADDR_ZERO:
 | |
| 					ns->regs.num = 1;
 | |
| 					break;
 | |
| 				default:
 | |
| 					BUG();
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Check that chip is expecting address */
 | |
| 		if (!(ns->nxstate & STATE_ADDR_MASK)) {
 | |
| 			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
 | |
| 				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
 | |
| 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if this is expected byte */
 | |
| 		if (ns->regs.count == ns->regs.num) {
 | |
| 			NS_ERR("write_byte: no more address bytes expected\n");
 | |
| 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		accept_addr_byte(ns, byte);
 | |
| 
 | |
| 		ns->regs.count += 1;
 | |
| 
 | |
| 		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
 | |
| 				(uint)byte, ns->regs.count, ns->regs.num);
 | |
| 
 | |
| 		if (ns->regs.count == ns->regs.num) {
 | |
| 			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
 | |
| 			switch_state(ns);
 | |
| 		}
 | |
| 
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The byte written is an input data.
 | |
| 		 */
 | |
| 
 | |
| 		/* Check that chip is expecting data input */
 | |
| 		if (!(ns->state & STATE_DATAIN_MASK)) {
 | |
| 			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
 | |
| 				"switch to %s\n", (uint)byte,
 | |
| 				get_state_name(ns->state), get_state_name(STATE_READY));
 | |
| 			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		/* Check if this is expected byte */
 | |
| 		if (ns->regs.count == ns->regs.num) {
 | |
| 			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
 | |
| 					ns->regs.num);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		if (ns->busw == 8) {
 | |
| 			ns->buf.byte[ns->regs.count] = byte;
 | |
| 			ns->regs.count += 1;
 | |
| 		} else {
 | |
| 			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
 | |
| 			ns->regs.count += 2;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
 | |
| {
 | |
| 	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
 | |
| 
 | |
| 	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
 | |
| 	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
 | |
| 	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
 | |
| 
 | |
| 	if (cmd != NAND_CMD_NONE)
 | |
| 		ns_nand_write_byte(mtd, cmd);
 | |
| }
 | |
| 
 | |
| static int ns_device_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	NS_DBG("device_ready\n");
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static uint16_t ns_nand_read_word(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
 | |
| 
 | |
| 	NS_DBG("read_word\n");
 | |
| 
 | |
| 	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
 | |
| }
 | |
| 
 | |
| static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
 | |
| {
 | |
|         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
 | |
| 
 | |
| 	/* Check that chip is expecting data input */
 | |
| 	if (!(ns->state & STATE_DATAIN_MASK)) {
 | |
| 		NS_ERR("write_buf: data input isn't expected, state is %s, "
 | |
| 			"switch to STATE_READY\n", get_state_name(ns->state));
 | |
| 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if these are expected bytes */
 | |
| 	if (ns->regs.count + len > ns->regs.num) {
 | |
| 		NS_ERR("write_buf: too many input bytes\n");
 | |
| 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ns->buf.byte + ns->regs.count, buf, len);
 | |
| 	ns->regs.count += len;
 | |
| 
 | |
| 	if (ns->regs.count == ns->regs.num) {
 | |
| 		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
 | |
| {
 | |
|         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
 | |
| 
 | |
| 	/* Sanity and correctness checks */
 | |
| 	if (!ns->lines.ce) {
 | |
| 		NS_ERR("read_buf: chip is disabled\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (ns->lines.ale || ns->lines.cle) {
 | |
| 		NS_ERR("read_buf: ALE or CLE pin is high\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	if (!(ns->state & STATE_DATAOUT_MASK)) {
 | |
| 		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
 | |
| 			get_state_name(ns->state));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (NS_STATE(ns->state) != STATE_DATAOUT) {
 | |
| 		int i;
 | |
| 
 | |
| 		for (i = 0; i < len; i++)
 | |
| 			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Check if these are expected bytes */
 | |
| 	if (ns->regs.count + len > ns->regs.num) {
 | |
| 		NS_ERR("read_buf: too many bytes to read\n");
 | |
| 		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(buf, ns->buf.byte + ns->regs.count, len);
 | |
| 	ns->regs.count += len;
 | |
| 
 | |
| 	if (ns->regs.count == ns->regs.num) {
 | |
| 		if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
 | |
| 			ns->regs.count = 0;
 | |
| 			if (ns->regs.row + 1 < ns->geom.pgnum)
 | |
| 				ns->regs.row += 1;
 | |
| 			NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
 | |
| 			do_state_action(ns, ACTION_CPY);
 | |
| 		}
 | |
| 		else if (NS_STATE(ns->nxstate) == STATE_READY)
 | |
| 			switch_state(ns);
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
 | |
| {
 | |
| 	ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
 | |
| 
 | |
| 	if (!memcmp(buf, &ns_verify_buf[0], len)) {
 | |
| 		NS_DBG("verify_buf: the buffer is OK\n");
 | |
| 		return 0;
 | |
| 	} else {
 | |
| 		NS_DBG("verify_buf: the buffer is wrong\n");
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Module initialization function
 | |
|  */
 | |
| static int __init ns_init_module(void)
 | |
| {
 | |
| 	struct nand_chip *chip;
 | |
| 	struct nandsim *nand;
 | |
| 	int retval = -ENOMEM, i;
 | |
| 
 | |
| 	if (bus_width != 8 && bus_width != 16) {
 | |
| 		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
 | |
| 	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
 | |
| 				+ sizeof(struct nandsim), GFP_KERNEL);
 | |
| 	if (!nsmtd) {
 | |
| 		NS_ERR("unable to allocate core structures.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	chip        = (struct nand_chip *)(nsmtd + 1);
 | |
|         nsmtd->priv = (void *)chip;
 | |
| 	nand        = (struct nandsim *)(chip + 1);
 | |
| 	chip->priv  = (void *)nand;
 | |
| 
 | |
| 	/*
 | |
| 	 * Register simulator's callbacks.
 | |
| 	 */
 | |
| 	chip->cmd_ctrl	 = ns_hwcontrol;
 | |
| 	chip->read_byte  = ns_nand_read_byte;
 | |
| 	chip->dev_ready  = ns_device_ready;
 | |
| 	chip->write_buf  = ns_nand_write_buf;
 | |
| 	chip->read_buf   = ns_nand_read_buf;
 | |
| 	chip->verify_buf = ns_nand_verify_buf;
 | |
| 	chip->read_word  = ns_nand_read_word;
 | |
| 	chip->ecc.mode   = NAND_ECC_SOFT;
 | |
| 	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
 | |
| 	/* and 'badblocks' parameters to work */
 | |
| 	chip->options   |= NAND_SKIP_BBTSCAN;
 | |
| 
 | |
| 	/*
 | |
| 	 * Perform minimum nandsim structure initialization to handle
 | |
| 	 * the initial ID read command correctly
 | |
| 	 */
 | |
| 	if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
 | |
| 		nand->geom.idbytes = 4;
 | |
| 	else
 | |
| 		nand->geom.idbytes = 2;
 | |
| 	nand->regs.status = NS_STATUS_OK(nand);
 | |
| 	nand->nxstate = STATE_UNKNOWN;
 | |
| 	nand->options |= OPT_PAGE256; /* temporary value */
 | |
| 	nand->ids[0] = first_id_byte;
 | |
| 	nand->ids[1] = second_id_byte;
 | |
| 	nand->ids[2] = third_id_byte;
 | |
| 	nand->ids[3] = fourth_id_byte;
 | |
| 	if (bus_width == 16) {
 | |
| 		nand->busw = 16;
 | |
| 		chip->options |= NAND_BUSWIDTH_16;
 | |
| 	}
 | |
| 
 | |
| 	nsmtd->owner = THIS_MODULE;
 | |
| 
 | |
| 	if ((retval = parse_weakblocks()) != 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	if ((retval = parse_weakpages()) != 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	if ((retval = parse_gravepages()) != 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	if ((retval = nand_scan(nsmtd, 1)) != 0) {
 | |
| 		NS_ERR("can't register NAND Simulator\n");
 | |
| 		if (retval > 0)
 | |
| 			retval = -ENXIO;
 | |
| 		goto error;
 | |
| 	}
 | |
| 
 | |
| 	if (overridesize) {
 | |
| 		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
 | |
| 		if (new_size >> overridesize != nsmtd->erasesize) {
 | |
| 			NS_ERR("overridesize is too big\n");
 | |
| 			goto err_exit;
 | |
| 		}
 | |
| 		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
 | |
| 		nsmtd->size = new_size;
 | |
| 		chip->chipsize = new_size;
 | |
| 		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
 | |
| 		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
 | |
| 	}
 | |
| 
 | |
| 	if ((retval = setup_wear_reporting(nsmtd)) != 0)
 | |
| 		goto err_exit;
 | |
| 
 | |
| 	if ((retval = init_nandsim(nsmtd)) != 0)
 | |
| 		goto err_exit;
 | |
| 
 | |
| 	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
 | |
| 		goto err_exit;
 | |
| 
 | |
| 	if ((retval = nand_default_bbt(nsmtd)) != 0)
 | |
| 		goto err_exit;
 | |
| 
 | |
| 	/* Register NAND partitions */
 | |
| 	if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
 | |
| 		goto err_exit;
 | |
| 
 | |
|         return 0;
 | |
| 
 | |
| err_exit:
 | |
| 	free_nandsim(nand);
 | |
| 	nand_release(nsmtd);
 | |
| 	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
 | |
| 		kfree(nand->partitions[i].name);
 | |
| error:
 | |
| 	kfree(nsmtd);
 | |
| 	free_lists();
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| module_init(ns_init_module);
 | |
| 
 | |
| /*
 | |
|  * Module clean-up function
 | |
|  */
 | |
| static void __exit ns_cleanup_module(void)
 | |
| {
 | |
| 	struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
 | |
| 	int i;
 | |
| 
 | |
| 	free_nandsim(ns);    /* Free nandsim private resources */
 | |
| 	nand_release(nsmtd); /* Unregister driver */
 | |
| 	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
 | |
| 		kfree(ns->partitions[i].name);
 | |
| 	kfree(nsmtd);        /* Free other structures */
 | |
| 	free_lists();
 | |
| }
 | |
| 
 | |
| module_exit(ns_cleanup_module);
 | |
| 
 | |
| MODULE_LICENSE ("GPL");
 | |
| MODULE_AUTHOR ("Artem B. Bityuckiy");
 | |
| MODULE_DESCRIPTION ("The NAND flash simulator");
 |