585 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			585 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel probes (kprobes) for SuperH
 | |
|  *
 | |
|  * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
 | |
|  * Copyright (C) 2006 Lineo Solutions, Inc.
 | |
|  *
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  */
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| static struct kprobe saved_current_opcode;
 | |
| static struct kprobe saved_next_opcode;
 | |
| static struct kprobe saved_next_opcode2;
 | |
| 
 | |
| #define OPCODE_JMP(x)	(((x) & 0xF0FF) == 0x402b)
 | |
| #define OPCODE_JSR(x)	(((x) & 0xF0FF) == 0x400b)
 | |
| #define OPCODE_BRA(x)	(((x) & 0xF000) == 0xa000)
 | |
| #define OPCODE_BRAF(x)	(((x) & 0xF0FF) == 0x0023)
 | |
| #define OPCODE_BSR(x)	(((x) & 0xF000) == 0xb000)
 | |
| #define OPCODE_BSRF(x)	(((x) & 0xF0FF) == 0x0003)
 | |
| 
 | |
| #define OPCODE_BF_S(x)	(((x) & 0xFF00) == 0x8f00)
 | |
| #define OPCODE_BT_S(x)	(((x) & 0xFF00) == 0x8d00)
 | |
| 
 | |
| #define OPCODE_BF(x)	(((x) & 0xFF00) == 0x8b00)
 | |
| #define OPCODE_BT(x)	(((x) & 0xFF00) == 0x8900)
 | |
| 
 | |
| #define OPCODE_RTS(x)	(((x) & 0x000F) == 0x000b)
 | |
| #define OPCODE_RTE(x)	(((x) & 0xFFFF) == 0x002b)
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
 | |
| 
 | |
| 	if (OPCODE_RTE(opcode))
 | |
| 		return -EFAULT;	/* Bad breakpoint */
 | |
| 
 | |
| 	p->opcode = opcode;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_copy_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 | |
| 	p->opcode = *p->addr;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = BREAKPOINT_INSTRUCTION;
 | |
| 	flush_icache_range((unsigned long)p->addr,
 | |
| 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = p->opcode;
 | |
| 	flush_icache_range((unsigned long)p->addr,
 | |
| 			   (unsigned long)p->addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (*p->addr == BREAKPOINT_INSTRUCTION)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * If an illegal slot instruction exception occurs for an address
 | |
|  * containing a kprobe, remove the probe.
 | |
|  *
 | |
|  * Returns 0 if the exception was handled successfully, 1 otherwise.
 | |
|  */
 | |
| int __kprobes kprobe_handle_illslot(unsigned long pc)
 | |
| {
 | |
| 	struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
 | |
| 
 | |
| 	if (p != NULL) {
 | |
| 		printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
 | |
| 		       (unsigned int)pc + 2);
 | |
| 		unregister_kprobe(p);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (saved_next_opcode.addr != 0x0) {
 | |
| 		arch_disarm_kprobe(p);
 | |
| 		arch_disarm_kprobe(&saved_next_opcode);
 | |
| 		saved_next_opcode.addr = 0x0;
 | |
| 		saved_next_opcode.opcode = 0x0;
 | |
| 
 | |
| 		if (saved_next_opcode2.addr != 0x0) {
 | |
| 			arch_disarm_kprobe(&saved_next_opcode2);
 | |
| 			saved_next_opcode2.addr = 0x0;
 | |
| 			saved_next_opcode2.opcode = 0x0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 					 struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Singlestep is implemented by disabling the current kprobe and setting one
 | |
|  * on the next instruction, following branches. Two probes are set if the
 | |
|  * branch is conditional.
 | |
|  */
 | |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	kprobe_opcode_t *addr = NULL;
 | |
| 	saved_current_opcode.addr = (kprobe_opcode_t *) (regs->pc);
 | |
| 	addr = saved_current_opcode.addr;
 | |
| 
 | |
| 	if (p != NULL) {
 | |
| 		arch_disarm_kprobe(p);
 | |
| 
 | |
| 		if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
 | |
| 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
 | |
| 			saved_next_opcode.addr =
 | |
| 			    (kprobe_opcode_t *) regs->regs[reg_nr];
 | |
| 		} else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
 | |
| 			unsigned long disp = (p->opcode & 0x0FFF);
 | |
| 			saved_next_opcode.addr =
 | |
| 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
 | |
| 
 | |
| 		} else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
 | |
| 			unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
 | |
| 			saved_next_opcode.addr =
 | |
| 			    (kprobe_opcode_t *) (regs->pc + 4 +
 | |
| 						 regs->regs[reg_nr]);
 | |
| 
 | |
| 		} else if (OPCODE_RTS(p->opcode)) {
 | |
| 			saved_next_opcode.addr = (kprobe_opcode_t *) regs->pr;
 | |
| 
 | |
| 		} else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
 | |
| 			unsigned long disp = (p->opcode & 0x00FF);
 | |
| 			/* case 1 */
 | |
| 			saved_next_opcode.addr = p->addr + 1;
 | |
| 			/* case 2 */
 | |
| 			saved_next_opcode2.addr =
 | |
| 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
 | |
| 			saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
 | |
| 			arch_arm_kprobe(&saved_next_opcode2);
 | |
| 
 | |
| 		} else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
 | |
| 			unsigned long disp = (p->opcode & 0x00FF);
 | |
| 			/* case 1 */
 | |
| 			saved_next_opcode.addr = p->addr + 2;
 | |
| 			/* case 2 */
 | |
| 			saved_next_opcode2.addr =
 | |
| 			    (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
 | |
| 			saved_next_opcode2.opcode = *(saved_next_opcode2.addr);
 | |
| 			arch_arm_kprobe(&saved_next_opcode2);
 | |
| 
 | |
| 		} else {
 | |
| 			saved_next_opcode.addr = p->addr + 1;
 | |
| 		}
 | |
| 
 | |
| 		saved_next_opcode.opcode = *(saved_next_opcode.addr);
 | |
| 		arch_arm_kprobe(&saved_next_opcode);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called with kretprobe_lock held */
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *) regs->pr;
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->pr = (unsigned long)kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	int ret = 0;
 | |
| 	kprobe_opcode_t *addr = NULL;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	addr = (kprobe_opcode_t *) (regs->pc);
 | |
| 
 | |
| 	/* Check we're not actually recursing */
 | |
| 	if (kprobe_running()) {
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
 | |
| 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			/* We have reentered the kprobe_handler(), since
 | |
| 			 * another probe was hit while within the handler.
 | |
| 			 * We here save the original kprobes variables and
 | |
| 			 * just single step on the instruction of the new probe
 | |
| 			 * without calling any user handlers.
 | |
| 			 */
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p, regs, kcb);
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			prepare_singlestep(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			p = __get_cpu_var(current_kprobe);
 | |
| 			if (p->break_handler && p->break_handler(p, regs)) {
 | |
| 				goto ss_probe;
 | |
| 			}
 | |
| 		}
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p) {
 | |
| 		/* Not one of ours: let kernel handle it */
 | |
| 		if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
 | |
| 			/*
 | |
| 			 * The breakpoint instruction was removed right
 | |
| 			 * after we hit it. Another cpu has removed
 | |
| 			 * either a probepoint or a debugger breakpoint
 | |
| 			 * at this address. In either case, no further
 | |
| 			 * handling of this interrupt is appropriate.
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 		}
 | |
| 
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	set_current_kprobe(p, regs, kcb);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 
 | |
| 	if (p->pre_handler && p->pre_handler(p, regs))
 | |
| 		/* handler has already set things up, so skip ss setup */
 | |
| 		return 1;
 | |
| 
 | |
| ss_probe:
 | |
| 	prepare_singlestep(p, regs);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For function-return probes, init_kprobes() establishes a probepoint
 | |
|  * here. When a retprobed function returns, this probe is hit and
 | |
|  * trampoline_probe_handler() runs, calling the kretprobe's handler.
 | |
|  */
 | |
| static void __used kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile (".globl kretprobe_trampoline\n"
 | |
| 		      "kretprobe_trampoline:\n\t"
 | |
| 		      "nop\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when we hit the probe point at kretprobe_trampoline
 | |
|  */
 | |
| int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *node, *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more then one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *       function, the first instance's ret_addr will point to the
 | |
| 	 *       real return address, and all the rest will point to
 | |
| 	 *       kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler) {
 | |
| 			__get_cpu_var(current_kprobe) = &ri->rp->kp;
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 			__get_cpu_var(current_kprobe) = NULL;
 | |
| 		}
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 
 | |
| 	regs->pc = orig_ret_address;
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 
 | |
| 	return orig_ret_address;
 | |
| }
 | |
| 
 | |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	kprobe_opcode_t *addr = NULL;
 | |
| 	struct kprobe *p = NULL;
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (saved_next_opcode.addr != 0x0) {
 | |
| 		arch_disarm_kprobe(&saved_next_opcode);
 | |
| 		saved_next_opcode.addr = 0x0;
 | |
| 		saved_next_opcode.opcode = 0x0;
 | |
| 
 | |
| 		addr = saved_current_opcode.addr;
 | |
| 		saved_current_opcode.addr = 0x0;
 | |
| 
 | |
| 		p = get_kprobe(addr);
 | |
| 		arch_arm_kprobe(p);
 | |
| 
 | |
| 		if (saved_next_opcode2.addr != 0x0) {
 | |
| 			arch_disarm_kprobe(&saved_next_opcode2);
 | |
| 			saved_next_opcode2.addr = 0x0;
 | |
| 			saved_next_opcode2.opcode = 0x0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	const struct exception_table_entry *entry;
 | |
| 
 | |
| 	switch (kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe, point the pc back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		regs->pc = (unsigned long)cur->addr;
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER)
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		else
 | |
| 			reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accounting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned
 | |
| 		 * zero, try to fix up.
 | |
| 		 */
 | |
| 		if ((entry = search_exception_tables(regs->pc)) != NULL) {
 | |
| 			regs->pc = entry->fixup;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup_exception() could not handle it,
 | |
| 		 * Let do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine to for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct kprobe *p = NULL;
 | |
| 	struct die_args *args = (struct die_args *)data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 	kprobe_opcode_t *addr = NULL;
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	addr = (kprobe_opcode_t *) (args->regs->pc);
 | |
| 	if (val == DIE_TRAP) {
 | |
| 		if (!kprobe_running()) {
 | |
| 			if (kprobe_handler(args->regs)) {
 | |
| 				ret = NOTIFY_STOP;
 | |
| 			} else {
 | |
| 				/* Not a kprobe trap */
 | |
| 				ret = NOTIFY_DONE;
 | |
| 			}
 | |
| 		} else {
 | |
| 			p = get_kprobe(addr);
 | |
| 			if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
 | |
| 			    (kcb->kprobe_status == KPROBE_REENTER)) {
 | |
| 				if (post_kprobe_handler(args->regs))
 | |
| 					ret = NOTIFY_STOP;
 | |
| 			} else {
 | |
| 				if (kprobe_handler(args->regs)) {
 | |
| 					ret = NOTIFY_STOP;
 | |
| 				} else {
 | |
| 					p = __get_cpu_var(current_kprobe);
 | |
| 					if (p->break_handler &&
 | |
| 					    p->break_handler(p, args->regs))
 | |
| 						ret = NOTIFY_STOP;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	unsigned long addr;
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	kcb->jprobe_saved_regs = *regs;
 | |
| 	kcb->jprobe_saved_r15 = regs->regs[15];
 | |
| 	addr = kcb->jprobe_saved_r15;
 | |
| 
 | |
| 	/*
 | |
| 	 * TBD: As Linus pointed out, gcc assumes that the callee
 | |
| 	 * owns the argument space and could overwrite it, e.g.
 | |
| 	 * tailcall optimization. So, to be absolutely safe
 | |
| 	 * we also save and restore enough stack bytes to cover
 | |
| 	 * the argument area.
 | |
| 	 */
 | |
| 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
 | |
| 	       MIN_STACK_SIZE(addr));
 | |
| 
 | |
| 	regs->pc = (unsigned long)(jp->entry);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	asm volatile ("trapa #0x3a\n\t" "jprobe_return_end:\n\t" "nop\n\t");
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long stack_addr = kcb->jprobe_saved_r15;
 | |
| 	u8 *addr = (u8 *)regs->pc;
 | |
| 
 | |
| 	if ((addr >= (u8 *)jprobe_return) &&
 | |
| 	    (addr <= (u8 *)jprobe_return_end)) {
 | |
| 		*regs = kcb->jprobe_saved_regs;
 | |
| 
 | |
| 		memcpy((kprobe_opcode_t *)stack_addr, kcb->jprobes_stack,
 | |
| 		       MIN_STACK_SIZE(stack_addr));
 | |
| 
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 		preempt_enable_no_resched();
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.addr = (kprobe_opcode_t *)&kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	saved_next_opcode.addr = 0x0;
 | |
| 	saved_next_opcode.opcode = 0x0;
 | |
| 
 | |
| 	saved_current_opcode.addr = 0x0;
 | |
| 	saved_current_opcode.opcode = 0x0;
 | |
| 
 | |
| 	saved_next_opcode2.addr = 0x0;
 | |
| 	saved_next_opcode2.opcode = 0x0;
 | |
| 
 | |
| 	return register_kprobe(&trampoline_p);
 | |
| }
 |