android_kernel_cmhtcleo/drivers/net/atl1c/atl1c_main.c
2010-08-27 11:19:57 +02:00

2774 lines
76 KiB
C

/*
* Copyright(c) 2008 - 2009 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "atl1c.h"
#define ATL1C_DRV_VERSION "1.0.0.1-NAPI"
char atl1c_driver_name[] = "atl1c";
char atl1c_driver_version[] = ATL1C_DRV_VERSION;
#define PCI_DEVICE_ID_ATTANSIC_L2C 0x1062
#define PCI_DEVICE_ID_ATTANSIC_L1C 0x1063
/*
* atl1c_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static struct pci_device_id atl1c_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1C)},
{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2C)},
/* required last entry */
{ 0 }
};
MODULE_DEVICE_TABLE(pci, atl1c_pci_tbl);
MODULE_AUTHOR("Jie Yang <jie.yang@atheros.com>");
MODULE_DESCRIPTION("Atheros 1000M Ethernet Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(ATL1C_DRV_VERSION);
static int atl1c_stop_mac(struct atl1c_hw *hw);
static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw);
static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw);
static void atl1c_disable_l0s_l1(struct atl1c_hw *hw);
static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup);
static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter);
static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que,
int *work_done, int work_to_do);
static const u16 atl1c_pay_load_size[] = {
128, 256, 512, 1024, 2048, 4096,
};
static const u16 atl1c_rfd_prod_idx_regs[AT_MAX_RECEIVE_QUEUE] =
{
REG_MB_RFD0_PROD_IDX,
REG_MB_RFD1_PROD_IDX,
REG_MB_RFD2_PROD_IDX,
REG_MB_RFD3_PROD_IDX
};
static const u16 atl1c_rfd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] =
{
REG_RFD0_HEAD_ADDR_LO,
REG_RFD1_HEAD_ADDR_LO,
REG_RFD2_HEAD_ADDR_LO,
REG_RFD3_HEAD_ADDR_LO
};
static const u16 atl1c_rrd_addr_lo_regs[AT_MAX_RECEIVE_QUEUE] =
{
REG_RRD0_HEAD_ADDR_LO,
REG_RRD1_HEAD_ADDR_LO,
REG_RRD2_HEAD_ADDR_LO,
REG_RRD3_HEAD_ADDR_LO
};
static const u32 atl1c_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
/*
* atl1c_init_pcie - init PCIE module
*/
static void atl1c_reset_pcie(struct atl1c_hw *hw, u32 flag)
{
u32 data;
u32 pci_cmd;
struct pci_dev *pdev = hw->adapter->pdev;
AT_READ_REG(hw, PCI_COMMAND, &pci_cmd);
pci_cmd &= ~PCI_COMMAND_INTX_DISABLE;
pci_cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_IO);
AT_WRITE_REG(hw, PCI_COMMAND, pci_cmd);
/*
* Clear any PowerSaveing Settings
*/
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
/*
* Mask some pcie error bits
*/
AT_READ_REG(hw, REG_PCIE_UC_SEVERITY, &data);
data &= ~PCIE_UC_SERVRITY_DLP;
data &= ~PCIE_UC_SERVRITY_FCP;
AT_WRITE_REG(hw, REG_PCIE_UC_SEVERITY, data);
if (flag & ATL1C_PCIE_L0S_L1_DISABLE)
atl1c_disable_l0s_l1(hw);
if (flag & ATL1C_PCIE_PHY_RESET)
AT_WRITE_REG(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
else
AT_WRITE_REG(hw, REG_GPHY_CTRL,
GPHY_CTRL_DEFAULT | GPHY_CTRL_EXT_RESET);
msleep(1);
}
/*
* atl1c_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
*/
static inline void atl1c_irq_enable(struct atl1c_adapter *adapter)
{
if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
AT_WRITE_REG(&adapter->hw, REG_ISR, 0x7FFFFFFF);
AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask);
AT_WRITE_FLUSH(&adapter->hw);
}
}
/*
* atl1c_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
*/
static inline void atl1c_irq_disable(struct atl1c_adapter *adapter)
{
atomic_inc(&adapter->irq_sem);
AT_WRITE_REG(&adapter->hw, REG_IMR, 0);
AT_WRITE_FLUSH(&adapter->hw);
synchronize_irq(adapter->pdev->irq);
}
/*
* atl1c_irq_reset - reset interrupt confiure on the NIC
* @adapter: board private structure
*/
static inline void atl1c_irq_reset(struct atl1c_adapter *adapter)
{
atomic_set(&adapter->irq_sem, 1);
atl1c_irq_enable(adapter);
}
/*
* atl1c_wait_until_idle - wait up to AT_HW_MAX_IDLE_DELAY reads
* of the idle status register until the device is actually idle
*/
static u32 atl1c_wait_until_idle(struct atl1c_hw *hw)
{
int timeout;
u32 data;
for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
AT_READ_REG(hw, REG_IDLE_STATUS, &data);
if ((data & IDLE_STATUS_MASK) == 0)
return 0;
msleep(1);
}
return data;
}
/*
* atl1c_phy_config - Timer Call-back
* @data: pointer to netdev cast into an unsigned long
*/
static void atl1c_phy_config(unsigned long data)
{
struct atl1c_adapter *adapter = (struct atl1c_adapter *) data;
struct atl1c_hw *hw = &adapter->hw;
unsigned long flags;
spin_lock_irqsave(&adapter->mdio_lock, flags);
atl1c_restart_autoneg(hw);
spin_unlock_irqrestore(&adapter->mdio_lock, flags);
}
void atl1c_reinit_locked(struct atl1c_adapter *adapter)
{
WARN_ON(in_interrupt());
atl1c_down(adapter);
atl1c_up(adapter);
clear_bit(__AT_RESETTING, &adapter->flags);
}
static void atl1c_check_link_status(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
int err;
unsigned long flags;
u16 speed, duplex, phy_data;
spin_lock_irqsave(&adapter->mdio_lock, flags);
/* MII_BMSR must read twise */
atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
atl1c_read_phy_reg(hw, MII_BMSR, &phy_data);
spin_unlock_irqrestore(&adapter->mdio_lock, flags);
if ((phy_data & BMSR_LSTATUS) == 0) {
/* link down */
if (netif_carrier_ok(netdev)) {
hw->hibernate = true;
if (atl1c_stop_mac(hw) != 0)
if (netif_msg_hw(adapter))
dev_warn(&pdev->dev,
"stop mac failed\n");
atl1c_set_aspm(hw, false);
}
netif_carrier_off(netdev);
} else {
/* Link Up */
hw->hibernate = false;
spin_lock_irqsave(&adapter->mdio_lock, flags);
err = atl1c_get_speed_and_duplex(hw, &speed, &duplex);
spin_unlock_irqrestore(&adapter->mdio_lock, flags);
if (unlikely(err))
return;
/* link result is our setting */
if (adapter->link_speed != speed ||
adapter->link_duplex != duplex) {
adapter->link_speed = speed;
adapter->link_duplex = duplex;
atl1c_set_aspm(hw, true);
atl1c_enable_tx_ctrl(hw);
atl1c_enable_rx_ctrl(hw);
atl1c_setup_mac_ctrl(adapter);
if (netif_msg_link(adapter))
dev_info(&pdev->dev,
"%s: %s NIC Link is Up<%d Mbps %s>\n",
atl1c_driver_name, netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex");
}
if (!netif_carrier_ok(netdev))
netif_carrier_on(netdev);
}
}
static void atl1c_link_chg_event(struct atl1c_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
u16 phy_data;
u16 link_up;
spin_lock(&adapter->mdio_lock);
atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
atl1c_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data);
spin_unlock(&adapter->mdio_lock);
link_up = phy_data & BMSR_LSTATUS;
/* notify upper layer link down ASAP */
if (!link_up) {
if (netif_carrier_ok(netdev)) {
/* old link state: Up */
netif_carrier_off(netdev);
if (netif_msg_link(adapter))
dev_info(&pdev->dev,
"%s: %s NIC Link is Down\n",
atl1c_driver_name, netdev->name);
adapter->link_speed = SPEED_0;
}
}
adapter->work_event |= ATL1C_WORK_EVENT_LINK_CHANGE;
schedule_work(&adapter->common_task);
}
static void atl1c_common_task(struct work_struct *work)
{
struct atl1c_adapter *adapter;
struct net_device *netdev;
adapter = container_of(work, struct atl1c_adapter, common_task);
netdev = adapter->netdev;
if (adapter->work_event & ATL1C_WORK_EVENT_RESET) {
netif_device_detach(netdev);
atl1c_down(adapter);
atl1c_up(adapter);
netif_device_attach(netdev);
return;
}
if (adapter->work_event & ATL1C_WORK_EVENT_LINK_CHANGE)
atl1c_check_link_status(adapter);
return;
}
static void atl1c_del_timer(struct atl1c_adapter *adapter)
{
del_timer_sync(&adapter->phy_config_timer);
}
/*
* atl1c_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
*/
static void atl1c_tx_timeout(struct net_device *netdev)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
adapter->work_event |= ATL1C_WORK_EVENT_RESET;
schedule_work(&adapter->common_task);
}
/*
* atl1c_set_multi - Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_multi entry point is called whenever the multicast address
* list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper multicast,
* promiscuous mode, and all-multi behavior.
*/
static void atl1c_set_multi(struct net_device *netdev)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
struct atl1c_hw *hw = &adapter->hw;
struct dev_mc_list *mc_ptr;
u32 mac_ctrl_data;
u32 hash_value;
/* Check for Promiscuous and All Multicast modes */
AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl_data);
if (netdev->flags & IFF_PROMISC) {
mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
} else if (netdev->flags & IFF_ALLMULTI) {
mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;
mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN;
} else {
mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN);
}
AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
/* clear the old settings from the multicast hash table */
AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
/* comoute mc addresses' hash value ,and put it into hash table */
for (mc_ptr = netdev->mc_list; mc_ptr; mc_ptr = mc_ptr->next) {
hash_value = atl1c_hash_mc_addr(hw, mc_ptr->dmi_addr);
atl1c_hash_set(hw, hash_value);
}
}
static void atl1c_vlan_rx_register(struct net_device *netdev,
struct vlan_group *grp)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
u32 mac_ctrl_data = 0;
if (netif_msg_pktdata(adapter))
dev_dbg(&pdev->dev, "atl1c_vlan_rx_register\n");
atl1c_irq_disable(adapter);
adapter->vlgrp = grp;
AT_READ_REG(&adapter->hw, REG_MAC_CTRL, &mac_ctrl_data);
if (grp) {
/* enable VLAN tag insert/strip */
mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
} else {
/* disable VLAN tag insert/strip */
mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN;
}
AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data);
atl1c_irq_enable(adapter);
}
static void atl1c_restore_vlan(struct atl1c_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
if (netif_msg_pktdata(adapter))
dev_dbg(&pdev->dev, "atl1c_restore_vlan !");
atl1c_vlan_rx_register(adapter->netdev, adapter->vlgrp);
}
/*
* atl1c_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
*/
static int atl1c_set_mac_addr(struct net_device *netdev, void *p)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
if (netif_running(netdev))
return -EBUSY;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
atl1c_hw_set_mac_addr(&adapter->hw);
return 0;
}
static void atl1c_set_rxbufsize(struct atl1c_adapter *adapter,
struct net_device *dev)
{
int mtu = dev->mtu;
adapter->rx_buffer_len = mtu > AT_RX_BUF_SIZE ?
roundup(mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN, 8) : AT_RX_BUF_SIZE;
}
/*
* atl1c_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int atl1c_change_mtu(struct net_device *netdev, int new_mtu)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
int old_mtu = netdev->mtu;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
(max_frame > MAX_JUMBO_FRAME_SIZE)) {
if (netif_msg_link(adapter))
dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
return -EINVAL;
}
/* set MTU */
if (old_mtu != new_mtu && netif_running(netdev)) {
while (test_and_set_bit(__AT_RESETTING, &adapter->flags))
msleep(1);
netdev->mtu = new_mtu;
adapter->hw.max_frame_size = new_mtu;
atl1c_set_rxbufsize(adapter, netdev);
atl1c_down(adapter);
atl1c_up(adapter);
clear_bit(__AT_RESETTING, &adapter->flags);
if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) {
u32 phy_data;
AT_READ_REG(&adapter->hw, 0x1414, &phy_data);
phy_data |= 0x10000000;
AT_WRITE_REG(&adapter->hw, 0x1414, phy_data);
}
}
return 0;
}
/*
* caller should hold mdio_lock
*/
static int atl1c_mdio_read(struct net_device *netdev, int phy_id, int reg_num)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
u16 result;
atl1c_read_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, &result);
return result;
}
static void atl1c_mdio_write(struct net_device *netdev, int phy_id,
int reg_num, int val)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
atl1c_write_phy_reg(&adapter->hw, reg_num & MDIO_REG_ADDR_MASK, val);
}
/*
* atl1c_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl1c_mii_ioctl(struct net_device *netdev,
struct ifreq *ifr, int cmd)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct mii_ioctl_data *data = if_mii(ifr);
unsigned long flags;
int retval = 0;
if (!netif_running(netdev))
return -EINVAL;
spin_lock_irqsave(&adapter->mdio_lock, flags);
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = 0;
break;
case SIOCGMIIREG:
if (atl1c_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
&data->val_out)) {
retval = -EIO;
goto out;
}
break;
case SIOCSMIIREG:
if (data->reg_num & ~(0x1F)) {
retval = -EFAULT;
goto out;
}
dev_dbg(&pdev->dev, "<atl1c_mii_ioctl> write %x %x",
data->reg_num, data->val_in);
if (atl1c_write_phy_reg(&adapter->hw,
data->reg_num, data->val_in)) {
retval = -EIO;
goto out;
}
break;
default:
retval = -EOPNOTSUPP;
break;
}
out:
spin_unlock_irqrestore(&adapter->mdio_lock, flags);
return retval;
}
/*
* atl1c_ioctl -
* @netdev:
* @ifreq:
* @cmd:
*/
static int atl1c_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return atl1c_mii_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
/*
* atl1c_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
*
*/
static int __devinit atl1c_alloc_queues(struct atl1c_adapter *adapter)
{
return 0;
}
static void atl1c_set_mac_type(struct atl1c_hw *hw)
{
switch (hw->device_id) {
case PCI_DEVICE_ID_ATTANSIC_L2C:
hw->nic_type = athr_l2c;
break;
case PCI_DEVICE_ID_ATTANSIC_L1C:
hw->nic_type = athr_l1c;
break;
default:
break;
}
}
static int atl1c_setup_mac_funcs(struct atl1c_hw *hw)
{
u32 phy_status_data;
u32 link_ctrl_data;
atl1c_set_mac_type(hw);
AT_READ_REG(hw, REG_PHY_STATUS, &phy_status_data);
AT_READ_REG(hw, REG_LINK_CTRL, &link_ctrl_data);
hw->ctrl_flags = ATL1C_INTR_CLEAR_ON_READ |
ATL1C_INTR_MODRT_ENABLE |
ATL1C_RX_IPV6_CHKSUM |
ATL1C_TXQ_MODE_ENHANCE;
if (link_ctrl_data & LINK_CTRL_L0S_EN)
hw->ctrl_flags |= ATL1C_ASPM_L0S_SUPPORT;
if (link_ctrl_data & LINK_CTRL_L1_EN)
hw->ctrl_flags |= ATL1C_ASPM_L1_SUPPORT;
if (hw->nic_type == athr_l1c) {
hw->ctrl_flags |= ATL1C_ASPM_CTRL_MON;
hw->ctrl_flags |= ATL1C_LINK_CAP_1000M;
}
return 0;
}
/*
* atl1c_sw_init - Initialize general software structures (struct atl1c_adapter)
* @adapter: board private structure to initialize
*
* atl1c_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int __devinit atl1c_sw_init(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
adapter->wol = 0;
adapter->link_speed = SPEED_0;
adapter->link_duplex = FULL_DUPLEX;
adapter->num_rx_queues = AT_DEF_RECEIVE_QUEUE;
adapter->tpd_ring[0].count = 1024;
adapter->rfd_ring[0].count = 512;
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
/* before link up, we assume hibernate is true */
hw->hibernate = true;
hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
if (atl1c_setup_mac_funcs(hw) != 0) {
dev_err(&pdev->dev, "set mac function pointers failed\n");
return -1;
}
hw->intr_mask = IMR_NORMAL_MASK;
hw->phy_configured = false;
hw->preamble_len = 7;
hw->max_frame_size = adapter->netdev->mtu;
if (adapter->num_rx_queues < 2) {
hw->rss_type = atl1c_rss_disable;
hw->rss_mode = atl1c_rss_mode_disable;
} else {
hw->rss_type = atl1c_rss_ipv4;
hw->rss_mode = atl1c_rss_mul_que_mul_int;
hw->rss_hash_bits = 16;
}
hw->autoneg_advertised = ADVERTISED_Autoneg;
hw->indirect_tab = 0xE4E4E4E4;
hw->base_cpu = 0;
hw->ict = 50000; /* 100ms */
hw->smb_timer = 200000; /* 400ms */
hw->cmb_tpd = 4;
hw->cmb_tx_timer = 1; /* 2 us */
hw->rx_imt = 200;
hw->tx_imt = 1000;
hw->tpd_burst = 5;
hw->rfd_burst = 8;
hw->dma_order = atl1c_dma_ord_out;
hw->dmar_block = atl1c_dma_req_1024;
hw->dmaw_block = atl1c_dma_req_1024;
hw->dmar_dly_cnt = 15;
hw->dmaw_dly_cnt = 4;
if (atl1c_alloc_queues(adapter)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* TODO */
atl1c_set_rxbufsize(adapter, adapter->netdev);
atomic_set(&adapter->irq_sem, 1);
spin_lock_init(&adapter->mdio_lock);
spin_lock_init(&adapter->tx_lock);
set_bit(__AT_DOWN, &adapter->flags);
return 0;
}
/*
* atl1c_clean_tx_ring - Free Tx-skb
* @adapter: board private structure
*/
static void atl1c_clean_tx_ring(struct atl1c_adapter *adapter,
enum atl1c_trans_queue type)
{
struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
struct atl1c_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
u16 index, ring_count;
ring_count = tpd_ring->count;
for (index = 0; index < ring_count; index++) {
buffer_info = &tpd_ring->buffer_info[index];
if (buffer_info->state == ATL1_BUFFER_FREE)
continue;
if (buffer_info->dma)
pci_unmap_single(pdev, buffer_info->dma,
buffer_info->length,
PCI_DMA_TODEVICE);
if (buffer_info->skb)
dev_kfree_skb(buffer_info->skb);
buffer_info->dma = 0;
buffer_info->skb = NULL;
buffer_info->state = ATL1_BUFFER_FREE;
}
/* Zero out Tx-buffers */
memset(tpd_ring->desc, 0, sizeof(struct atl1c_tpd_desc) *
ring_count);
atomic_set(&tpd_ring->next_to_clean, 0);
tpd_ring->next_to_use = 0;
}
/*
* atl1c_clean_rx_ring - Free rx-reservation skbs
* @adapter: board private structure
*/
static void atl1c_clean_rx_ring(struct atl1c_adapter *adapter)
{
struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
struct atl1c_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
int i, j;
for (i = 0; i < adapter->num_rx_queues; i++) {
for (j = 0; j < rfd_ring[i].count; j++) {
buffer_info = &rfd_ring[i].buffer_info[j];
if (buffer_info->state == ATL1_BUFFER_FREE)
continue;
if (buffer_info->dma)
pci_unmap_single(pdev, buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
if (buffer_info->skb)
dev_kfree_skb(buffer_info->skb);
buffer_info->state = ATL1_BUFFER_FREE;
buffer_info->skb = NULL;
}
/* zero out the descriptor ring */
memset(rfd_ring[i].desc, 0, rfd_ring[i].size);
rfd_ring[i].next_to_clean = 0;
rfd_ring[i].next_to_use = 0;
rrd_ring[i].next_to_use = 0;
rrd_ring[i].next_to_clean = 0;
}
}
/*
* Read / Write Ptr Initialize:
*/
static void atl1c_init_ring_ptrs(struct atl1c_adapter *adapter)
{
struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;
struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
struct atl1c_buffer *buffer_info;
int i, j;
for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
tpd_ring[i].next_to_use = 0;
atomic_set(&tpd_ring[i].next_to_clean, 0);
buffer_info = tpd_ring[i].buffer_info;
for (j = 0; j < tpd_ring->count; j++)
buffer_info[i].state = ATL1_BUFFER_FREE;
}
for (i = 0; i < adapter->num_rx_queues; i++) {
rfd_ring[i].next_to_use = 0;
rfd_ring[i].next_to_clean = 0;
rrd_ring[i].next_to_use = 0;
rrd_ring[i].next_to_clean = 0;
for (j = 0; j < rfd_ring[i].count; j++) {
buffer_info = &rfd_ring[i].buffer_info[j];
buffer_info->state = ATL1_BUFFER_FREE;
}
}
}
/*
* atl1c_free_ring_resources - Free Tx / RX descriptor Resources
* @adapter: board private structure
*
* Free all transmit software resources
*/
static void atl1c_free_ring_resources(struct atl1c_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
pci_free_consistent(pdev, adapter->ring_header.size,
adapter->ring_header.desc,
adapter->ring_header.dma);
adapter->ring_header.desc = NULL;
/* Note: just free tdp_ring.buffer_info,
* it contain rfd_ring.buffer_info, do not double free */
if (adapter->tpd_ring[0].buffer_info) {
kfree(adapter->tpd_ring[0].buffer_info);
adapter->tpd_ring[0].buffer_info = NULL;
}
}
/*
* atl1c_setup_mem_resources - allocate Tx / RX descriptor resources
* @adapter: board private structure
*
* Return 0 on success, negative on failure
*/
static int atl1c_setup_ring_resources(struct atl1c_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;
struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring;
struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring;
struct atl1c_ring_header *ring_header = &adapter->ring_header;
int num_rx_queues = adapter->num_rx_queues;
int size;
int i;
int count = 0;
int rx_desc_count = 0;
u32 offset = 0;
rrd_ring[0].count = rfd_ring[0].count;
for (i = 1; i < AT_MAX_TRANSMIT_QUEUE; i++)
tpd_ring[i].count = tpd_ring[0].count;
for (i = 1; i < adapter->num_rx_queues; i++)
rfd_ring[i].count = rrd_ring[i].count = rfd_ring[0].count;
/* 2 tpd queue, one high priority queue,
* another normal priority queue */
size = sizeof(struct atl1c_buffer) * (tpd_ring->count * 2 +
rfd_ring->count * num_rx_queues);
tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
if (unlikely(!tpd_ring->buffer_info)) {
dev_err(&pdev->dev, "kzalloc failed, size = %d\n",
size);
goto err_nomem;
}
for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
tpd_ring[i].buffer_info =
(struct atl1c_buffer *) (tpd_ring->buffer_info + count);
count += tpd_ring[i].count;
}
for (i = 0; i < num_rx_queues; i++) {
rfd_ring[i].buffer_info =
(struct atl1c_buffer *) (tpd_ring->buffer_info + count);
count += rfd_ring[i].count;
rx_desc_count += rfd_ring[i].count;
}
/*
* real ring DMA buffer
* each ring/block may need up to 8 bytes for alignment, hence the
* additional bytes tacked onto the end.
*/
ring_header->size = size =
sizeof(struct atl1c_tpd_desc) * tpd_ring->count * 2 +
sizeof(struct atl1c_rx_free_desc) * rx_desc_count +
sizeof(struct atl1c_recv_ret_status) * rx_desc_count +
sizeof(struct atl1c_hw_stats) +
8 * 4 + 8 * 2 * num_rx_queues;
ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
&ring_header->dma);
if (unlikely(!ring_header->desc)) {
dev_err(&pdev->dev, "pci_alloc_consistend failed\n");
goto err_nomem;
}
memset(ring_header->desc, 0, ring_header->size);
/* init TPD ring */
tpd_ring[0].dma = roundup(ring_header->dma, 8);
offset = tpd_ring[0].dma - ring_header->dma;
for (i = 0; i < AT_MAX_TRANSMIT_QUEUE; i++) {
tpd_ring[i].dma = ring_header->dma + offset;
tpd_ring[i].desc = (u8 *) ring_header->desc + offset;
tpd_ring[i].size =
sizeof(struct atl1c_tpd_desc) * tpd_ring[i].count;
offset += roundup(tpd_ring[i].size, 8);
}
/* init RFD ring */
for (i = 0; i < num_rx_queues; i++) {
rfd_ring[i].dma = ring_header->dma + offset;
rfd_ring[i].desc = (u8 *) ring_header->desc + offset;
rfd_ring[i].size = sizeof(struct atl1c_rx_free_desc) *
rfd_ring[i].count;
offset += roundup(rfd_ring[i].size, 8);
}
/* init RRD ring */
for (i = 0; i < num_rx_queues; i++) {
rrd_ring[i].dma = ring_header->dma + offset;
rrd_ring[i].desc = (u8 *) ring_header->desc + offset;
rrd_ring[i].size = sizeof(struct atl1c_recv_ret_status) *
rrd_ring[i].count;
offset += roundup(rrd_ring[i].size, 8);
}
adapter->smb.dma = ring_header->dma + offset;
adapter->smb.smb = (u8 *)ring_header->desc + offset;
return 0;
err_nomem:
kfree(tpd_ring->buffer_info);
return -ENOMEM;
}
static void atl1c_configure_des_ring(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
struct atl1c_rfd_ring *rfd_ring = (struct atl1c_rfd_ring *)
adapter->rfd_ring;
struct atl1c_rrd_ring *rrd_ring = (struct atl1c_rrd_ring *)
adapter->rrd_ring;
struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *)
adapter->tpd_ring;
struct atl1c_cmb *cmb = (struct atl1c_cmb *) &adapter->cmb;
struct atl1c_smb *smb = (struct atl1c_smb *) &adapter->smb;
int i;
/* TPD */
AT_WRITE_REG(hw, REG_TX_BASE_ADDR_HI,
(u32)((tpd_ring[atl1c_trans_normal].dma &
AT_DMA_HI_ADDR_MASK) >> 32));
/* just enable normal priority TX queue */
AT_WRITE_REG(hw, REG_NTPD_HEAD_ADDR_LO,
(u32)(tpd_ring[atl1c_trans_normal].dma &
AT_DMA_LO_ADDR_MASK));
AT_WRITE_REG(hw, REG_HTPD_HEAD_ADDR_LO,
(u32)(tpd_ring[atl1c_trans_high].dma &
AT_DMA_LO_ADDR_MASK));
AT_WRITE_REG(hw, REG_TPD_RING_SIZE,
(u32)(tpd_ring[0].count & TPD_RING_SIZE_MASK));
/* RFD */
AT_WRITE_REG(hw, REG_RX_BASE_ADDR_HI,
(u32)((rfd_ring[0].dma & AT_DMA_HI_ADDR_MASK) >> 32));
for (i = 0; i < adapter->num_rx_queues; i++)
AT_WRITE_REG(hw, atl1c_rfd_addr_lo_regs[i],
(u32)(rfd_ring[i].dma & AT_DMA_LO_ADDR_MASK));
AT_WRITE_REG(hw, REG_RFD_RING_SIZE,
rfd_ring[0].count & RFD_RING_SIZE_MASK);
AT_WRITE_REG(hw, REG_RX_BUF_SIZE,
adapter->rx_buffer_len & RX_BUF_SIZE_MASK);
/* RRD */
for (i = 0; i < adapter->num_rx_queues; i++)
AT_WRITE_REG(hw, atl1c_rrd_addr_lo_regs[i],
(u32)(rrd_ring[i].dma & AT_DMA_LO_ADDR_MASK));
AT_WRITE_REG(hw, REG_RRD_RING_SIZE,
(rrd_ring[0].count & RRD_RING_SIZE_MASK));
/* CMB */
AT_WRITE_REG(hw, REG_CMB_BASE_ADDR_LO, cmb->dma & AT_DMA_LO_ADDR_MASK);
/* SMB */
AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_HI,
(u32)((smb->dma & AT_DMA_HI_ADDR_MASK) >> 32));
AT_WRITE_REG(hw, REG_SMB_BASE_ADDR_LO,
(u32)(smb->dma & AT_DMA_LO_ADDR_MASK));
/* Load all of base address above */
AT_WRITE_REG(hw, REG_LOAD_PTR, 1);
}
static void atl1c_configure_tx(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
u32 dev_ctrl_data;
u32 max_pay_load;
u16 tx_offload_thresh;
u32 txq_ctrl_data;
u32 extra_size = 0; /* Jumbo frame threshold in QWORD unit */
extra_size = ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN;
tx_offload_thresh = MAX_TX_OFFLOAD_THRESH;
AT_WRITE_REG(hw, REG_TX_TSO_OFFLOAD_THRESH,
(tx_offload_thresh >> 3) & TX_TSO_OFFLOAD_THRESH_MASK);
AT_READ_REG(hw, REG_DEVICE_CTRL, &dev_ctrl_data);
max_pay_load = (dev_ctrl_data >> DEVICE_CTRL_MAX_PAYLOAD_SHIFT) &
DEVICE_CTRL_MAX_PAYLOAD_MASK;
hw->dmaw_block = min(max_pay_load, hw->dmaw_block);
max_pay_load = (dev_ctrl_data >> DEVICE_CTRL_MAX_RREQ_SZ_SHIFT) &
DEVICE_CTRL_MAX_RREQ_SZ_MASK;
hw->dmar_block = min(max_pay_load, hw->dmar_block);
txq_ctrl_data = (hw->tpd_burst & TXQ_NUM_TPD_BURST_MASK) <<
TXQ_NUM_TPD_BURST_SHIFT;
if (hw->ctrl_flags & ATL1C_TXQ_MODE_ENHANCE)
txq_ctrl_data |= TXQ_CTRL_ENH_MODE;
txq_ctrl_data |= (atl1c_pay_load_size[hw->dmar_block] &
TXQ_TXF_BURST_NUM_MASK) << TXQ_TXF_BURST_NUM_SHIFT;
AT_WRITE_REG(hw, REG_TXQ_CTRL, txq_ctrl_data);
}
static void atl1c_configure_rx(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
u32 rxq_ctrl_data;
rxq_ctrl_data = (hw->rfd_burst & RXQ_RFD_BURST_NUM_MASK) <<
RXQ_RFD_BURST_NUM_SHIFT;
if (hw->ctrl_flags & ATL1C_RX_IPV6_CHKSUM)
rxq_ctrl_data |= IPV6_CHKSUM_CTRL_EN;
if (hw->rss_type == atl1c_rss_ipv4)
rxq_ctrl_data |= RSS_HASH_IPV4;
if (hw->rss_type == atl1c_rss_ipv4_tcp)
rxq_ctrl_data |= RSS_HASH_IPV4_TCP;
if (hw->rss_type == atl1c_rss_ipv6)
rxq_ctrl_data |= RSS_HASH_IPV6;
if (hw->rss_type == atl1c_rss_ipv6_tcp)
rxq_ctrl_data |= RSS_HASH_IPV6_TCP;
if (hw->rss_type != atl1c_rss_disable)
rxq_ctrl_data |= RRS_HASH_CTRL_EN;
rxq_ctrl_data |= (hw->rss_mode & RSS_MODE_MASK) <<
RSS_MODE_SHIFT;
rxq_ctrl_data |= (hw->rss_hash_bits & RSS_HASH_BITS_MASK) <<
RSS_HASH_BITS_SHIFT;
if (hw->ctrl_flags & ATL1C_ASPM_CTRL_MON)
rxq_ctrl_data |= (ASPM_THRUPUT_LIMIT_100M &
ASPM_THRUPUT_LIMIT_MASK) << ASPM_THRUPUT_LIMIT_SHIFT;
AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data);
}
static void atl1c_configure_rss(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
AT_WRITE_REG(hw, REG_IDT_TABLE, hw->indirect_tab);
AT_WRITE_REG(hw, REG_BASE_CPU_NUMBER, hw->base_cpu);
}
static void atl1c_configure_dma(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
u32 dma_ctrl_data;
dma_ctrl_data = DMA_CTRL_DMAR_REQ_PRI;
if (hw->ctrl_flags & ATL1C_CMB_ENABLE)
dma_ctrl_data |= DMA_CTRL_CMB_EN;
if (hw->ctrl_flags & ATL1C_SMB_ENABLE)
dma_ctrl_data |= DMA_CTRL_SMB_EN;
else
dma_ctrl_data |= MAC_CTRL_SMB_DIS;
switch (hw->dma_order) {
case atl1c_dma_ord_in:
dma_ctrl_data |= DMA_CTRL_DMAR_IN_ORDER;
break;
case atl1c_dma_ord_enh:
dma_ctrl_data |= DMA_CTRL_DMAR_ENH_ORDER;
break;
case atl1c_dma_ord_out:
dma_ctrl_data |= DMA_CTRL_DMAR_OUT_ORDER;
break;
default:
break;
}
dma_ctrl_data |= (((u32)hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
<< DMA_CTRL_DMAR_BURST_LEN_SHIFT;
dma_ctrl_data |= (((u32)hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
<< DMA_CTRL_DMAW_BURST_LEN_SHIFT;
dma_ctrl_data |= (((u32)hw->dmar_dly_cnt) & DMA_CTRL_DMAR_DLY_CNT_MASK)
<< DMA_CTRL_DMAR_DLY_CNT_SHIFT;
dma_ctrl_data |= (((u32)hw->dmaw_dly_cnt) & DMA_CTRL_DMAW_DLY_CNT_MASK)
<< DMA_CTRL_DMAW_DLY_CNT_SHIFT;
AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data);
}
/*
* Stop the mac, transmit and receive units
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
static int atl1c_stop_mac(struct atl1c_hw *hw)
{
u32 data;
AT_READ_REG(hw, REG_RXQ_CTRL, &data);
data &= ~(RXQ1_CTRL_EN | RXQ2_CTRL_EN |
RXQ3_CTRL_EN | RXQ_CTRL_EN);
AT_WRITE_REG(hw, REG_RXQ_CTRL, data);
AT_READ_REG(hw, REG_TXQ_CTRL, &data);
data &= ~TXQ_CTRL_EN;
AT_WRITE_REG(hw, REG_TWSI_CTRL, data);
atl1c_wait_until_idle(hw);
AT_READ_REG(hw, REG_MAC_CTRL, &data);
data &= ~(MAC_CTRL_TX_EN | MAC_CTRL_RX_EN);
AT_WRITE_REG(hw, REG_MAC_CTRL, data);
return (int)atl1c_wait_until_idle(hw);
}
static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw)
{
u32 data;
AT_READ_REG(hw, REG_RXQ_CTRL, &data);
switch (hw->adapter->num_rx_queues) {
case 4:
data |= (RXQ3_CTRL_EN | RXQ2_CTRL_EN | RXQ1_CTRL_EN);
break;
case 3:
data |= (RXQ2_CTRL_EN | RXQ1_CTRL_EN);
break;
case 2:
data |= RXQ1_CTRL_EN;
break;
default:
break;
}
data |= RXQ_CTRL_EN;
AT_WRITE_REG(hw, REG_RXQ_CTRL, data);
}
static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw)
{
u32 data;
AT_READ_REG(hw, REG_TXQ_CTRL, &data);
data |= TXQ_CTRL_EN;
AT_WRITE_REG(hw, REG_TXQ_CTRL, data);
}
/*
* Reset the transmit and receive units; mask and clear all interrupts.
* hw - Struct containing variables accessed by shared code
* return : 0 or idle status (if error)
*/
static int atl1c_reset_mac(struct atl1c_hw *hw)
{
struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
struct pci_dev *pdev = adapter->pdev;
int ret;
AT_WRITE_REG(hw, REG_IMR, 0);
AT_WRITE_REG(hw, REG_ISR, ISR_DIS_INT);
ret = atl1c_stop_mac(hw);
if (ret)
return ret;
/*
* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
AT_WRITE_REGW(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST);
AT_WRITE_FLUSH(hw);
msleep(10);
/* Wait at least 10ms for All module to be Idle */
if (atl1c_wait_until_idle(hw)) {
dev_err(&pdev->dev,
"MAC state machine can't be idle since"
" disabled for 10ms second\n");
return -1;
}
return 0;
}
static void atl1c_disable_l0s_l1(struct atl1c_hw *hw)
{
u32 pm_ctrl_data;
AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data);
pm_ctrl_data &= ~(PM_CTRL_L1_ENTRY_TIMER_MASK <<
PM_CTRL_L1_ENTRY_TIMER_SHIFT);
pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1;
pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;
pm_ctrl_data &= ~PM_CTRL_MAC_ASPM_CHK;
pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1;
pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN;
pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN;
pm_ctrl_data |= PM_CTRL_SERDES_L1_EN;
AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data);
}
/*
* Set ASPM state.
* Enable/disable L0s/L1 depend on link state.
*/
static void atl1c_set_aspm(struct atl1c_hw *hw, bool linkup)
{
u32 pm_ctrl_data;
AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data);
pm_ctrl_data &= ~PM_CTRL_SERDES_PD_EX_L1;
pm_ctrl_data &= ~(PM_CTRL_L1_ENTRY_TIMER_MASK <<
PM_CTRL_L1_ENTRY_TIMER_SHIFT);
pm_ctrl_data |= PM_CTRL_MAC_ASPM_CHK;
if (linkup) {
pm_ctrl_data |= PM_CTRL_SERDES_PLL_L1_EN;
pm_ctrl_data &= ~PM_CTRL_CLK_SWH_L1;
pm_ctrl_data |= PM_CTRL_SERDES_BUDS_RX_L1_EN;
pm_ctrl_data |= PM_CTRL_SERDES_L1_EN;
} else {
pm_ctrl_data &= ~PM_CTRL_SERDES_BUDS_RX_L1_EN;
pm_ctrl_data &= ~PM_CTRL_SERDES_L1_EN;
pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN;
pm_ctrl_data &= ~PM_CTRL_SERDES_PLL_L1_EN;
pm_ctrl_data |= PM_CTRL_CLK_SWH_L1;
if (hw->ctrl_flags & ATL1C_ASPM_L1_SUPPORT)
pm_ctrl_data |= PM_CTRL_ASPM_L1_EN;
else
pm_ctrl_data &= ~PM_CTRL_ASPM_L1_EN;
}
AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data);
}
static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 mac_ctrl_data;
mac_ctrl_data = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
mac_ctrl_data |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
if (adapter->link_duplex == FULL_DUPLEX) {
hw->mac_duplex = true;
mac_ctrl_data |= MAC_CTRL_DUPLX;
}
if (adapter->link_speed == SPEED_1000)
hw->mac_speed = atl1c_mac_speed_1000;
else
hw->mac_speed = atl1c_mac_speed_10_100;
mac_ctrl_data |= (hw->mac_speed & MAC_CTRL_SPEED_MASK) <<
MAC_CTRL_SPEED_SHIFT;
mac_ctrl_data |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
mac_ctrl_data |= ((hw->preamble_len & MAC_CTRL_PRMLEN_MASK) <<
MAC_CTRL_PRMLEN_SHIFT);
if (adapter->vlgrp)
mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
mac_ctrl_data |= MAC_CTRL_BC_EN;
if (netdev->flags & IFF_PROMISC)
mac_ctrl_data |= MAC_CTRL_PROMIS_EN;
if (netdev->flags & IFF_ALLMULTI)
mac_ctrl_data |= MAC_CTRL_MC_ALL_EN;
mac_ctrl_data |= MAC_CTRL_SINGLE_PAUSE_EN;
AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
}
/*
* atl1c_configure - Configure Transmit&Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Tx /Rx unit of the MAC after a reset.
*/
static int atl1c_configure(struct atl1c_adapter *adapter)
{
struct atl1c_hw *hw = &adapter->hw;
u32 master_ctrl_data = 0;
u32 intr_modrt_data;
/* clear interrupt status */
AT_WRITE_REG(hw, REG_ISR, 0xFFFFFFFF);
/* Clear any WOL status */
AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* set Interrupt Clear Timer
* HW will enable self to assert interrupt event to system after
* waiting x-time for software to notify it accept interrupt.
*/
AT_WRITE_REG(hw, REG_INT_RETRIG_TIMER,
hw->ict & INT_RETRIG_TIMER_MASK);
atl1c_configure_des_ring(adapter);
if (hw->ctrl_flags & ATL1C_INTR_MODRT_ENABLE) {
intr_modrt_data = (hw->tx_imt & IRQ_MODRT_TIMER_MASK) <<
IRQ_MODRT_TX_TIMER_SHIFT;
intr_modrt_data |= (hw->rx_imt & IRQ_MODRT_TIMER_MASK) <<
IRQ_MODRT_RX_TIMER_SHIFT;
AT_WRITE_REG(hw, REG_IRQ_MODRT_TIMER_INIT, intr_modrt_data);
master_ctrl_data |=
MASTER_CTRL_TX_ITIMER_EN | MASTER_CTRL_RX_ITIMER_EN;
}
if (hw->ctrl_flags & ATL1C_INTR_CLEAR_ON_READ)
master_ctrl_data |= MASTER_CTRL_INT_RDCLR;
AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data);
if (hw->ctrl_flags & ATL1C_CMB_ENABLE) {
AT_WRITE_REG(hw, REG_CMB_TPD_THRESH,
hw->cmb_tpd & CMB_TPD_THRESH_MASK);
AT_WRITE_REG(hw, REG_CMB_TX_TIMER,
hw->cmb_tx_timer & CMB_TX_TIMER_MASK);
}
if (hw->ctrl_flags & ATL1C_SMB_ENABLE)
AT_WRITE_REG(hw, REG_SMB_STAT_TIMER,
hw->smb_timer & SMB_STAT_TIMER_MASK);
/* set MTU */
AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN +
VLAN_HLEN + ETH_FCS_LEN);
/* HDS, disable */
AT_WRITE_REG(hw, REG_HDS_CTRL, 0);
atl1c_configure_tx(adapter);
atl1c_configure_rx(adapter);
atl1c_configure_rss(adapter);
atl1c_configure_dma(adapter);
return 0;
}
static void atl1c_update_hw_stats(struct atl1c_adapter *adapter)
{
u16 hw_reg_addr = 0;
unsigned long *stats_item = NULL;
u32 data;
/* update rx status */
hw_reg_addr = REG_MAC_RX_STATUS_BIN;
stats_item = &adapter->hw_stats.rx_ok;
while (hw_reg_addr <= REG_MAC_RX_STATUS_END) {
AT_READ_REG(&adapter->hw, hw_reg_addr, &data);
*stats_item += data;
stats_item++;
hw_reg_addr += 4;
}
/* update tx status */
hw_reg_addr = REG_MAC_TX_STATUS_BIN;
stats_item = &adapter->hw_stats.tx_ok;
while (hw_reg_addr <= REG_MAC_TX_STATUS_END) {
AT_READ_REG(&adapter->hw, hw_reg_addr, &data);
*stats_item += data;
stats_item++;
hw_reg_addr += 4;
}
}
/*
* atl1c_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are actually updated from the timer callback.
*/
static struct net_device_stats *atl1c_get_stats(struct net_device *netdev)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
struct atl1c_hw_stats *hw_stats = &adapter->hw_stats;
struct net_device_stats *net_stats = &adapter->net_stats;
atl1c_update_hw_stats(adapter);
net_stats->rx_packets = hw_stats->rx_ok;
net_stats->tx_packets = hw_stats->tx_ok;
net_stats->rx_bytes = hw_stats->rx_byte_cnt;
net_stats->tx_bytes = hw_stats->tx_byte_cnt;
net_stats->multicast = hw_stats->rx_mcast;
net_stats->collisions = hw_stats->tx_1_col +
hw_stats->tx_2_col * 2 +
hw_stats->tx_late_col + hw_stats->tx_abort_col;
net_stats->rx_errors = hw_stats->rx_frag + hw_stats->rx_fcs_err +
hw_stats->rx_len_err + hw_stats->rx_sz_ov +
hw_stats->rx_rrd_ov + hw_stats->rx_align_err;
net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov;
net_stats->rx_length_errors = hw_stats->rx_len_err;
net_stats->rx_crc_errors = hw_stats->rx_fcs_err;
net_stats->rx_frame_errors = hw_stats->rx_align_err;
net_stats->rx_over_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;
net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov;
net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col +
hw_stats->tx_underrun + hw_stats->tx_trunc;
net_stats->tx_fifo_errors = hw_stats->tx_underrun;
net_stats->tx_aborted_errors = hw_stats->tx_abort_col;
net_stats->tx_window_errors = hw_stats->tx_late_col;
return &adapter->net_stats;
}
static inline void atl1c_clear_phy_int(struct atl1c_adapter *adapter)
{
u16 phy_data;
spin_lock(&adapter->mdio_lock);
atl1c_read_phy_reg(&adapter->hw, MII_ISR, &phy_data);
spin_unlock(&adapter->mdio_lock);
}
static bool atl1c_clean_tx_irq(struct atl1c_adapter *adapter,
enum atl1c_trans_queue type)
{
struct atl1c_tpd_ring *tpd_ring = (struct atl1c_tpd_ring *)
&adapter->tpd_ring[type];
struct atl1c_buffer *buffer_info;
u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
u16 hw_next_to_clean;
u16 shift;
u32 data;
if (type == atl1c_trans_high)
shift = MB_HTPD_CONS_IDX_SHIFT;
else
shift = MB_NTPD_CONS_IDX_SHIFT;
AT_READ_REG(&adapter->hw, REG_MB_PRIO_CONS_IDX, &data);
hw_next_to_clean = (data >> shift) & MB_PRIO_PROD_IDX_MASK;
while (next_to_clean != hw_next_to_clean) {
buffer_info = &tpd_ring->buffer_info[next_to_clean];
if (buffer_info->state == ATL1_BUFFER_BUSY) {
pci_unmap_page(adapter->pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_TODEVICE);
buffer_info->dma = 0;
if (buffer_info->skb) {
dev_kfree_skb_irq(buffer_info->skb);
buffer_info->skb = NULL;
}
buffer_info->state = ATL1_BUFFER_FREE;
}
if (++next_to_clean == tpd_ring->count)
next_to_clean = 0;
atomic_set(&tpd_ring->next_to_clean, next_to_clean);
}
if (netif_queue_stopped(adapter->netdev) &&
netif_carrier_ok(adapter->netdev)) {
netif_wake_queue(adapter->netdev);
}
return true;
}
/*
* atl1c_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @pt_regs: CPU registers structure
*/
static irqreturn_t atl1c_intr(int irq, void *data)
{
struct net_device *netdev = data;
struct atl1c_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
struct atl1c_hw *hw = &adapter->hw;
int max_ints = AT_MAX_INT_WORK;
int handled = IRQ_NONE;
u32 status;
u32 reg_data;
do {
AT_READ_REG(hw, REG_ISR, &reg_data);
status = reg_data & hw->intr_mask;
if (status == 0 || (status & ISR_DIS_INT) != 0) {
if (max_ints != AT_MAX_INT_WORK)
handled = IRQ_HANDLED;
break;
}
/* link event */
if (status & ISR_GPHY)
atl1c_clear_phy_int(adapter);
/* Ack ISR */
AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT);
if (status & ISR_RX_PKT) {
if (likely(napi_schedule_prep(&adapter->napi))) {
hw->intr_mask &= ~ISR_RX_PKT;
AT_WRITE_REG(hw, REG_IMR, hw->intr_mask);
__napi_schedule(&adapter->napi);
}
}
if (status & ISR_TX_PKT)
atl1c_clean_tx_irq(adapter, atl1c_trans_normal);
handled = IRQ_HANDLED;
/* check if PCIE PHY Link down */
if (status & ISR_ERROR) {
if (netif_msg_hw(adapter))
dev_err(&pdev->dev,
"atl1c hardware error (status = 0x%x)\n",
status & ISR_ERROR);
/* reset MAC */
hw->intr_mask &= ~ISR_ERROR;
AT_WRITE_REG(hw, REG_IMR, hw->intr_mask);
adapter->work_event |= ATL1C_WORK_EVENT_RESET;
schedule_work(&adapter->common_task);
break;
}
if (status & ISR_OVER)
if (netif_msg_intr(adapter))
dev_warn(&pdev->dev,
"TX/RX over flow (status = 0x%x)\n",
status & ISR_OVER);
/* link event */
if (status & (ISR_GPHY | ISR_MANUAL)) {
adapter->net_stats.tx_carrier_errors++;
atl1c_link_chg_event(adapter);
break;
}
} while (--max_ints > 0);
/* re-enable Interrupt*/
AT_WRITE_REG(&adapter->hw, REG_ISR, 0);
return handled;
}
static inline void atl1c_rx_checksum(struct atl1c_adapter *adapter,
struct sk_buff *skb, struct atl1c_recv_ret_status *prrs)
{
/*
* The pid field in RRS in not correct sometimes, so we
* cannot figure out if the packet is fragmented or not,
* so we tell the KERNEL CHECKSUM_NONE
*/
skb->ip_summed = CHECKSUM_NONE;
}
static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter, const int ringid)
{
struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[ringid];
struct pci_dev *pdev = adapter->pdev;
struct atl1c_buffer *buffer_info, *next_info;
struct sk_buff *skb;
void *vir_addr = NULL;
u16 num_alloc = 0;
u16 rfd_next_to_use, next_next;
struct atl1c_rx_free_desc *rfd_desc;
next_next = rfd_next_to_use = rfd_ring->next_to_use;
if (++next_next == rfd_ring->count)
next_next = 0;
buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
next_info = &rfd_ring->buffer_info[next_next];
while (next_info->state == ATL1_BUFFER_FREE) {
rfd_desc = ATL1C_RFD_DESC(rfd_ring, rfd_next_to_use);
skb = dev_alloc_skb(adapter->rx_buffer_len);
if (unlikely(!skb)) {
if (netif_msg_rx_err(adapter))
dev_warn(&pdev->dev, "alloc rx buffer failed\n");
break;
}
/*
* Make buffer alignment 2 beyond a 16 byte boundary
* this will result in a 16 byte aligned IP header after
* the 14 byte MAC header is removed
*/
vir_addr = skb->data;
buffer_info->state = ATL1_BUFFER_BUSY;
buffer_info->skb = skb;
buffer_info->length = adapter->rx_buffer_len;
buffer_info->dma = pci_map_single(pdev, vir_addr,
buffer_info->length,
PCI_DMA_FROMDEVICE);
rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
rfd_next_to_use = next_next;
if (++next_next == rfd_ring->count)
next_next = 0;
buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
next_info = &rfd_ring->buffer_info[next_next];
num_alloc++;
}
if (num_alloc) {
/* TODO: update mailbox here */
wmb();
rfd_ring->next_to_use = rfd_next_to_use;
AT_WRITE_REG(&adapter->hw, atl1c_rfd_prod_idx_regs[ringid],
rfd_ring->next_to_use & MB_RFDX_PROD_IDX_MASK);
}
return num_alloc;
}
static void atl1c_clean_rrd(struct atl1c_rrd_ring *rrd_ring,
struct atl1c_recv_ret_status *rrs, u16 num)
{
u16 i;
/* the relationship between rrd and rfd is one map one */
for (i = 0; i < num; i++, rrs = ATL1C_RRD_DESC(rrd_ring,
rrd_ring->next_to_clean)) {
rrs->word3 &= ~RRS_RXD_UPDATED;
if (++rrd_ring->next_to_clean == rrd_ring->count)
rrd_ring->next_to_clean = 0;
}
}
static void atl1c_clean_rfd(struct atl1c_rfd_ring *rfd_ring,
struct atl1c_recv_ret_status *rrs, u16 num)
{
u16 i;
u16 rfd_index;
struct atl1c_buffer *buffer_info = rfd_ring->buffer_info;
rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) &
RRS_RX_RFD_INDEX_MASK;
for (i = 0; i < num; i++) {
buffer_info[rfd_index].skb = NULL;
buffer_info[rfd_index].state = ATL1_BUFFER_FREE;
if (++rfd_index == rfd_ring->count)
rfd_index = 0;
}
rfd_ring->next_to_clean = rfd_index;
}
static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter, u8 que,
int *work_done, int work_to_do)
{
u16 rfd_num, rfd_index;
u16 count = 0;
u16 length;
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[que];
struct atl1c_rrd_ring *rrd_ring = &adapter->rrd_ring[que];
struct sk_buff *skb;
struct atl1c_recv_ret_status *rrs;
struct atl1c_buffer *buffer_info;
while (1) {
if (*work_done >= work_to_do)
break;
rrs = ATL1C_RRD_DESC(rrd_ring, rrd_ring->next_to_clean);
if (likely(RRS_RXD_IS_VALID(rrs->word3))) {
rfd_num = (rrs->word0 >> RRS_RX_RFD_CNT_SHIFT) &
RRS_RX_RFD_CNT_MASK;
if (unlikely(rfd_num != 1))
/* TODO support mul rfd*/
if (netif_msg_rx_err(adapter))
dev_warn(&pdev->dev,
"Multi rfd not support yet!\n");
goto rrs_checked;
} else {
break;
}
rrs_checked:
atl1c_clean_rrd(rrd_ring, rrs, rfd_num);
if (rrs->word3 & (RRS_RX_ERR_SUM | RRS_802_3_LEN_ERR)) {
atl1c_clean_rfd(rfd_ring, rrs, rfd_num);
if (netif_msg_rx_err(adapter))
dev_warn(&pdev->dev,
"wrong packet! rrs word3 is %x\n",
rrs->word3);
continue;
}
length = le16_to_cpu((rrs->word3 >> RRS_PKT_SIZE_SHIFT) &
RRS_PKT_SIZE_MASK);
/* Good Receive */
if (likely(rfd_num == 1)) {
rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) &
RRS_RX_RFD_INDEX_MASK;
buffer_info = &rfd_ring->buffer_info[rfd_index];
pci_unmap_single(pdev, buffer_info->dma,
buffer_info->length, PCI_DMA_FROMDEVICE);
skb = buffer_info->skb;
} else {
/* TODO */
if (netif_msg_rx_err(adapter))
dev_warn(&pdev->dev,
"Multi rfd not support yet!\n");
break;
}
atl1c_clean_rfd(rfd_ring, rrs, rfd_num);
skb_put(skb, length - ETH_FCS_LEN);
skb->protocol = eth_type_trans(skb, netdev);
skb->dev = netdev;
atl1c_rx_checksum(adapter, skb, rrs);
if (unlikely(adapter->vlgrp) && rrs->word3 & RRS_VLAN_INS) {
u16 vlan;
AT_TAG_TO_VLAN(rrs->vlan_tag, vlan);
vlan = le16_to_cpu(vlan);
vlan_hwaccel_receive_skb(skb, adapter->vlgrp, vlan);
} else
netif_receive_skb(skb);
(*work_done)++;
count++;
}
if (count)
atl1c_alloc_rx_buffer(adapter, que);
}
/*
* atl1c_clean - NAPI Rx polling callback
* @adapter: board private structure
*/
static int atl1c_clean(struct napi_struct *napi, int budget)
{
struct atl1c_adapter *adapter =
container_of(napi, struct atl1c_adapter, napi);
int work_done = 0;
/* Keep link state information with original netdev */
if (!netif_carrier_ok(adapter->netdev))
goto quit_polling;
/* just enable one RXQ */
atl1c_clean_rx_irq(adapter, 0, &work_done, budget);
if (work_done < budget) {
quit_polling:
napi_complete(napi);
adapter->hw.intr_mask |= ISR_RX_PKT;
AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask);
}
return work_done;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void atl1c_netpoll(struct net_device *netdev)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
disable_irq(adapter->pdev->irq);
atl1c_intr(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
}
#endif
static inline u16 atl1c_tpd_avail(struct atl1c_adapter *adapter, enum atl1c_trans_queue type)
{
struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
u16 next_to_use = 0;
u16 next_to_clean = 0;
next_to_clean = atomic_read(&tpd_ring->next_to_clean);
next_to_use = tpd_ring->next_to_use;
return (u16)(next_to_clean > next_to_use) ?
(next_to_clean - next_to_use - 1) :
(tpd_ring->count + next_to_clean - next_to_use - 1);
}
/*
* get next usable tpd
* Note: should call atl1c_tdp_avail to make sure
* there is enough tpd to use
*/
static struct atl1c_tpd_desc *atl1c_get_tpd(struct atl1c_adapter *adapter,
enum atl1c_trans_queue type)
{
struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
struct atl1c_tpd_desc *tpd_desc;
u16 next_to_use = 0;
next_to_use = tpd_ring->next_to_use;
if (++tpd_ring->next_to_use == tpd_ring->count)
tpd_ring->next_to_use = 0;
tpd_desc = ATL1C_TPD_DESC(tpd_ring, next_to_use);
memset(tpd_desc, 0, sizeof(struct atl1c_tpd_desc));
return tpd_desc;
}
static struct atl1c_buffer *
atl1c_get_tx_buffer(struct atl1c_adapter *adapter, struct atl1c_tpd_desc *tpd)
{
struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring;
return &tpd_ring->buffer_info[tpd -
(struct atl1c_tpd_desc *)tpd_ring->desc];
}
/* Calculate the transmit packet descript needed*/
static u16 atl1c_cal_tpd_req(const struct sk_buff *skb)
{
u16 tpd_req;
u16 proto_hdr_len = 0;
tpd_req = skb_shinfo(skb)->nr_frags + 1;
if (skb_is_gso(skb)) {
proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
if (proto_hdr_len < skb_headlen(skb))
tpd_req++;
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6)
tpd_req++;
}
return tpd_req;
}
static int atl1c_tso_csum(struct atl1c_adapter *adapter,
struct sk_buff *skb,
struct atl1c_tpd_desc **tpd,
enum atl1c_trans_queue type)
{
struct pci_dev *pdev = adapter->pdev;
u8 hdr_len;
u32 real_len;
unsigned short offload_type;
int err;
if (skb_is_gso(skb)) {
if (skb_header_cloned(skb)) {
err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
if (unlikely(err))
return -1;
}
offload_type = skb_shinfo(skb)->gso_type;
if (offload_type & SKB_GSO_TCPV4) {
real_len = (((unsigned char *)ip_hdr(skb) - skb->data)
+ ntohs(ip_hdr(skb)->tot_len));
if (real_len < skb->len)
pskb_trim(skb, real_len);
hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
if (unlikely(skb->len == hdr_len)) {
/* only xsum need */
if (netif_msg_tx_queued(adapter))
dev_warn(&pdev->dev,
"IPV4 tso with zero data??\n");
goto check_sum;
} else {
ip_hdr(skb)->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(
ip_hdr(skb)->saddr,
ip_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
(*tpd)->word1 |= 1 << TPD_IPV4_PACKET_SHIFT;
}
}
if (offload_type & SKB_GSO_TCPV6) {
struct atl1c_tpd_ext_desc *etpd =
*(struct atl1c_tpd_ext_desc **)(tpd);
memset(etpd, 0, sizeof(struct atl1c_tpd_ext_desc));
*tpd = atl1c_get_tpd(adapter, type);
ipv6_hdr(skb)->payload_len = 0;
/* check payload == 0 byte ? */
hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
if (unlikely(skb->len == hdr_len)) {
/* only xsum need */
if (netif_msg_tx_queued(adapter))
dev_warn(&pdev->dev,
"IPV6 tso with zero data??\n");
goto check_sum;
} else
tcp_hdr(skb)->check = ~csum_ipv6_magic(
&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
etpd->word1 |= 1 << TPD_LSO_EN_SHIFT;
etpd->word1 |= 1 << TPD_LSO_VER_SHIFT;
etpd->pkt_len = cpu_to_le32(skb->len);
(*tpd)->word1 |= 1 << TPD_LSO_VER_SHIFT;
}
(*tpd)->word1 |= 1 << TPD_LSO_EN_SHIFT;
(*tpd)->word1 |= (skb_transport_offset(skb) & TPD_TCPHDR_OFFSET_MASK) <<
TPD_TCPHDR_OFFSET_SHIFT;
(*tpd)->word1 |= (skb_shinfo(skb)->gso_size & TPD_MSS_MASK) <<
TPD_MSS_SHIFT;
return 0;
}
check_sum:
if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
u8 css, cso;
cso = skb_transport_offset(skb);
if (unlikely(cso & 0x1)) {
if (netif_msg_tx_err(adapter))
dev_err(&adapter->pdev->dev,
"payload offset should not an event number\n");
return -1;
} else {
css = cso + skb->csum_offset;
(*tpd)->word1 |= ((cso >> 1) & TPD_PLOADOFFSET_MASK) <<
TPD_PLOADOFFSET_SHIFT;
(*tpd)->word1 |= ((css >> 1) & TPD_CCSUM_OFFSET_MASK) <<
TPD_CCSUM_OFFSET_SHIFT;
(*tpd)->word1 |= 1 << TPD_CCSUM_EN_SHIFT;
}
}
return 0;
}
static void atl1c_tx_map(struct atl1c_adapter *adapter,
struct sk_buff *skb, struct atl1c_tpd_desc *tpd,
enum atl1c_trans_queue type)
{
struct atl1c_tpd_desc *use_tpd = NULL;
struct atl1c_buffer *buffer_info = NULL;
u16 buf_len = skb_headlen(skb);
u16 map_len = 0;
u16 mapped_len = 0;
u16 hdr_len = 0;
u16 nr_frags;
u16 f;
int tso;
nr_frags = skb_shinfo(skb)->nr_frags;
tso = (tpd->word1 >> TPD_LSO_EN_SHIFT) & TPD_LSO_EN_MASK;
if (tso) {
/* TSO */
map_len = hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
use_tpd = tpd;
buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
buffer_info->length = map_len;
buffer_info->dma = pci_map_single(adapter->pdev,
skb->data, hdr_len, PCI_DMA_TODEVICE);
buffer_info->state = ATL1_BUFFER_BUSY;
mapped_len += map_len;
use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
use_tpd->buffer_len = cpu_to_le16(buffer_info->length);
}
if (mapped_len < buf_len) {
/* mapped_len == 0, means we should use the first tpd,
which is given by caller */
if (mapped_len == 0)
use_tpd = tpd;
else {
use_tpd = atl1c_get_tpd(adapter, type);
memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));
use_tpd = atl1c_get_tpd(adapter, type);
memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));
}
buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
buffer_info->length = buf_len - mapped_len;
buffer_info->dma =
pci_map_single(adapter->pdev, skb->data + mapped_len,
buffer_info->length, PCI_DMA_TODEVICE);
buffer_info->state = ATL1_BUFFER_BUSY;
use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
use_tpd->buffer_len = cpu_to_le16(buffer_info->length);
}
for (f = 0; f < nr_frags; f++) {
struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
use_tpd = atl1c_get_tpd(adapter, type);
memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc));
buffer_info = atl1c_get_tx_buffer(adapter, use_tpd);
buffer_info->length = frag->size;
buffer_info->dma =
pci_map_page(adapter->pdev, frag->page,
frag->page_offset,
buffer_info->length,
PCI_DMA_TODEVICE);
buffer_info->state = ATL1_BUFFER_BUSY;
use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
use_tpd->buffer_len = cpu_to_le16(buffer_info->length);
}
/* The last tpd */
use_tpd->word1 |= 1 << TPD_EOP_SHIFT;
/* The last buffer info contain the skb address,
so it will be free after unmap */
buffer_info->skb = skb;
}
static void atl1c_tx_queue(struct atl1c_adapter *adapter, struct sk_buff *skb,
struct atl1c_tpd_desc *tpd, enum atl1c_trans_queue type)
{
struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[type];
u32 prod_data;
AT_READ_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, &prod_data);
switch (type) {
case atl1c_trans_high:
prod_data &= 0xFFFF0000;
prod_data |= tpd_ring->next_to_use & 0xFFFF;
break;
case atl1c_trans_normal:
prod_data &= 0x0000FFFF;
prod_data |= (tpd_ring->next_to_use & 0xFFFF) << 16;
break;
default:
break;
}
wmb();
AT_WRITE_REG(&adapter->hw, REG_MB_PRIO_PROD_IDX, prod_data);
}
static netdev_tx_t atl1c_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
unsigned long flags;
u16 tpd_req = 1;
struct atl1c_tpd_desc *tpd;
enum atl1c_trans_queue type = atl1c_trans_normal;
if (test_bit(__AT_DOWN, &adapter->flags)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
tpd_req = atl1c_cal_tpd_req(skb);
if (!spin_trylock_irqsave(&adapter->tx_lock, flags)) {
if (netif_msg_pktdata(adapter))
dev_info(&adapter->pdev->dev, "tx locked\n");
return NETDEV_TX_LOCKED;
}
if (skb->mark == 0x01)
type = atl1c_trans_high;
else
type = atl1c_trans_normal;
if (atl1c_tpd_avail(adapter, type) < tpd_req) {
/* no enough descriptor, just stop queue */
netif_stop_queue(netdev);
spin_unlock_irqrestore(&adapter->tx_lock, flags);
return NETDEV_TX_BUSY;
}
tpd = atl1c_get_tpd(adapter, type);
/* do TSO and check sum */
if (atl1c_tso_csum(adapter, skb, &tpd, type) != 0) {
spin_unlock_irqrestore(&adapter->tx_lock, flags);
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
u16 vlan = vlan_tx_tag_get(skb);
__le16 tag;
vlan = cpu_to_le16(vlan);
AT_VLAN_TO_TAG(vlan, tag);
tpd->word1 |= 1 << TPD_INS_VTAG_SHIFT;
tpd->vlan_tag = tag;
}
if (skb_network_offset(skb) != ETH_HLEN)
tpd->word1 |= 1 << TPD_ETH_TYPE_SHIFT; /* Ethernet frame */
atl1c_tx_map(adapter, skb, tpd, type);
atl1c_tx_queue(adapter, skb, tpd, type);
spin_unlock_irqrestore(&adapter->tx_lock, flags);
return NETDEV_TX_OK;
}
static void atl1c_free_irq(struct atl1c_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
}
static int atl1c_request_irq(struct atl1c_adapter *adapter)
{
struct pci_dev *pdev = adapter->pdev;
struct net_device *netdev = adapter->netdev;
int flags = 0;
int err = 0;
adapter->have_msi = true;
err = pci_enable_msi(adapter->pdev);
if (err) {
if (netif_msg_ifup(adapter))
dev_err(&pdev->dev,
"Unable to allocate MSI interrupt Error: %d\n",
err);
adapter->have_msi = false;
} else
netdev->irq = pdev->irq;
if (!adapter->have_msi)
flags |= IRQF_SHARED;
err = request_irq(adapter->pdev->irq, &atl1c_intr, flags,
netdev->name, netdev);
if (err) {
if (netif_msg_ifup(adapter))
dev_err(&pdev->dev,
"Unable to allocate interrupt Error: %d\n",
err);
if (adapter->have_msi)
pci_disable_msi(adapter->pdev);
return err;
}
if (netif_msg_ifup(adapter))
dev_dbg(&pdev->dev, "atl1c_request_irq OK\n");
return err;
}
int atl1c_up(struct atl1c_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int num;
int err;
int i;
netif_carrier_off(netdev);
atl1c_init_ring_ptrs(adapter);
atl1c_set_multi(netdev);
atl1c_restore_vlan(adapter);
for (i = 0; i < adapter->num_rx_queues; i++) {
num = atl1c_alloc_rx_buffer(adapter, i);
if (unlikely(num == 0)) {
err = -ENOMEM;
goto err_alloc_rx;
}
}
if (atl1c_configure(adapter)) {
err = -EIO;
goto err_up;
}
err = atl1c_request_irq(adapter);
if (unlikely(err))
goto err_up;
clear_bit(__AT_DOWN, &adapter->flags);
napi_enable(&adapter->napi);
atl1c_irq_enable(adapter);
atl1c_check_link_status(adapter);
netif_start_queue(netdev);
return err;
err_up:
err_alloc_rx:
atl1c_clean_rx_ring(adapter);
return err;
}
void atl1c_down(struct atl1c_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
atl1c_del_timer(adapter);
adapter->work_event = 0; /* clear all event */
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer */
set_bit(__AT_DOWN, &adapter->flags);
netif_carrier_off(netdev);
napi_disable(&adapter->napi);
atl1c_irq_disable(adapter);
atl1c_free_irq(adapter);
AT_WRITE_REG(&adapter->hw, REG_ISR, ISR_DIS_INT);
/* reset MAC to disable all RX/TX */
atl1c_reset_mac(&adapter->hw);
msleep(1);
adapter->link_speed = SPEED_0;
adapter->link_duplex = -1;
atl1c_clean_tx_ring(adapter, atl1c_trans_normal);
atl1c_clean_tx_ring(adapter, atl1c_trans_high);
atl1c_clean_rx_ring(adapter);
}
/*
* atl1c_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
*/
static int atl1c_open(struct net_device *netdev)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
int err;
/* disallow open during test */
if (test_bit(__AT_TESTING, &adapter->flags))
return -EBUSY;
/* allocate rx/tx dma buffer & descriptors */
err = atl1c_setup_ring_resources(adapter);
if (unlikely(err))
return err;
err = atl1c_up(adapter);
if (unlikely(err))
goto err_up;
if (adapter->hw.ctrl_flags & ATL1C_FPGA_VERSION) {
u32 phy_data;
AT_READ_REG(&adapter->hw, REG_MDIO_CTRL, &phy_data);
phy_data |= MDIO_AP_EN;
AT_WRITE_REG(&adapter->hw, REG_MDIO_CTRL, phy_data);
}
return 0;
err_up:
atl1c_free_irq(adapter);
atl1c_free_ring_resources(adapter);
atl1c_reset_mac(&adapter->hw);
return err;
}
/*
* atl1c_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
*/
static int atl1c_close(struct net_device *netdev)
{
struct atl1c_adapter *adapter = netdev_priv(netdev);
WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
atl1c_down(adapter);
atl1c_free_ring_resources(adapter);
return 0;
}
static int atl1c_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1c_adapter *adapter = netdev_priv(netdev);
struct atl1c_hw *hw = &adapter->hw;
u32 ctrl;
u32 mac_ctrl_data;
u32 master_ctrl_data;
u32 wol_ctrl_data = 0;
u16 mii_bmsr_data;
u16 save_autoneg_advertised;
u16 mii_intr_status_data;
u32 wufc = adapter->wol;
u32 i;
int retval = 0;
if (netif_running(netdev)) {
WARN_ON(test_bit(__AT_RESETTING, &adapter->flags));
atl1c_down(adapter);
}
netif_device_detach(netdev);
atl1c_disable_l0s_l1(hw);
retval = pci_save_state(pdev);
if (retval)
return retval;
if (wufc) {
AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl_data);
master_ctrl_data &= ~MASTER_CTRL_CLK_SEL_DIS;
/* get link status */
atl1c_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
atl1c_read_phy_reg(hw, MII_BMSR, (u16 *)&mii_bmsr_data);
save_autoneg_advertised = hw->autoneg_advertised;
hw->autoneg_advertised = ADVERTISED_10baseT_Half;
if (atl1c_restart_autoneg(hw) != 0)
if (netif_msg_link(adapter))
dev_warn(&pdev->dev, "phy autoneg failed\n");
hw->phy_configured = false; /* re-init PHY when resume */
hw->autoneg_advertised = save_autoneg_advertised;
/* turn on magic packet wol */
if (wufc & AT_WUFC_MAG)
wol_ctrl_data = WOL_MAGIC_EN | WOL_MAGIC_PME_EN;
if (wufc & AT_WUFC_LNKC) {
for (i = 0; i < AT_SUSPEND_LINK_TIMEOUT; i++) {
msleep(100);
atl1c_read_phy_reg(hw, MII_BMSR,
(u16 *)&mii_bmsr_data);
if (mii_bmsr_data & BMSR_LSTATUS)
break;
}
if ((mii_bmsr_data & BMSR_LSTATUS) == 0)
if (netif_msg_link(adapter))
dev_warn(&pdev->dev,
"%s: Link may change"
"when suspend\n",
atl1c_driver_name);
wol_ctrl_data |= WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN;
/* only link up can wake up */
if (atl1c_write_phy_reg(hw, MII_IER, IER_LINK_UP) != 0) {
if (netif_msg_link(adapter))
dev_err(&pdev->dev,
"%s: read write phy "
"register failed.\n",
atl1c_driver_name);
goto wol_dis;
}
}
/* clear phy interrupt */
atl1c_read_phy_reg(hw, MII_ISR, &mii_intr_status_data);
/* Config MAC Ctrl register */
mac_ctrl_data = MAC_CTRL_RX_EN;
/* set to 10/100M halt duplex */
mac_ctrl_data |= atl1c_mac_speed_10_100 << MAC_CTRL_SPEED_SHIFT;
mac_ctrl_data |= (((u32)adapter->hw.preamble_len &
MAC_CTRL_PRMLEN_MASK) <<
MAC_CTRL_PRMLEN_SHIFT);
if (adapter->vlgrp)
mac_ctrl_data |= MAC_CTRL_RMV_VLAN;
/* magic packet maybe Broadcast&multicast&Unicast frame */
if (wufc & AT_WUFC_MAG)
mac_ctrl_data |= MAC_CTRL_BC_EN;
if (netif_msg_hw(adapter))
dev_dbg(&pdev->dev,
"%s: suspend MAC=0x%x\n",
atl1c_driver_name, mac_ctrl_data);
AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data);
AT_WRITE_REG(hw, REG_WOL_CTRL, wol_ctrl_data);
AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data);
/* pcie patch */
AT_READ_REG(hw, REG_PCIE_PHYMISC, &ctrl);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
goto suspend_exit;
}
wol_dis:
/* WOL disabled */
AT_WRITE_REG(hw, REG_WOL_CTRL, 0);
/* pcie patch */
AT_READ_REG(hw, REG_PCIE_PHYMISC, &ctrl);
ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
AT_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl);
atl1c_phy_disable(hw);
hw->phy_configured = false; /* re-init PHY when resume */
pci_enable_wake(pdev, pci_choose_state(pdev, state), 0);
suspend_exit:
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
return 0;
}
static int atl1c_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1c_adapter *adapter = netdev_priv(netdev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0);
atl1c_phy_reset(&adapter->hw);
atl1c_reset_mac(&adapter->hw);
netif_device_attach(netdev);
if (netif_running(netdev))
atl1c_up(adapter);
return 0;
}
static void atl1c_shutdown(struct pci_dev *pdev)
{
atl1c_suspend(pdev, PMSG_SUSPEND);
}
static const struct net_device_ops atl1c_netdev_ops = {
.ndo_open = atl1c_open,
.ndo_stop = atl1c_close,
.ndo_validate_addr = eth_validate_addr,
.ndo_start_xmit = atl1c_xmit_frame,
.ndo_set_mac_address = atl1c_set_mac_addr,
.ndo_set_multicast_list = atl1c_set_multi,
.ndo_change_mtu = atl1c_change_mtu,
.ndo_do_ioctl = atl1c_ioctl,
.ndo_tx_timeout = atl1c_tx_timeout,
.ndo_get_stats = atl1c_get_stats,
.ndo_vlan_rx_register = atl1c_vlan_rx_register,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = atl1c_netpoll,
#endif
};
static int atl1c_init_netdev(struct net_device *netdev, struct pci_dev *pdev)
{
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
netdev->irq = pdev->irq;
netdev->netdev_ops = &atl1c_netdev_ops;
netdev->watchdog_timeo = AT_TX_WATCHDOG;
atl1c_set_ethtool_ops(netdev);
/* TODO: add when ready */
netdev->features = NETIF_F_SG |
NETIF_F_HW_CSUM |
NETIF_F_HW_VLAN_TX |
NETIF_F_HW_VLAN_RX |
NETIF_F_TSO |
NETIF_F_TSO6;
return 0;
}
/*
* atl1c_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in atl1c_pci_tbl
*
* Returns 0 on success, negative on failure
*
* atl1c_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*/
static int __devinit atl1c_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct net_device *netdev;
struct atl1c_adapter *adapter;
static int cards_found;
int err = 0;
/* enable device (incl. PCI PM wakeup and hotplug setup) */
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev, "cannot enable PCI device\n");
return err;
}
/*
* The atl1c chip can DMA to 64-bit addresses, but it uses a single
* shared register for the high 32 bits, so only a single, aligned,
* 4 GB physical address range can be used at a time.
*
* Supporting 64-bit DMA on this hardware is more trouble than it's
* worth. It is far easier to limit to 32-bit DMA than update
* various kernel subsystems to support the mechanics required by a
* fixed-high-32-bit system.
*/
if ((pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0) ||
(pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)) {
dev_err(&pdev->dev, "No usable DMA configuration,aborting\n");
goto err_dma;
}
err = pci_request_regions(pdev, atl1c_driver_name);
if (err) {
dev_err(&pdev->dev, "cannot obtain PCI resources\n");
goto err_pci_reg;
}
pci_set_master(pdev);
netdev = alloc_etherdev(sizeof(struct atl1c_adapter));
if (netdev == NULL) {
err = -ENOMEM;
dev_err(&pdev->dev, "etherdev alloc failed\n");
goto err_alloc_etherdev;
}
err = atl1c_init_netdev(netdev, pdev);
if (err) {
dev_err(&pdev->dev, "init netdevice failed\n");
goto err_init_netdev;
}
adapter = netdev_priv(netdev);
adapter->bd_number = cards_found;
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->hw.adapter = adapter;
adapter->msg_enable = netif_msg_init(-1, atl1c_default_msg);
adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
if (!adapter->hw.hw_addr) {
err = -EIO;
dev_err(&pdev->dev, "cannot map device registers\n");
goto err_ioremap;
}
netdev->base_addr = (unsigned long)adapter->hw.hw_addr;
/* init mii data */
adapter->mii.dev = netdev;
adapter->mii.mdio_read = atl1c_mdio_read;
adapter->mii.mdio_write = atl1c_mdio_write;
adapter->mii.phy_id_mask = 0x1f;
adapter->mii.reg_num_mask = MDIO_REG_ADDR_MASK;
netif_napi_add(netdev, &adapter->napi, atl1c_clean, 64);
setup_timer(&adapter->phy_config_timer, atl1c_phy_config,
(unsigned long)adapter);
/* setup the private structure */
err = atl1c_sw_init(adapter);
if (err) {
dev_err(&pdev->dev, "net device private data init failed\n");
goto err_sw_init;
}
atl1c_reset_pcie(&adapter->hw, ATL1C_PCIE_L0S_L1_DISABLE |
ATL1C_PCIE_PHY_RESET);
/* Init GPHY as early as possible due to power saving issue */
atl1c_phy_reset(&adapter->hw);
err = atl1c_reset_mac(&adapter->hw);
if (err) {
err = -EIO;
goto err_reset;
}
device_init_wakeup(&pdev->dev, 1);
/* reset the controller to
* put the device in a known good starting state */
err = atl1c_phy_init(&adapter->hw);
if (err) {
err = -EIO;
goto err_reset;
}
if (atl1c_read_mac_addr(&adapter->hw) != 0) {
err = -EIO;
dev_err(&pdev->dev, "get mac address failed\n");
goto err_eeprom;
}
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
if (netif_msg_probe(adapter))
dev_dbg(&pdev->dev,
"mac address : %02x-%02x-%02x-%02x-%02x-%02x\n",
adapter->hw.mac_addr[0], adapter->hw.mac_addr[1],
adapter->hw.mac_addr[2], adapter->hw.mac_addr[3],
adapter->hw.mac_addr[4], adapter->hw.mac_addr[5]);
atl1c_hw_set_mac_addr(&adapter->hw);
INIT_WORK(&adapter->common_task, atl1c_common_task);
adapter->work_event = 0;
err = register_netdev(netdev);
if (err) {
dev_err(&pdev->dev, "register netdevice failed\n");
goto err_register;
}
if (netif_msg_probe(adapter))
dev_info(&pdev->dev, "version %s\n", ATL1C_DRV_VERSION);
cards_found++;
return 0;
err_reset:
err_register:
err_sw_init:
err_eeprom:
iounmap(adapter->hw.hw_addr);
err_init_netdev:
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_regions(pdev);
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/*
* atl1c_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* atl1c_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
*/
static void __devexit atl1c_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1c_adapter *adapter = netdev_priv(netdev);
unregister_netdev(netdev);
atl1c_phy_disable(&adapter->hw);
iounmap(adapter->hw.hw_addr);
pci_release_regions(pdev);
pci_disable_device(pdev);
free_netdev(netdev);
}
/*
* atl1c_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t atl1c_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1c_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
atl1c_down(adapter);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/*
* atl1c_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the e1000_resume routine.
*/
static pci_ers_result_t atl1c_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1c_adapter *adapter = netdev_priv(netdev);
if (pci_enable_device(pdev)) {
if (netif_msg_hw(adapter))
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset\n");
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
atl1c_reset_mac(&adapter->hw);
return PCI_ERS_RESULT_RECOVERED;
}
/*
* atl1c_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the atl1c_resume routine.
*/
static void atl1c_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct atl1c_adapter *adapter = netdev_priv(netdev);
if (netif_running(netdev)) {
if (atl1c_up(adapter)) {
if (netif_msg_hw(adapter))
dev_err(&pdev->dev,
"Cannot bring device back up after reset\n");
return;
}
}
netif_device_attach(netdev);
}
static struct pci_error_handlers atl1c_err_handler = {
.error_detected = atl1c_io_error_detected,
.slot_reset = atl1c_io_slot_reset,
.resume = atl1c_io_resume,
};
static struct pci_driver atl1c_driver = {
.name = atl1c_driver_name,
.id_table = atl1c_pci_tbl,
.probe = atl1c_probe,
.remove = __devexit_p(atl1c_remove),
/* Power Managment Hooks */
.suspend = atl1c_suspend,
.resume = atl1c_resume,
.shutdown = atl1c_shutdown,
.err_handler = &atl1c_err_handler
};
/*
* atl1c_init_module - Driver Registration Routine
*
* atl1c_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init atl1c_init_module(void)
{
return pci_register_driver(&atl1c_driver);
}
/*
* atl1c_exit_module - Driver Exit Cleanup Routine
*
* atl1c_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit atl1c_exit_module(void)
{
pci_unregister_driver(&atl1c_driver);
}
module_init(atl1c_init_module);
module_exit(atl1c_exit_module);