/* * lib/bitmap.c * Helper functions for bitmap.h. * * This source code is licensed under the GNU General Public License, * Version 2. See the file COPYING for more details. */ #include #include #include #include #include #include /* * bitmaps provide an array of bits, implemented using an an * array of unsigned longs. The number of valid bits in a * given bitmap does _not_ need to be an exact multiple of * BITS_PER_LONG. * * The possible unused bits in the last, partially used word * of a bitmap are 'don't care'. The implementation makes * no particular effort to keep them zero. It ensures that * their value will not affect the results of any operation. * The bitmap operations that return Boolean (bitmap_empty, * for example) or scalar (bitmap_weight, for example) results * carefully filter out these unused bits from impacting their * results. * * These operations actually hold to a slightly stronger rule: * if you don't input any bitmaps to these ops that have some * unused bits set, then they won't output any set unused bits * in output bitmaps. * * The byte ordering of bitmaps is more natural on little * endian architectures. See the big-endian headers * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h * for the best explanations of this ordering. */ int __bitmap_empty(const unsigned long *bitmap, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) if (bitmap[k]) return 0; if (bits % BITS_PER_LONG) if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) return 0; return 1; } EXPORT_SYMBOL(__bitmap_empty); int __bitmap_full(const unsigned long *bitmap, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) if (~bitmap[k]) return 0; if (bits % BITS_PER_LONG) if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits)) return 0; return 1; } EXPORT_SYMBOL(__bitmap_full); int __bitmap_equal(const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) if (bitmap1[k] != bitmap2[k]) return 0; if (bits % BITS_PER_LONG) if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) return 0; return 1; } EXPORT_SYMBOL(__bitmap_equal); void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) dst[k] = ~src[k]; if (bits % BITS_PER_LONG) dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits); } EXPORT_SYMBOL(__bitmap_complement); /** * __bitmap_shift_right - logical right shift of the bits in a bitmap * @dst : destination bitmap * @src : source bitmap * @shift : shift by this many bits * @bits : bitmap size, in bits * * Shifting right (dividing) means moving bits in the MS -> LS bit * direction. Zeros are fed into the vacated MS positions and the * LS bits shifted off the bottom are lost. */ void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, int shift, int bits) { int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; unsigned long mask = (1UL << left) - 1; for (k = 0; off + k < lim; ++k) { unsigned long upper, lower; /* * If shift is not word aligned, take lower rem bits of * word above and make them the top rem bits of result. */ if (!rem || off + k + 1 >= lim) upper = 0; else { upper = src[off + k + 1]; if (off + k + 1 == lim - 1 && left) upper &= mask; } lower = src[off + k]; if (left && off + k == lim - 1) lower &= mask; dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem; if (left && k == lim - 1) dst[k] &= mask; } if (off) memset(&dst[lim - off], 0, off*sizeof(unsigned long)); } EXPORT_SYMBOL(__bitmap_shift_right); /** * __bitmap_shift_left - logical left shift of the bits in a bitmap * @dst : destination bitmap * @src : source bitmap * @shift : shift by this many bits * @bits : bitmap size, in bits * * Shifting left (multiplying) means moving bits in the LS -> MS * direction. Zeros are fed into the vacated LS bit positions * and those MS bits shifted off the top are lost. */ void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, int shift, int bits) { int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG; int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; for (k = lim - off - 1; k >= 0; --k) { unsigned long upper, lower; /* * If shift is not word aligned, take upper rem bits of * word below and make them the bottom rem bits of result. */ if (rem && k > 0) lower = src[k - 1]; else lower = 0; upper = src[k]; if (left && k == lim - 1) upper &= (1UL << left) - 1; dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem; if (left && k + off == lim - 1) dst[k + off] &= (1UL << left) - 1; } if (off) memset(dst, 0, off*sizeof(unsigned long)); } EXPORT_SYMBOL(__bitmap_shift_left); int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); unsigned long result = 0; for (k = 0; k < nr; k++) result |= (dst[k] = bitmap1[k] & bitmap2[k]); return result != 0; } EXPORT_SYMBOL(__bitmap_and); void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); for (k = 0; k < nr; k++) dst[k] = bitmap1[k] | bitmap2[k]; } EXPORT_SYMBOL(__bitmap_or); void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); for (k = 0; k < nr; k++) dst[k] = bitmap1[k] ^ bitmap2[k]; } EXPORT_SYMBOL(__bitmap_xor); int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k; int nr = BITS_TO_LONGS(bits); unsigned long result = 0; for (k = 0; k < nr; k++) result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); return result != 0; } EXPORT_SYMBOL(__bitmap_andnot); int __bitmap_intersects(const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) if (bitmap1[k] & bitmap2[k]) return 1; if (bits % BITS_PER_LONG) if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) return 1; return 0; } EXPORT_SYMBOL(__bitmap_intersects); int __bitmap_subset(const unsigned long *bitmap1, const unsigned long *bitmap2, int bits) { int k, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; ++k) if (bitmap1[k] & ~bitmap2[k]) return 0; if (bits % BITS_PER_LONG) if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) return 0; return 1; } EXPORT_SYMBOL(__bitmap_subset); int __bitmap_weight(const unsigned long *bitmap, int bits) { int k, w = 0, lim = bits/BITS_PER_LONG; for (k = 0; k < lim; k++) w += hweight_long(bitmap[k]); if (bits % BITS_PER_LONG) w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits)); return w; } EXPORT_SYMBOL(__bitmap_weight); #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG)) void bitmap_set(unsigned long *map, int start, int nr) { unsigned long *p = map + BIT_WORD(start); const int size = start + nr; int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); while (nr - bits_to_set >= 0) { *p |= mask_to_set; nr -= bits_to_set; bits_to_set = BITS_PER_LONG; mask_to_set = ~0UL; p++; } if (nr) { mask_to_set &= BITMAP_LAST_WORD_MASK(size); *p |= mask_to_set; } } EXPORT_SYMBOL(bitmap_set); void bitmap_clear(unsigned long *map, int start, int nr) { unsigned long *p = map + BIT_WORD(start); const int size = start + nr; int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); while (nr - bits_to_clear >= 0) { *p &= ~mask_to_clear; nr -= bits_to_clear; bits_to_clear = BITS_PER_LONG; mask_to_clear = ~0UL; p++; } if (nr) { mask_to_clear &= BITMAP_LAST_WORD_MASK(size); *p &= ~mask_to_clear; } } EXPORT_SYMBOL(bitmap_clear); /** * bitmap_find_next_zero_area - find a contiguous aligned zero area * @map: The address to base the search on * @size: The bitmap size in bits * @start: The bitnumber to start searching at * @nr: The number of zeroed bits we're looking for * @align_mask: Alignment mask for zero area * @align_offset: Alignment offset for zero area. * * The @align_mask should be one less than a power of 2; the effect is that * the bit offset of all zero areas this function finds plus @align_offset * is multiple of that power of 2. */ unsigned long bitmap_find_next_zero_area_off(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask, unsigned long align_offset) { unsigned long index, end, i; again: index = find_next_zero_bit(map, size, start); /* Align allocation */ index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; end = index + nr; if (end > size) return end; i = find_next_bit(map, end, index); if (i < end) { start = i + 1; goto again; } return index; } EXPORT_SYMBOL(bitmap_find_next_zero_area_off); /* * Bitmap printing & parsing functions: first version by Bill Irwin, * second version by Paul Jackson, third by Joe Korty. */ #define CHUNKSZ 32 #define nbits_to_hold_value(val) fls(val) #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10)) #define BASEDEC 10 /* fancier cpuset lists input in decimal */ /** * bitmap_scnprintf - convert bitmap to an ASCII hex string. * @buf: byte buffer into which string is placed * @buflen: reserved size of @buf, in bytes * @maskp: pointer to bitmap to convert * @nmaskbits: size of bitmap, in bits * * Exactly @nmaskbits bits are displayed. Hex digits are grouped into * comma-separated sets of eight digits per set. */ int bitmap_scnprintf(char *buf, unsigned int buflen, const unsigned long *maskp, int nmaskbits) { int i, word, bit, len = 0; unsigned long val; const char *sep = ""; int chunksz; u32 chunkmask; chunksz = nmaskbits & (CHUNKSZ - 1); if (chunksz == 0) chunksz = CHUNKSZ; i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ; for (; i >= 0; i -= CHUNKSZ) { chunkmask = ((1ULL << chunksz) - 1); word = i / BITS_PER_LONG; bit = i % BITS_PER_LONG; val = (maskp[word] >> bit) & chunkmask; len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep, (chunksz+3)/4, val); chunksz = CHUNKSZ; sep = ","; } return len; } EXPORT_SYMBOL(bitmap_scnprintf); /** * __bitmap_parse - convert an ASCII hex string into a bitmap. * @buf: pointer to buffer containing string. * @buflen: buffer size in bytes. If string is smaller than this * then it must be terminated with a \0. * @is_user: location of buffer, 0 indicates kernel space * @maskp: pointer to bitmap array that will contain result. * @nmaskbits: size of bitmap, in bits. * * Commas group hex digits into chunks. Each chunk defines exactly 32 * bits of the resultant bitmask. No chunk may specify a value larger * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value * then leading 0-bits are prepended. %-EINVAL is returned for illegal * characters and for grouping errors such as "1,,5", ",44", "," and "". * Leading and trailing whitespace accepted, but not embedded whitespace. */ int __bitmap_parse(const char *buf, unsigned int buflen, int is_user, unsigned long *maskp, int nmaskbits) { int c, old_c, totaldigits, ndigits, nchunks, nbits; u32 chunk; const char __user *ubuf = buf; bitmap_zero(maskp, nmaskbits); nchunks = nbits = totaldigits = c = 0; do { chunk = ndigits = 0; /* Get the next chunk of the bitmap */ while (buflen) { old_c = c; if (is_user) { if (__get_user(c, ubuf++)) return -EFAULT; } else c = *buf++; buflen--; if (isspace(c)) continue; /* * If the last character was a space and the current * character isn't '\0', we've got embedded whitespace. * This is a no-no, so throw an error. */ if (totaldigits && c && isspace(old_c)) return -EINVAL; /* A '\0' or a ',' signal the end of the chunk */ if (c == '\0' || c == ',') break; if (!isxdigit(c)) return -EINVAL; /* * Make sure there are at least 4 free bits in 'chunk'. * If not, this hexdigit will overflow 'chunk', so * throw an error. */ if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1)) return -EOVERFLOW; chunk = (chunk << 4) | unhex(c); ndigits++; totaldigits++; } if (ndigits == 0) return -EINVAL; if (nchunks == 0 && chunk == 0) continue; __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits); *maskp |= chunk; nchunks++; nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ; if (nbits > nmaskbits) return -EOVERFLOW; } while (buflen && c == ','); return 0; } EXPORT_SYMBOL(__bitmap_parse); /** * bitmap_parse_user() * * @ubuf: pointer to user buffer containing string. * @ulen: buffer size in bytes. If string is smaller than this * then it must be terminated with a \0. * @maskp: pointer to bitmap array that will contain result. * @nmaskbits: size of bitmap, in bits. * * Wrapper for __bitmap_parse(), providing it with user buffer. * * We cannot have this as an inline function in bitmap.h because it needs * linux/uaccess.h to get the access_ok() declaration and this causes * cyclic dependencies. */ int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, unsigned long *maskp, int nmaskbits) { if (!access_ok(VERIFY_READ, ubuf, ulen)) return -EFAULT; return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits); } EXPORT_SYMBOL(bitmap_parse_user); /* * bscnl_emit(buf, buflen, rbot, rtop, bp) * * Helper routine for bitmap_scnlistprintf(). Write decimal number * or range to buf, suppressing output past buf+buflen, with optional * comma-prefix. Return len of what would be written to buf, if it * all fit. */ static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len) { if (len > 0) len += scnprintf(buf + len, buflen - len, ","); if (rbot == rtop) len += scnprintf(buf + len, buflen - len, "%d", rbot); else len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop); return len; } /** * bitmap_scnlistprintf - convert bitmap to list format ASCII string * @buf: byte buffer into which string is placed * @buflen: reserved size of @buf, in bytes * @maskp: pointer to bitmap to convert * @nmaskbits: size of bitmap, in bits * * Output format is a comma-separated list of decimal numbers and * ranges. Consecutively set bits are shown as two hyphen-separated * decimal numbers, the smallest and largest bit numbers set in * the range. Output format is compatible with the format * accepted as input by bitmap_parselist(). * * The return value is the number of characters which would be * generated for the given input, excluding the trailing '\0', as * per ISO C99. */ int bitmap_scnlistprintf(char *buf, unsigned int buflen, const unsigned long *maskp, int nmaskbits) { int len = 0; /* current bit is 'cur', most recently seen range is [rbot, rtop] */ int cur, rbot, rtop; if (buflen == 0) return 0; buf[0] = 0; rbot = cur = find_first_bit(maskp, nmaskbits); while (cur < nmaskbits) { rtop = cur; cur = find_next_bit(maskp, nmaskbits, cur+1); if (cur >= nmaskbits || cur > rtop + 1) { len = bscnl_emit(buf, buflen, rbot, rtop, len); rbot = cur; } } return len; } EXPORT_SYMBOL(bitmap_scnlistprintf); /** * bitmap_parselist - convert list format ASCII string to bitmap * @bp: read nul-terminated user string from this buffer * @maskp: write resulting mask here * @nmaskbits: number of bits in mask to be written * * Input format is a comma-separated list of decimal numbers and * ranges. Consecutively set bits are shown as two hyphen-separated * decimal numbers, the smallest and largest bit numbers set in * the range. * * Returns 0 on success, -errno on invalid input strings. * Error values: * %-EINVAL: second number in range smaller than first * %-EINVAL: invalid character in string * %-ERANGE: bit number specified too large for mask */ int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits) { unsigned a, b; bitmap_zero(maskp, nmaskbits); do { if (!isdigit(*bp)) return -EINVAL; b = a = simple_strtoul(bp, (char **)&bp, BASEDEC); if (*bp == '-') { bp++; if (!isdigit(*bp)) return -EINVAL; b = simple_strtoul(bp, (char **)&bp, BASEDEC); } if (!(a <= b)) return -EINVAL; if (b >= nmaskbits) return -ERANGE; while (a <= b) { set_bit(a, maskp); a++; } if (*bp == ',') bp++; } while (*bp != '\0' && *bp != '\n'); return 0; } EXPORT_SYMBOL(bitmap_parselist); /** * bitmap_pos_to_ord(buf, pos, bits) * @buf: pointer to a bitmap * @pos: a bit position in @buf (0 <= @pos < @bits) * @bits: number of valid bit positions in @buf * * Map the bit at position @pos in @buf (of length @bits) to the * ordinal of which set bit it is. If it is not set or if @pos * is not a valid bit position, map to -1. * * If for example, just bits 4 through 7 are set in @buf, then @pos * values 4 through 7 will get mapped to 0 through 3, respectively, * and other @pos values will get mapped to 0. When @pos value 7 * gets mapped to (returns) @ord value 3 in this example, that means * that bit 7 is the 3rd (starting with 0th) set bit in @buf. * * The bit positions 0 through @bits are valid positions in @buf. */ static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits) { int i, ord; if (pos < 0 || pos >= bits || !test_bit(pos, buf)) return -1; i = find_first_bit(buf, bits); ord = 0; while (i < pos) { i = find_next_bit(buf, bits, i + 1); ord++; } BUG_ON(i != pos); return ord; } /** * bitmap_ord_to_pos(buf, ord, bits) * @buf: pointer to bitmap * @ord: ordinal bit position (n-th set bit, n >= 0) * @bits: number of valid bit positions in @buf * * Map the ordinal offset of bit @ord in @buf to its position in @buf. * Value of @ord should be in range 0 <= @ord < weight(buf), else * results are undefined. * * If for example, just bits 4 through 7 are set in @buf, then @ord * values 0 through 3 will get mapped to 4 through 7, respectively, * and all other @ord values return undefined values. When @ord value 3 * gets mapped to (returns) @pos value 7 in this example, that means * that the 3rd set bit (starting with 0th) is at position 7 in @buf. * * The bit positions 0 through @bits are valid positions in @buf. */ static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits) { int pos = 0; if (ord >= 0 && ord < bits) { int i; for (i = find_first_bit(buf, bits); i < bits && ord > 0; i = find_next_bit(buf, bits, i + 1)) ord--; if (i < bits && ord == 0) pos = i; } return pos; } /** * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap * @dst: remapped result * @src: subset to be remapped * @old: defines domain of map * @new: defines range of map * @bits: number of bits in each of these bitmaps * * Let @old and @new define a mapping of bit positions, such that * whatever position is held by the n-th set bit in @old is mapped * to the n-th set bit in @new. In the more general case, allowing * for the possibility that the weight 'w' of @new is less than the * weight of @old, map the position of the n-th set bit in @old to * the position of the m-th set bit in @new, where m == n % w. * * If either of the @old and @new bitmaps are empty, or if @src and * @dst point to the same location, then this routine copies @src * to @dst. * * The positions of unset bits in @old are mapped to themselves * (the identify map). * * Apply the above specified mapping to @src, placing the result in * @dst, clearing any bits previously set in @dst. * * For example, lets say that @old has bits 4 through 7 set, and * @new has bits 12 through 15 set. This defines the mapping of bit * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other * bit positions unchanged. So if say @src comes into this routine * with bits 1, 5 and 7 set, then @dst should leave with bits 1, * 13 and 15 set. */ void bitmap_remap(unsigned long *dst, const unsigned long *src, const unsigned long *old, const unsigned long *new, int bits) { int oldbit, w; if (dst == src) /* following doesn't handle inplace remaps */ return; bitmap_zero(dst, bits); w = bitmap_weight(new, bits); for (oldbit = find_first_bit(src, bits); oldbit < bits; oldbit = find_next_bit(src, bits, oldbit + 1)) { int n = bitmap_pos_to_ord(old, oldbit, bits); if (n < 0 || w == 0) set_bit(oldbit, dst); /* identity map */ else set_bit(bitmap_ord_to_pos(new, n % w, bits), dst); } } EXPORT_SYMBOL(bitmap_remap); /** * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit * @oldbit: bit position to be mapped * @old: defines domain of map * @new: defines range of map * @bits: number of bits in each of these bitmaps * * Let @old and @new define a mapping of bit positions, such that * whatever position is held by the n-th set bit in @old is mapped * to the n-th set bit in @new. In the more general case, allowing * for the possibility that the weight 'w' of @new is less than the * weight of @old, map the position of the n-th set bit in @old to * the position of the m-th set bit in @new, where m == n % w. * * The positions of unset bits in @old are mapped to themselves * (the identify map). * * Apply the above specified mapping to bit position @oldbit, returning * the new bit position. * * For example, lets say that @old has bits 4 through 7 set, and * @new has bits 12 through 15 set. This defines the mapping of bit * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other * bit positions unchanged. So if say @oldbit is 5, then this routine * returns 13. */ int bitmap_bitremap(int oldbit, const unsigned long *old, const unsigned long *new, int bits) { int w = bitmap_weight(new, bits); int n = bitmap_pos_to_ord(old, oldbit, bits); if (n < 0 || w == 0) return oldbit; else return bitmap_ord_to_pos(new, n % w, bits); } EXPORT_SYMBOL(bitmap_bitremap); /** * bitmap_onto - translate one bitmap relative to another * @dst: resulting translated bitmap * @orig: original untranslated bitmap * @relmap: bitmap relative to which translated * @bits: number of bits in each of these bitmaps * * Set the n-th bit of @dst iff there exists some m such that the * n-th bit of @relmap is set, the m-th bit of @orig is set, and * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. * (If you understood the previous sentence the first time your * read it, you're overqualified for your current job.) * * In other words, @orig is mapped onto (surjectively) @dst, * using the the map { | the n-th bit of @relmap is the * m-th set bit of @relmap }. * * Any set bits in @orig above bit number W, where W is the * weight of (number of set bits in) @relmap are mapped nowhere. * In particular, if for all bits m set in @orig, m >= W, then * @dst will end up empty. In situations where the possibility * of such an empty result is not desired, one way to avoid it is * to use the bitmap_fold() operator, below, to first fold the * @orig bitmap over itself so that all its set bits x are in the * range 0 <= x < W. The bitmap_fold() operator does this by * setting the bit (m % W) in @dst, for each bit (m) set in @orig. * * Example [1] for bitmap_onto(): * Let's say @relmap has bits 30-39 set, and @orig has bits * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, * @dst will have bits 31, 33, 35, 37 and 39 set. * * When bit 0 is set in @orig, it means turn on the bit in * @dst corresponding to whatever is the first bit (if any) * that is turned on in @relmap. Since bit 0 was off in the * above example, we leave off that bit (bit 30) in @dst. * * When bit 1 is set in @orig (as in the above example), it * means turn on the bit in @dst corresponding to whatever * is the second bit that is turned on in @relmap. The second * bit in @relmap that was turned on in the above example was * bit 31, so we turned on bit 31 in @dst. * * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, * because they were the 4th, 6th, 8th and 10th set bits * set in @relmap, and the 4th, 6th, 8th and 10th bits of * @orig (i.e. bits 3, 5, 7 and 9) were also set. * * When bit 11 is set in @orig, it means turn on the bit in * @dst corresponding to whatever is the twelth bit that is * turned on in @relmap. In the above example, there were * only ten bits turned on in @relmap (30..39), so that bit * 11 was set in @orig had no affect on @dst. * * Example [2] for bitmap_fold() + bitmap_onto(): * Let's say @relmap has these ten bits set: * 40 41 42 43 45 48 53 61 74 95 * (for the curious, that's 40 plus the first ten terms of the * Fibonacci sequence.) * * Further lets say we use the following code, invoking * bitmap_fold() then bitmap_onto, as suggested above to * avoid the possitility of an empty @dst result: * * unsigned long *tmp; // a temporary bitmap's bits * * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); * bitmap_onto(dst, tmp, relmap, bits); * * Then this table shows what various values of @dst would be, for * various @orig's. I list the zero-based positions of each set bit. * The tmp column shows the intermediate result, as computed by * using bitmap_fold() to fold the @orig bitmap modulo ten * (the weight of @relmap). * * @orig tmp @dst * 0 0 40 * 1 1 41 * 9 9 95 * 10 0 40 (*) * 1 3 5 7 1 3 5 7 41 43 48 61 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 * 0 9 18 27 0 9 8 7 40 61 74 95 * 0 10 20 30 0 40 * 0 11 22 33 0 1 2 3 40 41 42 43 * 0 12 24 36 0 2 4 6 40 42 45 53 * 78 102 211 1 2 8 41 42 74 (*) * * (*) For these marked lines, if we hadn't first done bitmap_fold() * into tmp, then the @dst result would have been empty. * * If either of @orig or @relmap is empty (no set bits), then @dst * will be returned empty. * * If (as explained above) the only set bits in @orig are in positions * m where m >= W, (where W is the weight of @relmap) then @dst will * once again be returned empty. * * All bits in @dst not set by the above rule are cleared. */ void bitmap_onto(unsigned long *dst, const unsigned long *orig, const unsigned long *relmap, int bits) { int n, m; /* same meaning as in above comment */ if (dst == orig) /* following doesn't handle inplace mappings */ return; bitmap_zero(dst, bits); /* * The following code is a more efficient, but less * obvious, equivalent to the loop: * for (m = 0; m < bitmap_weight(relmap, bits); m++) { * n = bitmap_ord_to_pos(orig, m, bits); * if (test_bit(m, orig)) * set_bit(n, dst); * } */ m = 0; for (n = find_first_bit(relmap, bits); n < bits; n = find_next_bit(relmap, bits, n + 1)) { /* m == bitmap_pos_to_ord(relmap, n, bits) */ if (test_bit(m, orig)) set_bit(n, dst); m++; } } EXPORT_SYMBOL(bitmap_onto); /** * bitmap_fold - fold larger bitmap into smaller, modulo specified size * @dst: resulting smaller bitmap * @orig: original larger bitmap * @sz: specified size * @bits: number of bits in each of these bitmaps * * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. * Clear all other bits in @dst. See further the comment and * Example [2] for bitmap_onto() for why and how to use this. */ void bitmap_fold(unsigned long *dst, const unsigned long *orig, int sz, int bits) { int oldbit; if (dst == orig) /* following doesn't handle inplace mappings */ return; bitmap_zero(dst, bits); for (oldbit = find_first_bit(orig, bits); oldbit < bits; oldbit = find_next_bit(orig, bits, oldbit + 1)) set_bit(oldbit % sz, dst); } EXPORT_SYMBOL(bitmap_fold); /* * Common code for bitmap_*_region() routines. * bitmap: array of unsigned longs corresponding to the bitmap * pos: the beginning of the region * order: region size (log base 2 of number of bits) * reg_op: operation(s) to perform on that region of bitmap * * Can set, verify and/or release a region of bits in a bitmap, * depending on which combination of REG_OP_* flag bits is set. * * A region of a bitmap is a sequence of bits in the bitmap, of * some size '1 << order' (a power of two), aligned to that same * '1 << order' power of two. * * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits). * Returns 0 in all other cases and reg_ops. */ enum { REG_OP_ISFREE, /* true if region is all zero bits */ REG_OP_ALLOC, /* set all bits in region */ REG_OP_RELEASE, /* clear all bits in region */ }; static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op) { int nbits_reg; /* number of bits in region */ int index; /* index first long of region in bitmap */ int offset; /* bit offset region in bitmap[index] */ int nlongs_reg; /* num longs spanned by region in bitmap */ int nbitsinlong; /* num bits of region in each spanned long */ unsigned long mask; /* bitmask for one long of region */ int i; /* scans bitmap by longs */ int ret = 0; /* return value */ /* * Either nlongs_reg == 1 (for small orders that fit in one long) * or (offset == 0 && mask == ~0UL) (for larger multiword orders.) */ nbits_reg = 1 << order; index = pos / BITS_PER_LONG; offset = pos - (index * BITS_PER_LONG); nlongs_reg = BITS_TO_LONGS(nbits_reg); nbitsinlong = min(nbits_reg, BITS_PER_LONG); /* * Can't do "mask = (1UL << nbitsinlong) - 1", as that * overflows if nbitsinlong == BITS_PER_LONG. */ mask = (1UL << (nbitsinlong - 1)); mask += mask - 1; mask <<= offset; switch (reg_op) { case REG_OP_ISFREE: for (i = 0; i < nlongs_reg; i++) { if (bitmap[index + i] & mask) goto done; } ret = 1; /* all bits in region free (zero) */ break; case REG_OP_ALLOC: for (i = 0; i < nlongs_reg; i++) bitmap[index + i] |= mask; break; case REG_OP_RELEASE: for (i = 0; i < nlongs_reg; i++) bitmap[index + i] &= ~mask; break; } done: return ret; } /** * bitmap_find_free_region - find a contiguous aligned mem region * @bitmap: array of unsigned longs corresponding to the bitmap * @bits: number of bits in the bitmap * @order: region size (log base 2 of number of bits) to find * * Find a region of free (zero) bits in a @bitmap of @bits bits and * allocate them (set them to one). Only consider regions of length * a power (@order) of two, aligned to that power of two, which * makes the search algorithm much faster. * * Return the bit offset in bitmap of the allocated region, * or -errno on failure. */ int bitmap_find_free_region(unsigned long *bitmap, int bits, int order) { int pos, end; /* scans bitmap by regions of size order */ for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) { if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) continue; __reg_op(bitmap, pos, order, REG_OP_ALLOC); return pos; } return -ENOMEM; } EXPORT_SYMBOL(bitmap_find_free_region); /** * bitmap_release_region - release allocated bitmap region * @bitmap: array of unsigned longs corresponding to the bitmap * @pos: beginning of bit region to release * @order: region size (log base 2 of number of bits) to release * * This is the complement to __bitmap_find_free_region() and releases * the found region (by clearing it in the bitmap). * * No return value. */ void bitmap_release_region(unsigned long *bitmap, int pos, int order) { __reg_op(bitmap, pos, order, REG_OP_RELEASE); } EXPORT_SYMBOL(bitmap_release_region); /** * bitmap_allocate_region - allocate bitmap region * @bitmap: array of unsigned longs corresponding to the bitmap * @pos: beginning of bit region to allocate * @order: region size (log base 2 of number of bits) to allocate * * Allocate (set bits in) a specified region of a bitmap. * * Return 0 on success, or %-EBUSY if specified region wasn't * free (not all bits were zero). */ int bitmap_allocate_region(unsigned long *bitmap, int pos, int order) { if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE)) return -EBUSY; __reg_op(bitmap, pos, order, REG_OP_ALLOC); return 0; } EXPORT_SYMBOL(bitmap_allocate_region); /** * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order. * @dst: destination buffer * @src: bitmap to copy * @nbits: number of bits in the bitmap * * Require nbits % BITS_PER_LONG == 0. */ void bitmap_copy_le(void *dst, const unsigned long *src, int nbits) { unsigned long *d = dst; int i; for (i = 0; i < nbits/BITS_PER_LONG; i++) { if (BITS_PER_LONG == 64) d[i] = cpu_to_le64(src[i]); else d[i] = cpu_to_le32(src[i]); } } EXPORT_SYMBOL(bitmap_copy_le);