android_kernel_cmhtcleo/arch/arm/mach-msm/dal.c
2010-08-27 11:19:57 +02:00

1428 lines
32 KiB
C

/* Copyright (c) 2008-2009, Code Aurora Forum. All rights reserved.
* Copyright (c) 2009, HTC Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Code Aurora Forum nor
* the names of its contributors may be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* Alternatively, provided that this notice is retained in full, this software
* may be relicensed by the recipient under the terms of the GNU General Public
* License version 2 ("GPL") and only version 2, in which case the provisions of
* the GPL apply INSTEAD OF those given above. If the recipient relicenses the
* software under the GPL, then the identification text in the MODULE_LICENSE
* macro must be changed to reflect "GPLv2" instead of "Dual BSD/GPL". Once a
* recipient changes the license terms to the GPL, subsequent recipients shall
* not relicense under alternate licensing terms, including the BSD or dual
* BSD/GPL terms. In addition, the following license statement immediately
* below and between the words START and END shall also then apply when this
* software is relicensed under the GPL:
*
* START
*
* This program is free software; you can redistribute it and/or modify it under
* the terms of the GNU General Public License version 2 and only version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* END
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Device access library (DAL) implementation.
*/
#include <linux/kernel.h>
#include <linux/completion.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/wait.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/delay.h>
#include <mach/dal.h>
#include <mach/msm_smd.h>
#include "smd_private.h"
#include "smd_debug.h"
#define DALRPC_PROTOCOL_VERSION 0x11
#define DALRPC_SUCCESS 0
#define DALRPC_MAX_PORTNAME_LEN 64
#define DALRPC_MAX_ATTACH_PARAM_LEN 64
#define DALRPC_MAX_SERVICE_NAME_LEN 32
#define DALRPC_MAX_PARAMS 128
#define DALRPC_MAX_PARAMS_SIZE (DALRPC_MAX_PARAMS * 4)
#define DALRPC_MAX_MSG_SIZE (sizeof(struct dalrpc_msg_hdr) + \
DALRPC_MAX_PARAMS_SIZE)
#define DALRPC_MSGID_DDI 0x0
#define DALRPC_MSGID_DDI_REPLY 0x80
#define DALRPC_MSGID_ATTACH_REPLY 0x81
#define DALRPC_MSGID_DETACH_REPLY 0x82
#define DALRPC_MSGID_ASYNCH 0xC0
#define ROUND_BUFLEN(x) (((x + 3) & ~0x3))
#define MAX_RETRY_COUNT 5
#define RETRY_DELAY 10
struct dalrpc_msg_hdr {
uint32_t len:16;
uint32_t proto_ver:8;
uint32_t prio:7;
uint32_t async:1;
uint32_t ddi_idx:16;
uint32_t proto_id:8;
uint32_t msgid:8;
void *from;
void *to;
};
struct dalrpc_msg {
struct dalrpc_msg_hdr hdr;
uint32_t param[DALRPC_MAX_PARAMS];
};
struct dalrpc_event_handle {
struct list_head list;
int flag;
spinlock_t lock;
};
struct dalrpc_cb_handle {
struct list_head list;
void (*fn)(void *, uint32_t, void *, uint32_t);
void *context;
};
struct daldevice_handle {;
struct list_head list;
void *remote_handle;
struct completion read_completion;
struct dalrpc_port *port;
struct dalrpc_msg msg;
struct mutex client_lock;
};
struct dalrpc_port {
struct list_head list;
char port[DALRPC_MAX_PORTNAME_LEN+1];
int refcount;
struct workqueue_struct *wq;
struct work_struct port_work;
struct mutex write_lock;
smd_channel_t *ch;
struct dalrpc_msg msg_in;
struct daldevice_handle *msg_owner;
unsigned msg_bytes_read;
struct list_head event_list;
struct mutex event_list_lock;
struct list_head cb_list;
struct mutex cb_list_lock;
};
static LIST_HEAD(port_list);
static LIST_HEAD(client_list);
static DEFINE_MUTEX(pc_lists_lock);
static DECLARE_WAIT_QUEUE_HEAD(event_wq);
static int client_exists(void *handle)
{
struct daldevice_handle *h;
if (!handle)
return 0;
mutex_lock(&pc_lists_lock);
list_for_each_entry(h, &client_list, list)
if (h == handle) {
mutex_unlock(&pc_lists_lock);
return 1;
}
mutex_unlock(&pc_lists_lock);
return 0;
}
static int client_exists_locked(void *handle)
{
struct daldevice_handle *h;
/* this function must be called with pc_lists_lock acquired */
if (!handle)
return 0;
list_for_each_entry(h, &client_list, list)
if (h == handle)
return 1;
return 0;
}
static int port_exists(struct dalrpc_port *p)
{
struct dalrpc_port *p_iter;
/* this function must be called with pc_lists_lock acquired */
if (!p)
return 0;
list_for_each_entry(p_iter, &port_list, list)
if (p_iter == p)
return 1;
return 0;
}
static struct dalrpc_port *port_name_exists(char *port)
{
struct dalrpc_port *p;
/* this function must be called with pc_lists_lock acquired */
list_for_each_entry(p, &port_list, list)
if (!strcmp(p->port, port))
return p;
return NULL;
}
static void port_close(struct dalrpc_port *p)
{
mutex_lock(&pc_lists_lock);
p->refcount--;
if (p->refcount == 0)
list_del(&p->list);
mutex_unlock(&pc_lists_lock);
if (p->refcount == 0) {
destroy_workqueue(p->wq);
smd_close(p->ch);
kfree(p);
}
}
static int event_exists(struct dalrpc_port *p,
struct dalrpc_event_handle *ev)
{
struct dalrpc_event_handle *ev_iter;
/* this function must be called with event_list_lock acquired */
list_for_each_entry(ev_iter, &p->event_list, list)
if (ev_iter == ev)
return 1;
return 0;
}
static int cb_exists(struct dalrpc_port *p,
struct dalrpc_cb_handle *cb)
{
struct dalrpc_cb_handle *cb_iter;
/* this function must be called with the cb_list_lock acquired */
list_for_each_entry(cb_iter, &p->cb_list, list)
if (cb_iter == cb)
return 1;
return 0;
}
static int check_version(struct dalrpc_msg_hdr *msg_hdr)
{
static int version_msg = 1;
/* disabled because asynch events currently have no version */
return 0;
if (msg_hdr->proto_ver != DALRPC_PROTOCOL_VERSION) {
if (version_msg) {
printk(KERN_ERR "dalrpc: incompatible verison\n");
version_msg = 0;
}
return -1;
}
return 0;
}
static void process_asynch(struct dalrpc_port *p)
{
struct dalrpc_event_handle *ev;
struct dalrpc_cb_handle *cb;
ev = (struct dalrpc_event_handle *)p->msg_in.param[0];
cb = (struct dalrpc_cb_handle *)p->msg_in.param[0];
mutex_lock(&p->event_list_lock);
if (event_exists(p, ev)) {
spin_lock(&ev->lock);
ev->flag = 1;
spin_unlock(&ev->lock);
smp_mb();
wake_up_all(&event_wq);
mutex_unlock(&p->event_list_lock);
return;
}
mutex_unlock(&p->event_list_lock);
mutex_lock(&p->cb_list_lock);
if (cb_exists(p, cb)) {
cb->fn(cb->context, p->msg_in.param[1],
&p->msg_in.param[3], p->msg_in.param[2]);
mutex_unlock(&p->cb_list_lock);
return;
}
mutex_unlock(&p->cb_list_lock);
}
static void process_msg(struct dalrpc_port *p)
{
switch (p->msg_in.hdr.msgid) {
case DALRPC_MSGID_DDI_REPLY:
case DALRPC_MSGID_ATTACH_REPLY:
case DALRPC_MSGID_DETACH_REPLY:
complete(&p->msg_owner->read_completion);
break;
case DALRPC_MSGID_ASYNCH:
process_asynch(p);
break;
default:
printk(KERN_ERR "process_msg: bad msgid %#x\n",
p->msg_in.hdr.msgid);
}
}
static void flush_msg(struct dalrpc_port *p)
{
int bytes_read, len;
len = p->msg_in.hdr.len - sizeof(struct dalrpc_msg_hdr);
while (len > 0) {
bytes_read = smd_read(p->ch, NULL, len);
if (bytes_read <= 0)
break;
len -= bytes_read;
}
p->msg_bytes_read = 0;
}
static int check_header(struct dalrpc_port *p)
{
if (check_version(&p->msg_in.hdr) ||
p->msg_in.hdr.len > DALRPC_MAX_MSG_SIZE ||
(p->msg_in.hdr.msgid != DALRPC_MSGID_ASYNCH &&
!client_exists_locked(p->msg_in.hdr.to))) {
printk(KERN_ERR "dalrpc_read_msg: bad msg\n");
flush_msg(p);
return 1;
}
p->msg_owner = (struct daldevice_handle *)p->msg_in.hdr.to;
if (p->msg_in.hdr.msgid != DALRPC_MSGID_ASYNCH)
memcpy(&p->msg_owner->msg.hdr, &p->msg_in.hdr,
sizeof(p->msg_in.hdr));
return 0;
}
static int dalrpc_read_msg(struct dalrpc_port *p)
{
uint8_t *read_ptr;
int bytes_read;
/* read msg header */
while (p->msg_bytes_read < sizeof(p->msg_in.hdr)) {
read_ptr = (uint8_t *)&p->msg_in.hdr + p->msg_bytes_read;
bytes_read = smd_read(p->ch, read_ptr,
sizeof(p->msg_in.hdr) -
p->msg_bytes_read);
if (bytes_read <= 0)
return 0;
p->msg_bytes_read += bytes_read;
if (p->msg_bytes_read == sizeof(p->msg_in.hdr) &&
check_header(p))
return 1;
}
/* read remainder of msg */
if (p->msg_in.hdr.msgid != DALRPC_MSGID_ASYNCH)
read_ptr = (uint8_t *)&p->msg_owner->msg;
else
read_ptr = (uint8_t *)&p->msg_in;
read_ptr += p->msg_bytes_read;
while (p->msg_bytes_read < p->msg_in.hdr.len) {
bytes_read = smd_read(p->ch, read_ptr,
p->msg_in.hdr.len - p->msg_bytes_read);
if (bytes_read <= 0)
return 0;
p->msg_bytes_read += bytes_read;
read_ptr += bytes_read;
}
process_msg(p);
p->msg_bytes_read = 0;
p->msg_owner = NULL;
return 1;
}
static void dalrpc_work(struct work_struct *work)
{
struct dalrpc_port *p = container_of(work,
struct dalrpc_port,
port_work);
/* must lock port/client lists to ensure port doesn't disappear
under an asynch event */
mutex_lock(&pc_lists_lock);
if (port_exists(p))
while (dalrpc_read_msg(p))
;
mutex_unlock(&pc_lists_lock);
}
static void dalrpc_smd_cb(void *priv, unsigned smd_flags)
{
struct dalrpc_port *p = priv;
if (smd_flags != SMD_EVENT_DATA)
return;
queue_work(p->wq, &p->port_work);
}
static struct dalrpc_port *dalrpc_port_open(char *port, int cpu)
{
struct dalrpc_port *p;
char wq_name[32];
p = port_name_exists(port);
if (p) {
p->refcount++;
return p;
}
p = kzalloc(sizeof(struct dalrpc_port), GFP_KERNEL);
if (!p)
return NULL;
strncpy(p->port, port, sizeof(p->port) - 1);
p->refcount = 1;
snprintf(wq_name, sizeof(wq_name), "dalrpc_rcv_%s", port);
p->wq = create_singlethread_workqueue(wq_name);
if (!p->wq) {
printk(KERN_ERR "dalrpc_init: unable to create workqueue\n");
goto no_wq;
}
INIT_WORK(&p->port_work, dalrpc_work);
mutex_init(&p->write_lock);
mutex_init(&p->event_list_lock);
mutex_init(&p->cb_list_lock);
INIT_LIST_HEAD(&p->event_list);
INIT_LIST_HEAD(&p->cb_list);
p->msg_owner = NULL;
p->msg_bytes_read = 0;
#if 1 //HK test
if (smd_open(port, &p->ch, p, dalrpc_smd_cb)) {
#else
if (smd_named_open_on_edge(port, cpu, &p->ch, p,
dalrpc_smd_cb)) {
#endif
printk(KERN_ERR "dalrpc_port_init() failed to open port\n");
goto no_smd;
}
list_add(&p->list, &port_list);
return p;
no_smd:
destroy_workqueue(p->wq);
no_wq:
kfree(p);
return NULL;
}
static void dalrpc_sendwait(struct daldevice_handle *h)
{
u8 *buf = (u8 *)&h->msg;
int len = h->msg.hdr.len;
int written;
mutex_lock(&h->port->write_lock);
do {
if ((h->port->ch->recv->state != SMD_SS_OPENED) ||
(h->port->ch->send->state != SMD_SS_OPENED)) {
printk(KERN_ERR "%s: smd channel %s not ready,"
" wait 100ms.\n", __func__, h->port->ch->name);
mdelay(100);
continue;
}
written = smd_write(h->port->ch, buf + (h->msg.hdr.len - len),
len);
if (written < 0)
break;
len -= written;
} while (len);
/* Original codes put wait_for_completion outside of mutex
* that may cause the latter session overwrites data from
* previous session before aDSP really gets it. Thus, move
* wait_for_completion inside the mutex to prevent data
* corruption. */
wait_for_completion(&h->read_completion);
mutex_unlock(&h->port->write_lock);
}
int daldevice_attach(uint32_t device_id, char *port, int cpu,
void **handle_ptr)
{
struct daldevice_handle *h;
char dyn_port[DALRPC_MAX_PORTNAME_LEN + 1] = "DAL00";
int ret;
int tries = 0;
if (!port)
port = dyn_port;
if (strlen(port) > DALRPC_MAX_PORTNAME_LEN)
return -EINVAL;
h = kzalloc(sizeof(struct daldevice_handle), GFP_KERNEL);
if (!h) {
*handle_ptr = NULL;
return -ENOMEM;
}
init_completion(&h->read_completion);
mutex_init(&h->client_lock);
mutex_lock(&pc_lists_lock);
list_add(&h->list, &client_list);
mutex_unlock(&pc_lists_lock);
/* 3 attempts, enough for one each on the user specified port, the
* dynamic discovery port, and the port recommended by the dynamic
* discovery port */
while (tries < 3) {
tries++;
mutex_lock(&pc_lists_lock);
h->port = dalrpc_port_open(port, cpu);
if (!h->port) {
list_del(&h->list);
mutex_unlock(&pc_lists_lock);
printk(KERN_ERR "daldevice_attach: could not "
"open port\n");
kfree(h);
*handle_ptr = NULL;
return -EIO;
}
mutex_unlock(&pc_lists_lock);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 4 +
DALRPC_MAX_ATTACH_PARAM_LEN +
DALRPC_MAX_SERVICE_NAME_LEN;
h->msg.hdr.proto_ver = DALRPC_PROTOCOL_VERSION;
h->msg.hdr.ddi_idx = 0;
h->msg.hdr.msgid = 0x1;
h->msg.hdr.prio = 0;
h->msg.hdr.async = 0;
h->msg.hdr.from = h;
h->msg.hdr.to = 0;
h->msg.param[0] = device_id;
memset(&h->msg.param[1], 0,
DALRPC_MAX_ATTACH_PARAM_LEN +
DALRPC_MAX_SERVICE_NAME_LEN);
dalrpc_sendwait(h);
ret = h->msg.param[0];
if (ret == DALRPC_SUCCESS) {
h->remote_handle = h->msg.hdr.from;
*handle_ptr = h;
break;
} else if (strnlen((char *)&h->msg.param[1],
DALRPC_MAX_PORTNAME_LEN)) {
/* another port was recommended in the response. */
strncpy(dyn_port, (char *)&h->msg.param[1],
DALRPC_MAX_PORTNAME_LEN);
dyn_port[DALRPC_MAX_PORTNAME_LEN] = 0;
port = dyn_port;
} else if (port == dyn_port) {
/* the dynamic discovery port (or port that
* was recommended by it) did not recognize
* the device id, give up */
daldevice_detach(h);
break;
} else
/* the user specified port did not work, try
* the dynamic discovery port */
port = dyn_port;
port_close(h->port);
}
return ret;
}
EXPORT_SYMBOL(daldevice_attach);
static void dalrpc_ddi_prologue(uint32_t ddi_idx, struct daldevice_handle *h)
{
h->msg.hdr.proto_ver = DALRPC_PROTOCOL_VERSION;
h->msg.hdr.prio = 0;
h->msg.hdr.async = 0;
h->msg.hdr.msgid = DALRPC_MSGID_DDI;
h->msg.hdr.from = h;
h->msg.hdr.to = h->remote_handle;
h->msg.hdr.ddi_idx = ddi_idx;
}
int daldevice_detach(void *handle)
{
struct daldevice_handle *h = handle;
if (!client_exists(h))
return -EINVAL;
dalrpc_ddi_prologue(0, h);
if (!h->remote_handle)
goto norpc;
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 4;
h->msg.hdr.msgid = 0x2;
h->msg.param[0] = 0;
dalrpc_sendwait(h);
norpc:
mutex_lock(&pc_lists_lock);
list_del(&h->list);
mutex_unlock(&pc_lists_lock);
port_close(h->port);
kfree(h);
return 0;
}
EXPORT_SYMBOL(daldevice_detach);
uint32_t dalrpc_fcn_0(uint32_t ddi_idx, void *handle, uint32_t s1)
{
struct daldevice_handle *h = handle;
uint32_t ret;
uint32_t retry_count = 0;
if (!client_exists(h))
{
printk(KERN_ERR "client_exists FALSE\n");
return -EINVAL;
}
mutex_lock(&h->client_lock);
again:
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 4;
h->msg.hdr.proto_id = 0;
h->msg.param[0] = s1;
dalrpc_sendwait(h);
ret = h->msg.param[0];
if (ret && retry_count++ < MAX_RETRY_COUNT) {
printk(KERN_INFO "*********** %s: %d retry %d times, ret %d\n",
__func__, ddi_idx, retry_count, ret);
mdelay(RETRY_DELAY);
goto again;
}
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_0);
uint32_t dalrpc_fcn_1(uint32_t ddi_idx, void *handle, uint32_t s1,
uint32_t s2)
{
struct daldevice_handle *h = handle;
uint32_t ret;
uint32_t retry_count = 0;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
again:
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 8;
h->msg.hdr.proto_id = 1;
h->msg.param[0] = s1;
h->msg.param[1] = s2;
dalrpc_sendwait(h);
ret = h->msg.param[0];
if (ret && retry_count++ < MAX_RETRY_COUNT) {
printk(KERN_INFO "*********** %s: %d retry %d times, ret %d\n",
__func__, ddi_idx, retry_count, ret);
mdelay(RETRY_DELAY);
goto again;
}
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_1);
uint32_t dalrpc_fcn_2(uint32_t ddi_idx, void *handle, uint32_t s1,
uint32_t *p_s2)
{
struct daldevice_handle *h = handle;
uint32_t ret;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 4;
h->msg.hdr.proto_id = 2;
h->msg.param[0] = s1;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS)
*p_s2 = h->msg.param[1];
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_2);
uint32_t dalrpc_fcn_3(uint32_t ddi_idx, void *handle, uint32_t s1,
uint32_t s2, uint32_t s3)
{
struct daldevice_handle *h = handle;
uint32_t ret;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 12;
h->msg.hdr.proto_id = 3;
h->msg.param[0] = s1;
h->msg.param[1] = s2;
h->msg.param[2] = s3;
dalrpc_sendwait(h);
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_3);
uint32_t dalrpc_fcn_4(uint32_t ddi_idx, void *handle, uint32_t s1,
uint32_t s2, uint32_t *p_s3)
{
struct daldevice_handle *h = handle;
uint32_t ret;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 8;
h->msg.hdr.proto_id = 4;
h->msg.param[0] = s1;
h->msg.param[1] = s2;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS)
*p_s3 = h->msg.param[1];
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_4);
uint32_t dalrpc_fcn_5(uint32_t ddi_idx, void *handle, const void *ibuf,
uint32_t ilen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
uint32_t retry_count = 0;
if ((ilen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
again:
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 4 +
ROUND_BUFLEN(ilen);
h->msg.hdr.proto_id = 5;
h->msg.param[0] = ilen;
memcpy(&h->msg.param[1], ibuf, ilen);
dalrpc_sendwait(h);
ret = h->msg.param[0];
if (ret && retry_count++ < MAX_RETRY_COUNT) {
printk(KERN_INFO "*********** %s: %d retry %d times, ret %d\n",
__func__, ddi_idx, retry_count, ret);
mdelay(RETRY_DELAY);
goto again;
}
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_5);
uint32_t dalrpc_fcn_6(uint32_t ddi_idx, void *handle, uint32_t s1,
const void *ibuf, uint32_t ilen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
uint32_t retry_count = 0;
if ((ilen + 8) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
again:
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 8 +
ROUND_BUFLEN(ilen);
h->msg.hdr.proto_id = 6;
h->msg.param[0] = s1;
h->msg.param[1] = ilen;
memcpy(&h->msg.param[2], ibuf, ilen);
dalrpc_sendwait(h);
ret = h->msg.param[0];
if (ret && retry_count++ < MAX_RETRY_COUNT) {
printk(KERN_INFO "*********** %s: %d retry %d times, ret %d\n",
__func__, ddi_idx, retry_count, ret);
mdelay(RETRY_DELAY);
goto again;
}
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_6);
uint32_t dalrpc_fcn_7(uint32_t ddi_idx, void *handle, const void *ibuf,
uint32_t ilen, void *obuf, uint32_t olen,
uint32_t *oalen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
int param_idx;
if ((ilen + 8) > DALRPC_MAX_PARAMS_SIZE ||
(olen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 8 +
ROUND_BUFLEN(ilen);
h->msg.hdr.proto_id = 7;
h->msg.param[0] = ilen;
memcpy(&h->msg.param[1], ibuf, ilen);
param_idx = (ROUND_BUFLEN(ilen) / 4) + 1;
h->msg.param[param_idx] = olen;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
*oalen = h->msg.param[1];
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_7);
uint32_t dalrpc_fcn_8(uint32_t ddi_idx, void *handle, const void *ibuf,
uint32_t ilen, void *obuf, uint32_t olen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
int param_idx;
if ((ilen + 8) > DALRPC_MAX_PARAMS_SIZE ||
(olen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 8 +
ROUND_BUFLEN(ilen);
h->msg.hdr.proto_id = 8;
h->msg.param[0] = ilen;
memcpy(&h->msg.param[1], ibuf, ilen);
param_idx = (ROUND_BUFLEN(ilen) / 4) + 1;
h->msg.param[param_idx] = olen;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_8);
uint32_t dalrpc_fcn_9(uint32_t ddi_idx, void *handle, void *obuf,
uint32_t olen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
if ((olen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 4;
h->msg.hdr.proto_id = 9;
h->msg.param[0] = olen;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_9);
uint32_t dalrpc_fcn_10(uint32_t ddi_idx, void *handle, uint32_t s1,
const void *ibuf, uint32_t ilen, void *obuf,
uint32_t olen, uint32_t *oalen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
int param_idx;
if ((ilen + 12) > DALRPC_MAX_PARAMS_SIZE ||
(olen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 12 +
ROUND_BUFLEN(ilen);
h->msg.hdr.proto_id = 10;
h->msg.param[0] = s1;
h->msg.param[1] = ilen;
memcpy(&h->msg.param[2], ibuf, ilen);
param_idx = (ROUND_BUFLEN(ilen) / 4) + 2;
h->msg.param[param_idx] = olen;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
*oalen = h->msg.param[1];
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_10);
uint32_t dalrpc_fcn_11(uint32_t ddi_idx, void *handle, uint32_t s1,
void *obuf, uint32_t olen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
if ((olen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 8;
h->msg.hdr.proto_id = 11;
h->msg.param[0] = s1;
h->msg.param[1] = olen;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_11);
uint32_t dalrpc_fcn_12(uint32_t ddi_idx, void *handle, uint32_t s1,
void *obuf, uint32_t olen, uint32_t *oalen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
if ((olen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 8;
h->msg.hdr.proto_id = 12;
h->msg.param[0] = s1;
h->msg.param[1] = olen;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
*oalen = h->msg.param[1];
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_12);
uint32_t dalrpc_fcn_13(uint32_t ddi_idx, void *handle, const void *ibuf,
uint32_t ilen, const void *ibuf2, uint32_t ilen2,
void *obuf, uint32_t olen)
{
struct daldevice_handle *h = handle;
uint32_t ret;
int param_idx;
if ((ilen + ilen2 + 12) > DALRPC_MAX_PARAMS_SIZE ||
(olen + 4) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 12 +
ROUND_BUFLEN(ilen) + ROUND_BUFLEN(ilen2);
h->msg.hdr.proto_id = 13;
h->msg.param[0] = ilen;
memcpy(&h->msg.param[1], ibuf, ilen);
param_idx = (ROUND_BUFLEN(ilen) / 4) + 1;
h->msg.param[param_idx++] = ilen2;
memcpy(&h->msg.param[param_idx], ibuf2, ilen2);
param_idx += (ROUND_BUFLEN(ilen2) / 4);
h->msg.param[param_idx] = olen;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_13);
uint32_t dalrpc_fcn_14(uint32_t ddi_idx, void *handle, const void *ibuf,
uint32_t ilen, void *obuf, uint32_t olen,
void *obuf2, uint32_t olen2, uint32_t *oalen2)
{
struct daldevice_handle *h = handle;
uint32_t ret;
int param_idx;
if ((ilen + 12) > DALRPC_MAX_PARAMS_SIZE ||
(olen + olen2 + 8) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 12 +
ROUND_BUFLEN(ilen);
h->msg.hdr.proto_id = 14;
h->msg.param[0] = ilen;
memcpy(&h->msg.param[1], ibuf, ilen);
param_idx = (ROUND_BUFLEN(ilen) / 4) + 1;
h->msg.param[param_idx++] = olen;
h->msg.param[param_idx] = olen2;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
param_idx = (ROUND_BUFLEN(h->msg.param[1]) / 4) + 2;
if (h->msg.param[param_idx] > olen2) {
mutex_unlock(&h->client_lock);
return -EIO;
}
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
memcpy(obuf2, &h->msg.param[param_idx + 1],
h->msg.param[param_idx]);
*oalen2 = h->msg.param[param_idx];
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_14);
uint32_t dalrpc_fcn_15(uint32_t ddi_idx, void *handle, const void *ibuf,
uint32_t ilen, const void *ibuf2, uint32_t ilen2,
void *obuf, uint32_t olen, uint32_t *oalen,
void *obuf2, uint32_t olen2)
{
struct daldevice_handle *h = handle;
uint32_t ret;
int param_idx;
if ((ilen + ilen2 + 16) > DALRPC_MAX_PARAMS_SIZE ||
(olen + olen2 + 8) > DALRPC_MAX_PARAMS_SIZE)
return -EINVAL;
if (!client_exists(h))
return -EINVAL;
mutex_lock(&h->client_lock);
dalrpc_ddi_prologue(ddi_idx, h);
h->msg.hdr.len = sizeof(struct dalrpc_msg_hdr) + 16 +
ROUND_BUFLEN(ilen) + ROUND_BUFLEN(ilen2);
h->msg.hdr.proto_id = 15;
h->msg.param[0] = ilen;
memcpy(&h->msg.param[1], ibuf, ilen);
param_idx = (ROUND_BUFLEN(ilen) / 4) + 1;
h->msg.param[param_idx++] = ilen2;
memcpy(&h->msg.param[param_idx], ibuf2, ilen2);
param_idx += (ROUND_BUFLEN(ilen2) / 4);
h->msg.param[param_idx++] = olen;
h->msg.param[param_idx] = olen2;
dalrpc_sendwait(h);
if (h->msg.param[0] == DALRPC_SUCCESS) {
if (h->msg.param[1] > olen) {
mutex_unlock(&h->client_lock);
return -EIO;
}
param_idx = (ROUND_BUFLEN(h->msg.param[1]) / 4) + 2;
if (h->msg.param[param_idx] > olen2) {
mutex_unlock(&h->client_lock);
return -EIO;
}
memcpy(obuf, &h->msg.param[2], h->msg.param[1]);
memcpy(obuf2, &h->msg.param[param_idx + 1],
h->msg.param[param_idx]);
*oalen = h->msg.param[1];
}
ret = h->msg.param[0];
mutex_unlock(&h->client_lock);
return ret;
}
EXPORT_SYMBOL(dalrpc_fcn_15);
void *dalrpc_alloc_event(void *handle)
{
struct daldevice_handle *h;
struct dalrpc_event_handle *ev;
h = (struct daldevice_handle *)handle;
if (!client_exists(h))
return NULL;
ev = kmalloc(sizeof(struct dalrpc_event_handle), GFP_KERNEL);
if (!ev)
return NULL;
ev->flag = 0;
spin_lock_init(&ev->lock);
mutex_lock(&h->port->event_list_lock);
list_add(&ev->list, &h->port->event_list);
mutex_unlock(&h->port->event_list_lock);
return ev;
}
EXPORT_SYMBOL(dalrpc_alloc_event);
void *dalrpc_alloc_cb(void *handle,
void (*fn)(void *, uint32_t, void *, uint32_t),
void *context)
{
struct daldevice_handle *h;
struct dalrpc_cb_handle *cb;
h = (struct daldevice_handle *)handle;
if (!client_exists(h))
return NULL;
cb = kmalloc(sizeof(struct dalrpc_cb_handle), GFP_KERNEL);
if (!cb)
return NULL;
cb->fn = fn;
cb->context = context;
mutex_lock(&h->port->cb_list_lock);
list_add(&cb->list, &h->port->cb_list);
mutex_unlock(&h->port->cb_list_lock);
return cb;
}
EXPORT_SYMBOL(dalrpc_alloc_cb);
void dalrpc_dealloc_event(void *handle,
void *ev_h)
{
struct daldevice_handle *h;
struct dalrpc_event_handle *ev;
h = (struct daldevice_handle *)handle;
ev = (struct dalrpc_event_handle *)ev_h;
mutex_lock(&h->port->event_list_lock);
list_del(&ev->list);
mutex_unlock(&h->port->event_list_lock);
kfree(ev);
}
EXPORT_SYMBOL(dalrpc_dealloc_event);
void dalrpc_dealloc_cb(void *handle,
void *cb_h)
{
struct daldevice_handle *h;
struct dalrpc_cb_handle *cb;
h = (struct daldevice_handle *)handle;
cb = (struct dalrpc_cb_handle *)cb_h;
mutex_lock(&h->port->cb_list_lock);
list_del(&cb->list);
mutex_unlock(&h->port->cb_list_lock);
kfree(cb);
}
EXPORT_SYMBOL(dalrpc_dealloc_cb);
static int event_occurred(int num_events, struct dalrpc_event_handle **events,
int *occurred)
{
int i;
for (i = 0; i < num_events; i++) {
spin_lock(&events[i]->lock);
if (events[i]->flag) {
events[i]->flag = 0;
spin_unlock(&events[i]->lock);
*occurred = i;
return 1;
}
spin_unlock(&events[i]->lock);
}
return 0;
}
int dalrpc_event_wait_multiple(int num, void **ev_h, int timeout)
{
struct dalrpc_event_handle **events;
int ret, occurred;
events = (struct dalrpc_event_handle **)ev_h;
if (timeout == DALRPC_TIMEOUT_INFINITE) {
wait_event(event_wq,
event_occurred(num, events, &occurred));
return occurred;
}
ret = wait_event_timeout(event_wq,
event_occurred(num, events, &occurred),
timeout);
if (ret > 0)
return occurred;
else
return -ETIMEDOUT;
}
EXPORT_SYMBOL(dalrpc_event_wait_multiple);