/* * linux/arch/arm/boot/compressed/head.S * * Copyright (C) 1996-2002 Russell King * Copyright (C) 2004 Hyok S. Choi (MPU support) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include /* * Debugging stuff * * Note that these macros must not contain any code which is not * 100% relocatable. Any attempt to do so will result in a crash. * Please select one of the following when turning on debugging. */ #ifdef DEBUG #if defined(CONFIG_DEBUG_ICEDCC) #ifdef defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V7) .macro loadsp, rb .endm .macro writeb, ch, rb mcr p14, 0, \ch, c0, c5, 0 .endm #elif defined(CONFIG_CPU_XSCALE) .macro loadsp, rb .endm .macro writeb, ch, rb mcr p14, 0, \ch, c8, c0, 0 .endm #else .macro loadsp, rb .endm .macro writeb, ch, rb mcr p14, 0, \ch, c1, c0, 0 .endm #endif #else #include .macro writeb, ch, rb senduart \ch, \rb .endm #if defined(CONFIG_ARCH_SA1100) .macro loadsp, rb mov \rb, #0x80000000 @ physical base address #ifdef CONFIG_DEBUG_LL_SER3 add \rb, \rb, #0x00050000 @ Ser3 #else add \rb, \rb, #0x00010000 @ Ser1 #endif .endm #elif defined(CONFIG_ARCH_S3C2410) .macro loadsp, rb mov \rb, #0x50000000 add \rb, \rb, #0x4000 * CONFIG_S3C_LOWLEVEL_UART_PORT .endm #else .macro loadsp, rb addruart \rb .endm #endif #endif #endif .macro kputc,val mov r0, \val bl putc .endm .macro kphex,val,len mov r0, \val mov r1, #\len bl phex .endm .macro debug_reloc_start #ifdef DEBUG kputc #'\n' kphex r6, 8 /* processor id */ kputc #':' kphex r7, 8 /* architecture id */ #ifdef CONFIG_CPU_CP15 kputc #':' mrc p15, 0, r0, c1, c0 kphex r0, 8 /* control reg */ #endif kputc #'\n' kphex r5, 8 /* decompressed kernel start */ kputc #'-' kphex r9, 8 /* decompressed kernel end */ kputc #'>' kphex r4, 8 /* kernel execution address */ kputc #'\n' #endif .endm .macro debug_reloc_end #ifdef DEBUG kphex r5, 8 /* end of kernel */ kputc #'\n' mov r0, r4 bl memdump /* dump 256 bytes at start of kernel */ #endif .endm .section ".start", #alloc, #execinstr /* * sort out different calling conventions */ .align start: .type start,#function .rept 8 mov r0, r0 .endr b 1f .word 0x016f2818 @ Magic numbers to help the loader .word start @ absolute load/run zImage address .word _edata @ zImage end address 1: mov r7, r1 @ save architecture ID mov r8, r2 @ save atags pointer #ifndef __ARM_ARCH_2__ /* * Booting from Angel - need to enter SVC mode and disable * FIQs/IRQs (numeric definitions from angel arm.h source). * We only do this if we were in user mode on entry. */ mrs r2, cpsr @ get current mode tst r2, #3 @ not user? bne not_angel mov r0, #0x17 @ angel_SWIreason_EnterSVC ARM( swi 0x123456 ) @ angel_SWI_ARM THUMB( svc 0xab ) @ angel_SWI_THUMB not_angel: mrs r2, cpsr @ turn off interrupts to orr r2, r2, #0xc0 @ prevent angel from running msr cpsr_c, r2 #else teqp pc, #0x0c000003 @ turn off interrupts #endif /* * Note that some cache flushing and other stuff may * be needed here - is there an Angel SWI call for this? */ /* * some architecture specific code can be inserted * by the linker here, but it should preserve r7, r8, and r9. */ .text adr r0, LC0 ARM( ldmia r0, {r1, r2, r3, r4, r5, r6, r11, ip, sp}) THUMB( ldmia r0, {r1, r2, r3, r4, r5, r6, r11, ip} ) THUMB( ldr sp, [r0, #32] ) subs r0, r0, r1 @ calculate the delta offset @ if delta is zero, we are beq not_relocated @ running at the address we @ were linked at. /* * We're running at a different address. We need to fix * up various pointers: * r5 - zImage base address (_start) * r6 - size of decompressed image * r11 - GOT start * ip - GOT end */ add r5, r5, r0 add r11, r11, r0 add ip, ip, r0 #ifndef CONFIG_ZBOOT_ROM /* * If we're running fully PIC === CONFIG_ZBOOT_ROM = n, * we need to fix up pointers into the BSS region. * r2 - BSS start * r3 - BSS end * sp - stack pointer */ add r2, r2, r0 add r3, r3, r0 add sp, sp, r0 /* * Relocate all entries in the GOT table. */ 1: ldr r1, [r11, #0] @ relocate entries in the GOT add r1, r1, r0 @ table. This fixes up the str r1, [r11], #4 @ C references. cmp r11, ip blo 1b #else /* * Relocate entries in the GOT table. We only relocate * the entries that are outside the (relocated) BSS region. */ 1: ldr r1, [r11, #0] @ relocate entries in the GOT cmp r1, r2 @ entry < bss_start || cmphs r3, r1 @ _end < entry addlo r1, r1, r0 @ table. This fixes up the str r1, [r11], #4 @ C references. cmp r11, ip blo 1b #endif not_relocated: mov r0, #0 1: str r0, [r2], #4 @ clear bss str r0, [r2], #4 str r0, [r2], #4 str r0, [r2], #4 cmp r2, r3 blo 1b /* * The C runtime environment should now be setup * sufficiently. Turn the cache on, set up some * pointers, and start decompressing. */ bl cache_on mov r1, sp @ malloc space above stack add r2, sp, #0x10000 @ 64k max /* * Check to see if we will overwrite ourselves. * r4 = final kernel address * r5 = start of this image * r6 = size of decompressed image * r2 = end of malloc space (and therefore this image) * We basically want: * r4 >= r2 -> OK * r4 + image length <= r5 -> OK */ cmp r4, r2 bhs wont_overwrite add r0, r4, r6 cmp r0, r5 bls wont_overwrite mov r5, r2 @ decompress after malloc space mov r0, r5 mov r3, r7 bl decompress_kernel add r0, r0, #127 + 128 @ alignment + stack bic r0, r0, #127 @ align the kernel length /* * r0 = decompressed kernel length * r1-r3 = unused * r4 = kernel execution address * r5 = decompressed kernel start * r7 = architecture ID * r8 = atags pointer * r9-r12,r14 = corrupted */ add r1, r5, r0 @ end of decompressed kernel adr r2, reloc_start ldr r3, LC1 add r3, r2, r3 1: ldmia r2!, {r9 - r12, r14} @ copy relocation code stmia r1!, {r9 - r12, r14} ldmia r2!, {r9 - r12, r14} stmia r1!, {r9 - r12, r14} cmp r2, r3 blo 1b mov sp, r1 add sp, sp, #128 @ relocate the stack bl cache_clean_flush ARM( add pc, r5, r0 ) @ call relocation code THUMB( add r12, r5, r0 ) THUMB( mov pc, r12 ) @ call relocation code /* * We're not in danger of overwriting ourselves. Do this the simple way. * * r4 = kernel execution address * r7 = architecture ID */ wont_overwrite: mov r0, r4 mov r3, r7 bl decompress_kernel b call_kernel .align 2 .type LC0, #object LC0: .word LC0 @ r1 .word __bss_start @ r2 .word _end @ r3 .word zreladdr @ r4 .word _start @ r5 .word _image_size @ r6 .word _got_start @ r11 .word _got_end @ ip .word user_stack+4096 @ sp LC1: .word reloc_end - reloc_start .size LC0, . - LC0 #ifdef CONFIG_ARCH_RPC .globl params params: ldr r0, =params_phys mov pc, lr .ltorg .align #endif /* * Turn on the cache. We need to setup some page tables so that we * can have both the I and D caches on. * * We place the page tables 16k down from the kernel execution address, * and we hope that nothing else is using it. If we're using it, we * will go pop! * * On entry, * r4 = kernel execution address * r7 = architecture number * r8 = atags pointer * r9 = run-time address of "start" (???) * On exit, * r1, r2, r3, r9, r10, r12 corrupted * This routine must preserve: * r4, r5, r6, r7, r8 */ .align 5 cache_on: mov r3, #8 @ cache_on function b call_cache_fn /* * Initialize the highest priority protection region, PR7 * to cover all 32bit address and cacheable and bufferable. */ __armv4_mpu_cache_on: mov r0, #0x3f @ 4G, the whole mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting mcr p15, 0, r0, c6, c7, 1 mov r0, #0x80 @ PR7 mcr p15, 0, r0, c2, c0, 0 @ D-cache on mcr p15, 0, r0, c2, c0, 1 @ I-cache on mcr p15, 0, r0, c3, c0, 0 @ write-buffer on mov r0, #0xc000 mcr p15, 0, r0, c5, c0, 1 @ I-access permission mcr p15, 0, r0, c5, c0, 0 @ D-access permission mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache mrc p15, 0, r0, c1, c0, 0 @ read control reg @ ...I .... ..D. WC.M orr r0, r0, #0x002d @ .... .... ..1. 11.1 orr r0, r0, #0x1000 @ ...1 .... .... .... mcr p15, 0, r0, c1, c0, 0 @ write control reg mov r0, #0 mcr p15, 0, r0, c7, c5, 0 @ flush(inval) I-Cache mcr p15, 0, r0, c7, c6, 0 @ flush(inval) D-Cache mov pc, lr __armv3_mpu_cache_on: mov r0, #0x3f @ 4G, the whole mcr p15, 0, r0, c6, c7, 0 @ PR7 Area Setting mov r0, #0x80 @ PR7 mcr p15, 0, r0, c2, c0, 0 @ cache on mcr p15, 0, r0, c3, c0, 0 @ write-buffer on mov r0, #0xc000 mcr p15, 0, r0, c5, c0, 0 @ access permission mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mrc p15, 0, r0, c1, c0, 0 @ read control reg @ .... .... .... WC.M orr r0, r0, #0x000d @ .... .... .... 11.1 mov r0, #0 mcr p15, 0, r0, c1, c0, 0 @ write control reg mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr __setup_mmu: sub r3, r4, #16384 @ Page directory size bic r3, r3, #0xff @ Align the pointer bic r3, r3, #0x3f00 /* * Initialise the page tables, turning on the cacheable and bufferable * bits for the RAM area only. */ mov r0, r3 mov r9, r0, lsr #18 mov r9, r9, lsl #18 @ start of RAM add r10, r9, #0x10000000 @ a reasonable RAM size mov r1, #0x12 orr r1, r1, #3 << 10 add r2, r3, #16384 1: cmp r1, r9 @ if virt > start of RAM orrhs r1, r1, #0x0c @ set cacheable, bufferable cmp r1, r10 @ if virt > end of RAM bichs r1, r1, #0x0c @ clear cacheable, bufferable str r1, [r0], #4 @ 1:1 mapping add r1, r1, #1048576 teq r0, r2 bne 1b /* * If ever we are running from Flash, then we surely want the cache * to be enabled also for our execution instance... We map 2MB of it * so there is no map overlap problem for up to 1 MB compressed kernel. * If the execution is in RAM then we would only be duplicating the above. */ mov r1, #0x1e orr r1, r1, #3 << 10 mov r2, pc, lsr #20 orr r1, r1, r2, lsl #20 add r0, r3, r2, lsl #2 str r1, [r0], #4 add r1, r1, #1048576 str r1, [r0] mov pc, lr ENDPROC(__setup_mmu) __armv4_mmu_cache_on: mov r12, lr #ifdef CONFIG_MMU bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement orr r0, r0, #0x0030 #ifdef CONFIG_CPU_ENDIAN_BE8 orr r0, r0, #1 << 25 @ big-endian page tables #endif bl __common_mmu_cache_on mov r0, #0 mcr p15, 0, r0, c8, c7, 0 @ flush I,D TLBs #endif mov pc, r12 __armv7_mmu_cache_on: mov r12, lr #ifdef CONFIG_MMU mrc p15, 0, r11, c0, c1, 4 @ read ID_MMFR0 tst r11, #0xf @ VMSA blne __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer tst r11, #0xf @ VMSA mcrne p15, 0, r0, c8, c7, 0 @ flush I,D TLBs #endif mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x5000 @ I-cache enable, RR cache replacement orr r0, r0, #0x003c @ write buffer #ifdef CONFIG_MMU #ifdef CONFIG_CPU_ENDIAN_BE8 orr r0, r0, #1 << 25 @ big-endian page tables #endif orrne r0, r0, #1 @ MMU enabled movne r1, #-1 mcrne p15, 0, r3, c2, c0, 0 @ load page table pointer mcrne p15, 0, r1, c3, c0, 0 @ load domain access control #endif mcr p15, 0, r0, c1, c0, 0 @ load control register mrc p15, 0, r0, c1, c0, 0 @ and read it back mov r0, #0 mcr p15, 0, r0, c7, c5, 4 @ ISB mov pc, r12 __fa526_cache_on: mov r12, lr bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c7, 0 @ Invalidate whole cache mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c8, c7, 0 @ flush UTLB mrc p15, 0, r0, c1, c0, 0 @ read control reg orr r0, r0, #0x1000 @ I-cache enable bl __common_mmu_cache_on mov r0, #0 mcr p15, 0, r0, c8, c7, 0 @ flush UTLB mov pc, r12 __arm6_mmu_cache_on: mov r12, lr bl __setup_mmu mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3 mov r0, #0x30 bl __common_mmu_cache_on mov r0, #0 mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3 mov pc, r12 __common_mmu_cache_on: #ifndef CONFIG_THUMB2_KERNEL #ifndef DEBUG orr r0, r0, #0x000d @ Write buffer, mmu #endif mov r1, #-1 mcr p15, 0, r3, c2, c0, 0 @ load page table pointer mcr p15, 0, r1, c3, c0, 0 @ load domain access control b 1f .align 5 @ cache line aligned 1: mcr p15, 0, r0, c1, c0, 0 @ load control register mrc p15, 0, r0, c1, c0, 0 @ and read it back to sub pc, lr, r0, lsr #32 @ properly flush pipeline #endif /* * All code following this line is relocatable. It is relocated by * the above code to the end of the decompressed kernel image and * executed there. During this time, we have no stacks. * * r0 = decompressed kernel length * r1-r3 = unused * r4 = kernel execution address * r5 = decompressed kernel start * r7 = architecture ID * r8 = atags pointer * r9-r12,r14 = corrupted */ .align 5 reloc_start: add r9, r5, r0 sub r9, r9, #128 @ do not copy the stack debug_reloc_start mov r1, r4 1: .rept 4 ldmia r5!, {r0, r2, r3, r10 - r12, r14} @ relocate kernel stmia r1!, {r0, r2, r3, r10 - r12, r14} .endr cmp r5, r9 blo 1b mov sp, r1 add sp, sp, #128 @ relocate the stack debug_reloc_end call_kernel: bl cache_clean_flush bl cache_off mov r0, #0 @ must be zero mov r1, r7 @ restore architecture number mov r2, r8 @ restore atags pointer mov pc, r4 @ call kernel /* * Here follow the relocatable cache support functions for the * various processors. This is a generic hook for locating an * entry and jumping to an instruction at the specified offset * from the start of the block. Please note this is all position * independent code. * * r1 = corrupted * r2 = corrupted * r3 = block offset * r9 = corrupted * r12 = corrupted */ call_cache_fn: adr r12, proc_types #ifdef CONFIG_CPU_CP15 mrc p15, 0, r9, c0, c0 @ get processor ID #else ldr r9, =CONFIG_PROCESSOR_ID #endif 1: ldr r1, [r12, #0] @ get value ldr r2, [r12, #4] @ get mask eor r1, r1, r9 @ (real ^ match) tst r1, r2 @ & mask ARM( addeq pc, r12, r3 ) @ call cache function THUMB( addeq r12, r3 ) THUMB( moveq pc, r12 ) @ call cache function add r12, r12, #4*5 b 1b /* * Table for cache operations. This is basically: * - CPU ID match * - CPU ID mask * - 'cache on' method instruction * - 'cache off' method instruction * - 'cache flush' method instruction * * We match an entry using: ((real_id ^ match) & mask) == 0 * * Writethrough caches generally only need 'on' and 'off' * methods. Writeback caches _must_ have the flush method * defined. */ .align 2 .type proc_types,#object proc_types: .word 0x41560600 @ ARM6/610 .word 0xffffffe0 W(b) __arm6_mmu_cache_off @ works, but slow W(b) __arm6_mmu_cache_off mov pc, lr THUMB( nop ) @ b __arm6_mmu_cache_on @ untested @ b __arm6_mmu_cache_off @ b __armv3_mmu_cache_flush #if !defined(CONFIG_CPU_V7) /* This collides with some V7 IDs, preventing correct detection */ .word 0x00000000 @ old ARM ID .word 0x0000f000 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) #endif .word 0x41007000 @ ARM7/710 .word 0xfff8fe00 W(b) __arm7_mmu_cache_off W(b) __arm7_mmu_cache_off mov pc, lr THUMB( nop ) .word 0x41807200 @ ARM720T (writethrough) .word 0xffffff00 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off mov pc, lr THUMB( nop ) .word 0x41007400 @ ARM74x .word 0xff00ff00 W(b) __armv3_mpu_cache_on W(b) __armv3_mpu_cache_off W(b) __armv3_mpu_cache_flush .word 0x41009400 @ ARM94x .word 0xff00ff00 W(b) __armv4_mpu_cache_on W(b) __armv4_mpu_cache_off W(b) __armv4_mpu_cache_flush .word 0x00007000 @ ARM7 IDs .word 0x0000f000 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) @ Everything from here on will be the new ID system. .word 0x4401a100 @ sa110 / sa1100 .word 0xffffffe0 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x6901b110 @ sa1110 .word 0xfffffff0 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x56056930 .word 0xff0ffff0 @ PXA935 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x56158000 @ PXA168 .word 0xfffff000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush .word 0x56056930 .word 0xff0ffff0 @ PXA935 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x56050000 @ Feroceon .word 0xff0f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv5tej_mmu_cache_flush #ifdef CONFIG_CPU_FEROCEON_OLD_ID /* this conflicts with the standard ARMv5TE entry */ .long 0x41009260 @ Old Feroceon .long 0xff00fff0 b __armv4_mmu_cache_on b __armv4_mmu_cache_off b __armv5tej_mmu_cache_flush #endif .word 0x66015261 @ FA526 .word 0xff01fff1 W(b) __fa526_cache_on W(b) __armv4_mmu_cache_off W(b) __fa526_cache_flush @ These match on the architecture ID .word 0x00020000 @ ARMv4T .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x00050000 @ ARMv5TE .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x00060000 @ ARMv5TEJ .word 0x000f0000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv4_mmu_cache_flush .word 0x0007b000 @ ARMv6 .word 0x000ff000 W(b) __armv4_mmu_cache_on W(b) __armv4_mmu_cache_off W(b) __armv6_mmu_cache_flush .word 0x000f0000 @ new CPU Id .word 0x000f0000 W(b) __armv7_mmu_cache_on W(b) __armv7_mmu_cache_off W(b) __armv7_mmu_cache_flush .word 0 @ unrecognised type .word 0 mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) mov pc, lr THUMB( nop ) .size proc_types, . - proc_types /* * Turn off the Cache and MMU. ARMv3 does not support * reading the control register, but ARMv4 does. * * On exit, r0, r1, r2, r3, r9, r12 corrupted * This routine must preserve: r4, r6, r7 */ .align 5 cache_off: mov r3, #12 @ cache_off function b call_cache_fn __armv4_mpu_cache_off: mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0 @ turn MPU and cache off mov r0, #0 mcr p15, 0, r0, c7, c10, 4 @ drain write buffer mcr p15, 0, r0, c7, c6, 0 @ flush D-Cache mcr p15, 0, r0, c7, c5, 0 @ flush I-Cache mov pc, lr __armv3_mpu_cache_off: mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0, 0 @ turn MPU and cache off mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr __armv4_mmu_cache_off: #ifdef CONFIG_MMU mrc p15, 0, r0, c1, c0 bic r0, r0, #0x000d mcr p15, 0, r0, c1, c0 @ turn MMU and cache off mov r0, #0 mcr p15, 0, r0, c7, c7 @ invalidate whole cache v4 mcr p15, 0, r0, c8, c7 @ invalidate whole TLB v4 #endif mov pc, lr __armv7_mmu_cache_off: mrc p15, 0, r0, c1, c0 #ifdef CONFIG_MMU bic r0, r0, #0x000d #else bic r0, r0, #0x000c #endif mcr p15, 0, r0, c1, c0 @ turn MMU and cache off mov r12, lr bl __armv7_mmu_cache_flush mov r0, #0 #ifdef CONFIG_MMU mcr p15, 0, r0, c8, c7, 0 @ invalidate whole TLB #endif mcr p15, 0, r0, c7, c5, 6 @ invalidate BTC mcr p15, 0, r0, c7, c10, 4 @ DSB mcr p15, 0, r0, c7, c5, 4 @ ISB mov pc, r12 __arm6_mmu_cache_off: mov r0, #0x00000030 @ ARM6 control reg. b __armv3_mmu_cache_off __arm7_mmu_cache_off: mov r0, #0x00000070 @ ARM7 control reg. b __armv3_mmu_cache_off __armv3_mmu_cache_off: mcr p15, 0, r0, c1, c0, 0 @ turn MMU and cache off mov r0, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mcr p15, 0, r0, c5, c0, 0 @ invalidate whole TLB v3 mov pc, lr /* * Clean and flush the cache to maintain consistency. * * On exit, * r1, r2, r3, r9, r11, r12 corrupted * This routine must preserve: * r0, r4, r5, r6, r7 */ .align 5 cache_clean_flush: mov r3, #16 b call_cache_fn __armv4_mpu_cache_flush: mov r2, #1 mov r3, #0 mcr p15, 0, ip, c7, c6, 0 @ invalidate D cache mov r1, #7 << 5 @ 8 segments 1: orr r3, r1, #63 << 26 @ 64 entries 2: mcr p15, 0, r3, c7, c14, 2 @ clean & invalidate D index subs r3, r3, #1 << 26 bcs 2b @ entries 63 to 0 subs r1, r1, #1 << 5 bcs 1b @ segments 7 to 0 teq r2, #0 mcrne p15, 0, ip, c7, c5, 0 @ invalidate I cache mcr p15, 0, ip, c7, c10, 4 @ drain WB mov pc, lr __fa526_cache_flush: mov r1, #0 mcr p15, 0, r1, c7, c14, 0 @ clean and invalidate D cache mcr p15, 0, r1, c7, c5, 0 @ flush I cache mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv6_mmu_cache_flush: mov r1, #0 mcr p15, 0, r1, c7, c14, 0 @ clean+invalidate D mcr p15, 0, r1, c7, c5, 0 @ invalidate I+BTB mcr p15, 0, r1, c7, c15, 0 @ clean+invalidate unified mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv7_mmu_cache_flush: mrc p15, 0, r10, c0, c1, 5 @ read ID_MMFR1 tst r10, #0xf << 16 @ hierarchical cache (ARMv7) mov r10, #0 beq hierarchical mcr p15, 0, r10, c7, c14, 0 @ clean+invalidate D b iflush hierarchical: mcr p15, 0, r10, c7, c10, 5 @ DMB stmfd sp!, {r0-r7, r9-r11} mrc p15, 1, r0, c0, c0, 1 @ read clidr ands r3, r0, #0x7000000 @ extract loc from clidr mov r3, r3, lsr #23 @ left align loc bit field beq finished @ if loc is 0, then no need to clean mov r10, #0 @ start clean at cache level 0 loop1: add r2, r10, r10, lsr #1 @ work out 3x current cache level mov r1, r0, lsr r2 @ extract cache type bits from clidr and r1, r1, #7 @ mask of the bits for current cache only cmp r1, #2 @ see what cache we have at this level blt skip @ skip if no cache, or just i-cache mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr mcr p15, 0, r10, c7, c5, 4 @ isb to sych the new cssr&csidr mrc p15, 1, r1, c0, c0, 0 @ read the new csidr and r2, r1, #7 @ extract the length of the cache lines add r2, r2, #4 @ add 4 (line length offset) ldr r4, =0x3ff ands r4, r4, r1, lsr #3 @ find maximum number on the way size clz r5, r4 @ find bit position of way size increment ldr r7, =0x7fff ands r7, r7, r1, lsr #13 @ extract max number of the index size loop2: mov r9, r4 @ create working copy of max way size loop3: ARM( orr r11, r10, r9, lsl r5 ) @ factor way and cache number into r11 ARM( orr r11, r11, r7, lsl r2 ) @ factor index number into r11 THUMB( lsl r6, r9, r5 ) THUMB( orr r11, r10, r6 ) @ factor way and cache number into r11 THUMB( lsl r6, r7, r2 ) THUMB( orr r11, r11, r6 ) @ factor index number into r11 mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way subs r9, r9, #1 @ decrement the way bge loop3 subs r7, r7, #1 @ decrement the index bge loop2 skip: add r10, r10, #2 @ increment cache number cmp r3, r10 bgt loop1 finished: ldmfd sp!, {r0-r7, r9-r11} mov r10, #0 @ swith back to cache level 0 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr iflush: mcr p15, 0, r10, c7, c10, 4 @ DSB mcr p15, 0, r10, c7, c5, 0 @ invalidate I+BTB mcr p15, 0, r10, c7, c10, 4 @ DSB mcr p15, 0, r10, c7, c5, 4 @ ISB mov pc, lr __armv5tej_mmu_cache_flush: 1: mrc p15, 0, r15, c7, c14, 3 @ test,clean,invalidate D cache bne 1b mcr p15, 0, r0, c7, c5, 0 @ flush I cache mcr p15, 0, r0, c7, c10, 4 @ drain WB mov pc, lr __armv4_mmu_cache_flush: mov r2, #64*1024 @ default: 32K dcache size (*2) mov r11, #32 @ default: 32 byte line size mrc p15, 0, r3, c0, c0, 1 @ read cache type teq r3, r9 @ cache ID register present? beq no_cache_id mov r1, r3, lsr #18 and r1, r1, #7 mov r2, #1024 mov r2, r2, lsl r1 @ base dcache size *2 tst r3, #1 << 14 @ test M bit addne r2, r2, r2, lsr #1 @ +1/2 size if M == 1 mov r3, r3, lsr #12 and r3, r3, #3 mov r11, #8 mov r11, r11, lsl r3 @ cache line size in bytes no_cache_id: mov r1, pc bic r1, r1, #63 @ align to longest cache line add r2, r1, r2 1: ARM( ldr r3, [r1], r11 ) @ s/w flush D cache THUMB( ldr r3, [r1] ) @ s/w flush D cache THUMB( add r1, r1, r11 ) teq r1, r2 bne 1b mcr p15, 0, r1, c7, c5, 0 @ flush I cache mcr p15, 0, r1, c7, c6, 0 @ flush D cache mcr p15, 0, r1, c7, c10, 4 @ drain WB mov pc, lr __armv3_mmu_cache_flush: __armv3_mpu_cache_flush: mov r1, #0 mcr p15, 0, r0, c7, c0, 0 @ invalidate whole cache v3 mov pc, lr /* * Various debugging routines for printing hex characters and * memory, which again must be relocatable. */ #ifdef DEBUG .align 2 .type phexbuf,#object phexbuf: .space 12 .size phexbuf, . - phexbuf phex: adr r3, phexbuf mov r2, #0 strb r2, [r3, r1] 1: subs r1, r1, #1 movmi r0, r3 bmi puts and r2, r0, #15 mov r0, r0, lsr #4 cmp r2, #10 addge r2, r2, #7 add r2, r2, #'0' strb r2, [r3, r1] b 1b puts: loadsp r3 1: ldrb r2, [r0], #1 teq r2, #0 moveq pc, lr 2: writeb r2, r3 mov r1, #0x00020000 3: subs r1, r1, #1 bne 3b teq r2, #'\n' moveq r2, #'\r' beq 2b teq r0, #0 bne 1b mov pc, lr putc: mov r2, r0 mov r0, #0 loadsp r3 b 2b memdump: mov r12, r0 mov r10, lr mov r11, #0 2: mov r0, r11, lsl #2 add r0, r0, r12 mov r1, #8 bl phex mov r0, #':' bl putc 1: mov r0, #' ' bl putc ldr r0, [r12, r11, lsl #2] mov r1, #8 bl phex and r0, r11, #7 teq r0, #3 moveq r0, #' ' bleq putc and r0, r11, #7 add r11, r11, #1 teq r0, #7 bne 1b mov r0, #'\n' bl putc cmp r11, #64 blt 2b mov pc, r10 #endif .ltorg reloc_end: .align .section ".stack", "w" user_stack: .space 4096