2010-08-27 11:19:57 +02:00

851 lines
20 KiB
C

/* arch/arm/mach-msm/qdsp5/audio_out.c
*
* pcm audio output device
*
* Copyright (C) 2008 Google, Inc.
* Copyright (C) 2008 HTC Corporation
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/miscdevice.h>
#include <linux/uaccess.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/wakelock.h>
#include <linux/msm_audio.h>
#include <asm/atomic.h>
#include <asm/ioctls.h>
#include <mach/msm_adsp.h>
#include "audmgr.h"
#include <mach/qdsp5/qdsp5audppcmdi.h>
#include <mach/qdsp5/qdsp5audppmsg.h>
#include <mach/htc_pwrsink.h>
#include "evlog.h"
#define LOG_AUDIO_EVENTS 1
#define LOG_AUDIO_FAULTS 0
enum {
EV_NULL,
EV_OPEN,
EV_WRITE,
EV_RETURN,
EV_IOCTL,
EV_WRITE_WAIT,
EV_WAIT_EVENT,
EV_FILL_BUFFER,
EV_SEND_BUFFER,
EV_DSP_EVENT,
EV_ENABLE,
};
#if (LOG_AUDIO_EVENTS != 1)
static inline void LOG(unsigned id, unsigned arg) {}
#else
static const char *pcm_log_strings[] = {
"NULL",
"OPEN",
"WRITE",
"RETURN",
"IOCTL",
"WRITE_WAIT",
"WAIT_EVENT",
"FILL_BUFFER",
"SEND_BUFFER",
"DSP_EVENT",
"ENABLE",
};
DECLARE_LOG(pcm_log, 64, pcm_log_strings);
static int __init _pcm_log_init(void)
{
return ev_log_init(&pcm_log);
}
module_init(_pcm_log_init);
#define LOG(id,arg) ev_log_write(&pcm_log, id, arg)
#endif
#define BUFSZ (960 * 5)
#define DMASZ (BUFSZ * 2)
#define AUDPP_CMD_CFG_OBJ_UPDATE 0x8000
#define AUDPP_CMD_EQ_FLAG_DIS 0x0000
#define AUDPP_CMD_EQ_FLAG_ENA -1
#define AUDPP_CMD_IIR_FLAG_DIS 0x0000
#define AUDPP_CMD_IIR_FLAG_ENA -1
#define AUDPP_CMD_IIR_TUNING_FILTER 1
#define AUDPP_CMD_EQUALIZER 2
#define AUDPP_CMD_ADRC 3
#define ADRC_ENABLE 0x0001
#define EQ_ENABLE 0x0002
#define IIR_ENABLE 0x0004
struct adrc_filter {
uint16_t compression_th;
uint16_t compression_slope;
uint16_t rms_time;
uint16_t attack_const_lsw;
uint16_t attack_const_msw;
uint16_t release_const_lsw;
uint16_t release_const_msw;
uint16_t adrc_system_delay;
};
struct eqalizer {
uint16_t num_bands;
uint16_t eq_params[132];
};
struct rx_iir_filter {
uint16_t num_bands;
uint16_t iir_params[48];
};
typedef struct {
audpp_cmd_cfg_object_params_common common;
uint16_t eq_flag;
uint16_t num_bands;
uint16_t eq_params[132];
} audpp_cmd_cfg_object_params_eq;
typedef struct {
audpp_cmd_cfg_object_params_common common;
uint16_t active_flag;
uint16_t num_bands;
uint16_t iir_params[48];
} audpp_cmd_cfg_object_params_rx_iir;
struct buffer {
void *data;
unsigned size;
unsigned used;
unsigned addr;
};
struct audio {
struct buffer out[2];
spinlock_t dsp_lock;
uint8_t out_head;
uint8_t out_tail;
uint8_t out_needed; /* number of buffers the dsp is waiting for */
atomic_t out_bytes;
struct mutex lock;
struct mutex write_lock;
wait_queue_head_t wait;
/* configuration to use on next enable */
uint32_t out_sample_rate;
uint32_t out_channel_mode;
uint32_t out_weight;
uint32_t out_buffer_size;
struct audmgr audmgr;
/* data allocated for various buffers */
char *data;
dma_addr_t phys;
int opened;
int enabled;
int running;
int stopped; /* set when stopped, cleared on flush */
unsigned volume;
struct wake_lock wakelock;
struct wake_lock idlelock;
int adrc_enable;
struct adrc_filter adrc;
int eq_enable;
struct eqalizer eq;
int rx_iir_enable;
struct rx_iir_filter iir;
};
static void audio_prevent_sleep(struct audio *audio)
{
printk(KERN_INFO "++++++++++++++++++++++++++++++\n");
wake_lock(&audio->wakelock);
wake_lock(&audio->idlelock);
}
static void audio_allow_sleep(struct audio *audio)
{
wake_unlock(&audio->wakelock);
wake_unlock(&audio->idlelock);
printk(KERN_INFO "------------------------------\n");
}
static int audio_dsp_out_enable(struct audio *audio, int yes);
static int audio_dsp_send_buffer(struct audio *audio, unsigned id, unsigned len);
static int audio_dsp_set_adrc(struct audio *audio);
static int audio_dsp_set_eq(struct audio *audio);
static int audio_dsp_set_rx_iir(struct audio *audio);
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg);
/* must be called with audio->lock held */
static int audio_enable(struct audio *audio)
{
struct audmgr_config cfg;
int rc;
pr_info("audio_enable()\n");
if (audio->enabled)
return 0;
/* refuse to start if we're not ready */
if (!audio->out[0].used || !audio->out[1].used)
return -EIO;
/* we start buffers 0 and 1, so buffer 0 will be the
* next one the dsp will want
*/
audio->out_tail = 0;
audio->out_needed = 0;
cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE;
cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000;
cfg.def_method = RPC_AUD_DEF_METHOD_HOST_PCM;
cfg.codec = RPC_AUD_DEF_CODEC_PCM;
cfg.snd_method = RPC_SND_METHOD_MIDI;
audio_prevent_sleep(audio);
rc = audmgr_enable(&audio->audmgr, &cfg);
if (rc < 0) {
audio_allow_sleep(audio);
return rc;
}
if (audpp_enable(-1, audio_dsp_event, audio)) {
pr_err("audio: audpp_enable() failed\n");
audmgr_disable(&audio->audmgr);
audio_allow_sleep(audio);
return -ENODEV;
}
audio->enabled = 1;
htc_pwrsink_set(PWRSINK_AUDIO, 100);
return 0;
}
/* must be called with audio->lock held */
static int audio_disable(struct audio *audio)
{
pr_info("audio_disable()\n");
if (audio->enabled) {
audio->enabled = 0;
audio_dsp_out_enable(audio, 0);
audpp_disable(-1, audio);
wake_up(&audio->wait);
audmgr_disable(&audio->audmgr);
audio->out_needed = 0;
audio_allow_sleep(audio);
}
return 0;
}
/* ------------------- dsp --------------------- */
static void audio_dsp_event(void *private, unsigned id, uint16_t *msg)
{
struct audio *audio = private;
struct buffer *frame;
unsigned long flags;
LOG(EV_DSP_EVENT, id);
switch (id) {
case AUDPP_MSG_HOST_PCM_INTF_MSG: {
unsigned id = msg[2];
unsigned idx = msg[3] - 1;
/* pr_info("audio_dsp_event: HOST_PCM id %d idx %d\n", id, idx); */
if (id != AUDPP_MSG_HOSTPCM_ID_ARM_RX) {
pr_err("bogus id\n");
break;
}
if (idx > 1) {
pr_err("bogus buffer idx\n");
break;
}
spin_lock_irqsave(&audio->dsp_lock, flags);
if (audio->running) {
atomic_add(audio->out[idx].used, &audio->out_bytes);
audio->out[idx].used = 0;
frame = audio->out + audio->out_tail;
if (frame->used) {
audio_dsp_send_buffer(
audio, audio->out_tail, frame->used);
audio->out_tail ^= 1;
} else {
audio->out_needed++;
}
wake_up(&audio->wait);
}
spin_unlock_irqrestore(&audio->dsp_lock, flags);
break;
}
case AUDPP_MSG_PCMDMAMISSED:
pr_info("audio_dsp_event: PCMDMAMISSED %d\n", msg[0]);
break;
case AUDPP_MSG_CFG_MSG:
if (msg[0] == AUDPP_MSG_ENA_ENA) {
LOG(EV_ENABLE, 1);
pr_info("audio_dsp_event: CFG_MSG ENABLE\n");
audio->out_needed = 0;
audio->running = 1;
audpp_set_volume_and_pan(5, audio->volume, 0);
audio_dsp_set_adrc(audio);
audio_dsp_set_eq(audio);
audio_dsp_set_rx_iir(audio);
audio_dsp_out_enable(audio, 1);
} else if (msg[0] == AUDPP_MSG_ENA_DIS) {
LOG(EV_ENABLE, 0);
pr_info("audio_dsp_event: CFG_MSG DISABLE\n");
audio->running = 0;
} else {
pr_err("audio_dsp_event: CFG_MSG %d?\n", msg[0]);
}
break;
default:
pr_err("audio_dsp_event: UNKNOWN (%d)\n", id);
}
}
static int audio_dsp_out_enable(struct audio *audio, int yes)
{
audpp_cmd_pcm_intf cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.cmd_id = AUDPP_CMD_PCM_INTF_2;
cmd.object_num = AUDPP_CMD_PCM_INTF_OBJECT_NUM;
cmd.config = AUDPP_CMD_PCM_INTF_CONFIG_CMD_V;
cmd.intf_type = AUDPP_CMD_PCM_INTF_RX_ENA_ARMTODSP_V;
if (yes) {
cmd.write_buf1LSW = audio->out[0].addr;
cmd.write_buf1MSW = audio->out[0].addr >> 16;
cmd.write_buf1_len = audio->out[0].size;
cmd.write_buf2LSW = audio->out[1].addr;
cmd.write_buf2MSW = audio->out[1].addr >> 16;
cmd.write_buf2_len = audio->out[1].size;
cmd.arm_to_rx_flag = AUDPP_CMD_PCM_INTF_ENA_V;
cmd.weight_decoder_to_rx = audio->out_weight;
cmd.weight_arm_to_rx = 1;
cmd.partition_number_arm_to_dsp = 0;
cmd.sample_rate = audio->out_sample_rate;
cmd.channel_mode = audio->out_channel_mode;
}
return audpp_send_queue2(&cmd, sizeof(cmd));
}
static int audio_dsp_send_buffer(struct audio *audio, unsigned idx, unsigned len)
{
audpp_cmd_pcm_intf_send_buffer cmd;
cmd.cmd_id = AUDPP_CMD_PCM_INTF_2;
cmd.host_pcm_object = AUDPP_CMD_PCM_INTF_OBJECT_NUM;
cmd.config = AUDPP_CMD_PCM_INTF_BUFFER_CMD_V;
cmd.intf_type = AUDPP_CMD_PCM_INTF_RX_ENA_ARMTODSP_V;
cmd.dsp_to_arm_buf_id = 0;
cmd.arm_to_dsp_buf_id = idx + 1;
cmd.arm_to_dsp_buf_len = len;
LOG(EV_SEND_BUFFER, idx);
return audpp_send_queue2(&cmd, sizeof(cmd));
}
static int audio_dsp_set_adrc(struct audio *audio)
{
audpp_cmd_cfg_object_params_adrc cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.comman_cfg = AUDPP_CMD_CFG_OBJ_UPDATE;
cmd.common.command_type = AUDPP_CMD_ADRC;
if (audio->adrc_enable) {
cmd.adrc_flag = AUDPP_CMD_ADRC_FLAG_ENA;
cmd.compression_th = audio->adrc.compression_th;
cmd.compression_slope = audio->adrc.compression_slope;
cmd.rms_time = audio->adrc.rms_time;
cmd.attack_const_lsw = audio->adrc.attack_const_lsw;
cmd.attack_const_msw = audio->adrc.attack_const_msw;
cmd.release_const_lsw = audio->adrc.release_const_lsw;
cmd.release_const_msw = audio->adrc.release_const_msw;
cmd.adrc_system_delay = audio->adrc.adrc_system_delay;
} else {
cmd.adrc_flag = AUDPP_CMD_ADRC_FLAG_DIS;
}
return audpp_send_queue3(&cmd, sizeof(cmd));
}
static int audio_dsp_set_eq(struct audio *audio)
{
audpp_cmd_cfg_object_params_eq cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.comman_cfg = AUDPP_CMD_CFG_OBJ_UPDATE;
cmd.common.command_type = AUDPP_CMD_EQUALIZER;
if (audio->eq_enable) {
cmd.eq_flag = AUDPP_CMD_EQ_FLAG_ENA;
cmd.num_bands = audio->eq.num_bands;
memcpy(&cmd.eq_params, audio->eq.eq_params,
sizeof(audio->eq.eq_params));
} else {
cmd.eq_flag = AUDPP_CMD_EQ_FLAG_DIS;
}
return audpp_send_queue3(&cmd, sizeof(cmd));
}
static int audio_dsp_set_rx_iir(struct audio *audio)
{
audpp_cmd_cfg_object_params_rx_iir cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.common.comman_cfg = AUDPP_CMD_CFG_OBJ_UPDATE;
cmd.common.command_type = AUDPP_CMD_IIR_TUNING_FILTER;
if (audio->rx_iir_enable) {
cmd.active_flag = AUDPP_CMD_IIR_FLAG_ENA;
cmd.num_bands = audio->iir.num_bands;
memcpy(&cmd.iir_params, audio->iir.iir_params,
sizeof(audio->iir.iir_params));
} else {
cmd.active_flag = AUDPP_CMD_IIR_FLAG_DIS;
}
return audpp_send_queue3(&cmd, sizeof(cmd));
}
/* ------------------- device --------------------- */
static int audio_enable_adrc(struct audio *audio, int enable)
{
if (audio->adrc_enable != enable) {
audio->adrc_enable = enable;
if (audio->running)
audio_dsp_set_adrc(audio);
}
return 0;
}
static int audio_enable_eq(struct audio *audio, int enable)
{
if (audio->eq_enable != enable) {
audio->eq_enable = enable;
if (audio->running)
audio_dsp_set_eq(audio);
}
return 0;
}
static int audio_enable_rx_iir(struct audio *audio, int enable)
{
if (audio->rx_iir_enable != enable) {
audio->rx_iir_enable = enable;
if (audio->running)
audio_dsp_set_rx_iir(audio);
}
return 0;
}
static void audio_flush(struct audio *audio)
{
audio->out[0].used = 0;
audio->out[1].used = 0;
audio->out_head = 0;
audio->out_tail = 0;
audio->stopped = 0;
}
static long audio_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio *audio = file->private_data;
int rc;
if (cmd == AUDIO_GET_STATS) {
struct msm_audio_stats stats;
stats.byte_count = atomic_read(&audio->out_bytes);
if (copy_to_user((void*) arg, &stats, sizeof(stats)))
return -EFAULT;
return 0;
}
if (cmd == AUDIO_SET_VOLUME) {
unsigned long flags;
spin_lock_irqsave(&audio->dsp_lock, flags);
audio->volume = arg;
if (audio->running)
audpp_set_volume_and_pan(6, arg, 0);
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
LOG(EV_IOCTL, cmd);
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_START:
rc = audio_enable(audio);
break;
case AUDIO_STOP:
rc = audio_disable(audio);
audio->stopped = 1;
break;
case AUDIO_FLUSH:
if (audio->stopped) {
/* Make sure we're stopped and we wake any threads
* that might be blocked holding the write_lock.
* While audio->stopped write threads will always
* exit immediately.
*/
wake_up(&audio->wait);
mutex_lock(&audio->write_lock);
audio_flush(audio);
mutex_unlock(&audio->write_lock);
}
case AUDIO_SET_CONFIG: {
struct msm_audio_config config;
if (copy_from_user(&config, (void*) arg, sizeof(config))) {
rc = -EFAULT;
break;
}
if (config.channel_count == 1) {
config.channel_count = AUDPP_CMD_PCM_INTF_MONO_V;
} else if (config.channel_count == 2) {
config.channel_count= AUDPP_CMD_PCM_INTF_STEREO_V;
} else {
rc = -EINVAL;
break;
}
audio->out_sample_rate = config.sample_rate;
audio->out_channel_mode = config.channel_count;
rc = 0;
break;
}
case AUDIO_GET_CONFIG: {
struct msm_audio_config config;
config.buffer_size = BUFSZ;
config.buffer_count = 2;
config.sample_rate = audio->out_sample_rate;
if (audio->out_channel_mode == AUDPP_CMD_PCM_INTF_MONO_V) {
config.channel_count = 1;
} else {
config.channel_count = 2;
}
config.unused[0] = 0;
config.unused[1] = 0;
config.unused[2] = 0;
if (copy_to_user((void*) arg, &config, sizeof(config))) {
rc = -EFAULT;
} else {
rc = 0;
}
break;
}
default:
rc = -EINVAL;
}
mutex_unlock(&audio->lock);
return rc;
}
static ssize_t audio_read(struct file *file, char __user *buf, size_t count, loff_t *pos)
{
return -EINVAL;
}
static inline int rt_policy(int policy)
{
if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
return 1;
return 0;
}
static inline int task_has_rt_policy(struct task_struct *p)
{
return rt_policy(p->policy);
}
static ssize_t audio_write(struct file *file, const char __user *buf,
size_t count, loff_t *pos)
{
struct sched_param s = { .sched_priority = 1 };
struct audio *audio = file->private_data;
unsigned long flags;
const char __user *start = buf;
struct buffer *frame;
size_t xfer;
int old_prio = current->rt_priority;
int old_policy = current->policy;
int cap_nice = cap_raised(current_cap(), CAP_SYS_NICE);
int rc = 0;
LOG(EV_WRITE, count | (audio->running << 28) | (audio->stopped << 24));
/* just for this write, set us real-time */
if (!task_has_rt_policy(current)) {
struct cred *new = prepare_creds();
cap_raise(new->cap_effective, CAP_SYS_NICE);
commit_creds(new);
sched_setscheduler(current, SCHED_RR, &s);
}
mutex_lock(&audio->write_lock);
while (count > 0) {
frame = audio->out + audio->out_head;
LOG(EV_WAIT_EVENT, 0);
rc = wait_event_interruptible(audio->wait,
(frame->used == 0) || (audio->stopped));
LOG(EV_WAIT_EVENT, 1);
if (rc < 0)
break;
if (audio->stopped) {
rc = -EBUSY;
break;
}
xfer = count > frame->size ? frame->size : count;
if (copy_from_user(frame->data, buf, xfer)) {
rc = -EFAULT;
break;
}
frame->used = xfer;
audio->out_head ^= 1;
count -= xfer;
buf += xfer;
spin_lock_irqsave(&audio->dsp_lock, flags);
LOG(EV_FILL_BUFFER, audio->out_head ^ 1);
frame = audio->out + audio->out_tail;
if (frame->used && audio->out_needed) {
audio_dsp_send_buffer(audio, audio->out_tail, frame->used);
audio->out_tail ^= 1;
audio->out_needed--;
}
spin_unlock_irqrestore(&audio->dsp_lock, flags);
}
mutex_unlock(&audio->write_lock);
/* restore scheduling policy and priority */
if (!rt_policy(old_policy)) {
struct sched_param v = { .sched_priority = old_prio };
sched_setscheduler(current, old_policy, &v);
if (likely(!cap_nice)) {
struct cred *new = prepare_creds();
cap_lower(new->cap_effective, CAP_SYS_NICE);
commit_creds(new);
sched_setscheduler(current, SCHED_RR, &s);
}
}
LOG(EV_RETURN,(buf > start) ? (buf - start) : rc);
if (buf > start)
return buf - start;
return rc;
}
static int audio_release(struct inode *inode, struct file *file)
{
struct audio *audio = file->private_data;
LOG(EV_OPEN, 0);
mutex_lock(&audio->lock);
audio_disable(audio);
audio_flush(audio);
audio->opened = 0;
mutex_unlock(&audio->lock);
htc_pwrsink_set(PWRSINK_AUDIO, 0);
return 0;
}
struct audio the_audio;
static int audio_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_audio;
int rc;
mutex_lock(&audio->lock);
if (audio->opened) {
pr_err("audio: busy\n");
rc = -EBUSY;
goto done;
}
if (!audio->data) {
audio->data = dma_alloc_coherent(NULL, DMASZ,
&audio->phys, GFP_KERNEL);
if (!audio->data) {
pr_err("audio: could not allocate DMA buffers\n");
rc = -ENOMEM;
goto done;
}
}
rc = audmgr_open(&audio->audmgr);
if (rc)
goto done;
audio->out_buffer_size = BUFSZ;
audio->out_sample_rate = 44100;
audio->out_channel_mode = AUDPP_CMD_PCM_INTF_STEREO_V;
audio->out_weight = 100;
audio->out[0].data = audio->data + 0;
audio->out[0].addr = audio->phys + 0;
audio->out[0].size = BUFSZ;
audio->out[1].data = audio->data + BUFSZ;
audio->out[1].addr = audio->phys + BUFSZ;
audio->out[1].size = BUFSZ;
audio->volume = 0x2000;
audio_flush(audio);
file->private_data = audio;
audio->opened = 1;
rc = 0;
LOG(EV_OPEN, 1);
done:
mutex_unlock(&audio->lock);
return rc;
}
static long audpp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct audio *audio = file->private_data;
int rc = 0, enable;
uint16_t enable_mask;
mutex_lock(&audio->lock);
switch (cmd) {
case AUDIO_ENABLE_AUDPP:
if (copy_from_user(&enable_mask, (void *) arg, sizeof(enable_mask)))
goto out_fault;
enable = (enable_mask & ADRC_ENABLE)? 1 : 0;
audio_enable_adrc(audio, enable);
enable = (enable_mask & EQ_ENABLE)? 1 : 0;
audio_enable_eq(audio, enable);
enable = (enable_mask & IIR_ENABLE)? 1 : 0;
audio_enable_rx_iir(audio, enable);
break;
case AUDIO_SET_ADRC:
if (copy_from_user(&audio->adrc, (void*) arg, sizeof(audio->adrc)))
goto out_fault;
break;
case AUDIO_SET_EQ:
if (copy_from_user(&audio->eq, (void*) arg, sizeof(audio->eq)))
goto out_fault;
break;
case AUDIO_SET_RX_IIR:
if (copy_from_user(&audio->iir, (void*) arg, sizeof(audio->iir)))
goto out_fault;
break;
default:
rc = -EINVAL;
}
goto out;
out_fault:
rc = -EFAULT;
out:
mutex_unlock(&audio->lock);
return rc;
}
static int audpp_open(struct inode *inode, struct file *file)
{
struct audio *audio = &the_audio;
file->private_data = audio;
return 0;
}
static struct file_operations audio_fops = {
.owner = THIS_MODULE,
.open = audio_open,
.release = audio_release,
.read = audio_read,
.write = audio_write,
.unlocked_ioctl = audio_ioctl,
};
static struct file_operations audpp_fops = {
.owner = THIS_MODULE,
.open = audpp_open,
.unlocked_ioctl = audpp_ioctl,
};
struct miscdevice audio_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_pcm_out",
.fops = &audio_fops,
};
struct miscdevice audpp_misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "msm_pcm_ctl",
.fops = &audpp_fops,
};
static int __init audio_init(void)
{
mutex_init(&the_audio.lock);
mutex_init(&the_audio.write_lock);
spin_lock_init(&the_audio.dsp_lock);
init_waitqueue_head(&the_audio.wait);
wake_lock_init(&the_audio.wakelock, WAKE_LOCK_SUSPEND, "audio_pcm");
wake_lock_init(&the_audio.idlelock, WAKE_LOCK_IDLE, "audio_pcm_idle");
return (misc_register(&audio_misc) || misc_register(&audpp_misc));
}
device_initcall(audio_init);