/* arch/arm/mach-msm/qdsp5/audio_aac.c * * aac audio decoder device * * Copyright (C) 2008 Google, Inc. * Copyright (C) 2008 HTC Corporation * Copyright (c) 2008-2009 QUALCOMM USA, INC. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include "audmgr.h" #include #include #include #include #include #include /* for queue ids - should be relative to module number*/ #include "adsp.h" #ifdef DEBUG #define dprintk(format, arg...) \ printk(KERN_DEBUG format, ## arg) #else #define dprintk(format, arg...) do {} while (0) #endif #define BUFSZ 32768 #define DMASZ (BUFSZ * 2) #define AUDPLAY_INVALID_READ_PTR_OFFSET 0xFFFF #define AUDDEC_DEC_AAC 5 #define PCM_BUFSZ_MIN 9600 /* Hold one stereo AAC frame */ #define PCM_BUF_MAX_COUNT 5 /* DSP only accepts 5 buffers at most but support 2 buffers currently */ #define ROUTING_MODE_FTRT 1 #define ROUTING_MODE_RT 2 /* Decoder status received from AUDPPTASK */ #define AUDPP_DEC_STATUS_SLEEP 0 #define AUDPP_DEC_STATUS_INIT 1 #define AUDPP_DEC_STATUS_CFG 2 #define AUDPP_DEC_STATUS_PLAY 3 struct buffer { void *data; unsigned size; unsigned used; /* Input usage actual DSP produced PCM size */ unsigned addr; }; struct audio { struct buffer out[2]; spinlock_t dsp_lock; uint8_t out_head; uint8_t out_tail; uint8_t out_needed; /* number of buffers the dsp is waiting for */ atomic_t out_bytes; struct mutex lock; struct mutex write_lock; wait_queue_head_t write_wait; /* Host PCM section */ struct buffer in[PCM_BUF_MAX_COUNT]; struct mutex read_lock; wait_queue_head_t read_wait; /* Wait queue for read */ char *read_data; /* pointer to reader buffer */ dma_addr_t read_phys; /* physical address of reader buffer */ uint8_t read_next; /* index to input buffers to be read next */ uint8_t fill_next; /* index to buffer that DSP should be filling */ uint8_t pcm_buf_count; /* number of pcm buffer allocated */ /* ---- End of Host PCM section */ struct msm_adsp_module *audplay; /* configuration to use on next enable */ uint32_t out_sample_rate; uint32_t out_channel_mode; struct msm_audio_aac_config aac_config; struct audmgr audmgr; /* data allocated for various buffers */ char *data; dma_addr_t phys; int rflush; /* Read flush */ int wflush; /* Write flush */ int opened; int enabled; int running; int stopped; /* set when stopped, cleared on flush */ int pcm_feedback; int buf_refresh; int reserved; /* A byte is being reserved */ char rsv_byte; /* Handle odd length user data */ unsigned volume; uint16_t dec_id; uint32_t read_ptr_offset; }; static int auddec_dsp_config(struct audio *audio, int enable); static void audpp_cmd_cfg_adec_params(struct audio *audio); static void audpp_cmd_cfg_routing_mode(struct audio *audio); static void audplay_send_data(struct audio *audio, unsigned needed); static void audplay_config_hostpcm(struct audio *audio); static void audplay_buffer_refresh(struct audio *audio); static void audio_dsp_event(void *private, unsigned id, uint16_t *msg); /* must be called with audio->lock held */ static int audio_enable(struct audio *audio) { struct audmgr_config cfg; int rc; dprintk("audio_enable()\n"); if (audio->enabled) return 0; audio->out_tail = 0; audio->out_needed = 0; cfg.tx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE; cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_48000; cfg.def_method = RPC_AUD_DEF_METHOD_PLAYBACK; cfg.codec = RPC_AUD_DEF_CODEC_AAC; cfg.snd_method = RPC_SND_METHOD_MIDI; rc = audmgr_enable(&audio->audmgr, &cfg); if (rc < 0) return rc; if (msm_adsp_enable(audio->audplay)) { pr_err("audio: msm_adsp_enable(audplay) failed\n"); audmgr_disable(&audio->audmgr); return -ENODEV; } if (audpp_enable(audio->dec_id, audio_dsp_event, audio)) { pr_err("audio: audpp_enable() failed\n"); msm_adsp_disable(audio->audplay); audmgr_disable(&audio->audmgr); return -ENODEV; } audio->enabled = 1; return 0; } /* must be called with audio->lock held */ static int audio_disable(struct audio *audio) { dprintk("audio_disable()\n"); if (audio->enabled) { audio->enabled = 0; auddec_dsp_config(audio, 0); wake_up(&audio->write_wait); wake_up(&audio->read_wait); msm_adsp_disable(audio->audplay); audpp_disable(audio->dec_id, audio); audmgr_disable(&audio->audmgr); audio->out_needed = 0; } return 0; } /* ------------------- dsp --------------------- */ static void audio_update_pcm_buf_entry(struct audio *audio, uint32_t *payload) { uint8_t index; unsigned long flags; if (audio->rflush) return; spin_lock_irqsave(&audio->dsp_lock, flags); for (index = 0; index < payload[1]; index++) { if (audio->in[audio->fill_next].addr == payload[2 + index * 2]) { dprintk("audio_update_pcm_buf_entry: in[%d] ready\n", audio->fill_next); audio->in[audio->fill_next].used = payload[3 + index * 2]; if ((++audio->fill_next) == audio->pcm_buf_count) audio->fill_next = 0; } else { pr_err ("audio_update_pcm_buf_entry: expected=%x ret=%x\n" , audio->in[audio->fill_next].addr, payload[1 + index * 2]); break; } } if (audio->in[audio->fill_next].used == 0) { audplay_buffer_refresh(audio); } else { dprintk("audio_update_pcm_buf_entry: read cannot keep up\n"); audio->buf_refresh = 1; } wake_up(&audio->read_wait); spin_unlock_irqrestore(&audio->dsp_lock, flags); } static void audplay_dsp_event(void *data, unsigned id, size_t len, void (*getevent) (void *ptr, size_t len)) { struct audio *audio = data; uint32_t msg[28]; getevent(msg, sizeof(msg)); dprintk("audplay_dsp_event: msg_id=%x\n", id); switch (id) { case AUDPLAY_MSG_DEC_NEEDS_DATA: audplay_send_data(audio, 1); break; case AUDPLAY_MSG_BUFFER_UPDATE: audio_update_pcm_buf_entry(audio, msg); break; default: pr_err("unexpected message from decoder \n"); } } static void audio_dsp_event(void *private, unsigned id, uint16_t *msg) { struct audio *audio = private; switch (id) { case AUDPP_MSG_STATUS_MSG:{ unsigned status = msg[1]; switch (status) { case AUDPP_DEC_STATUS_SLEEP: dprintk("decoder status: sleep \n"); break; case AUDPP_DEC_STATUS_INIT: dprintk("decoder status: init \n"); audpp_cmd_cfg_routing_mode(audio); break; case AUDPP_DEC_STATUS_CFG: dprintk("decoder status: cfg \n"); break; case AUDPP_DEC_STATUS_PLAY: dprintk("decoder status: play \n"); if (audio->pcm_feedback) { audplay_config_hostpcm(audio); audplay_buffer_refresh(audio); } break; default: pr_err("unknown decoder status \n"); } break; } case AUDPP_MSG_CFG_MSG: if (msg[0] == AUDPP_MSG_ENA_ENA) { dprintk("audio_dsp_event: CFG_MSG ENABLE\n"); auddec_dsp_config(audio, 1); audio->out_needed = 0; audio->running = 1; audpp_set_volume_and_pan(audio->dec_id, audio->volume, 0); audpp_avsync(audio->dec_id, 22050); } else if (msg[0] == AUDPP_MSG_ENA_DIS) { dprintk("audio_dsp_event: CFG_MSG DISABLE\n"); audpp_avsync(audio->dec_id, 0); audio->running = 0; } else { pr_err("audio_dsp_event: CFG_MSG %d?\n", msg[0]); } break; case AUDPP_MSG_ROUTING_ACK: dprintk("audio_dsp_event: ROUTING_ACK mode=%d\n", msg[1]); audpp_cmd_cfg_adec_params(audio); break; case AUDPP_MSG_FLUSH_ACK: dprintk("%s: FLUSH_ACK\n", __func__); audio->wflush = 0; audio->rflush = 0; if (audio->pcm_feedback) audplay_buffer_refresh(audio); break; default: pr_err("audio_dsp_event: UNKNOWN (%d)\n", id); } } struct msm_adsp_ops audplay_adsp_ops_aac = { .event = audplay_dsp_event, }; #define audplay_send_queue0(audio, cmd, len) \ msm_adsp_write(audio->audplay, QDSP_uPAudPlay0BitStreamCtrlQueue, \ cmd, len) static int auddec_dsp_config(struct audio *audio, int enable) { audpp_cmd_cfg_dec_type cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDPP_CMD_CFG_DEC_TYPE; if (enable) cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC | AUDPP_CMD_ENA_DEC_V | AUDDEC_DEC_AAC; else cmd.dec0_cfg = AUDPP_CMD_UPDATDE_CFG_DEC | AUDPP_CMD_DIS_DEC_V; return audpp_send_queue1(&cmd, sizeof(cmd)); } static void audpp_cmd_cfg_adec_params(struct audio *audio) { audpp_cmd_cfg_adec_params_aac cmd; memset(&cmd, 0, sizeof(cmd)); cmd.common.cmd_id = AUDPP_CMD_CFG_ADEC_PARAMS; cmd.common.length = AUDPP_CMD_CFG_ADEC_PARAMS_AAC_LEN; cmd.common.dec_id = audio->dec_id; cmd.common.input_sampling_frequency = audio->out_sample_rate; cmd.format = audio->aac_config.format; cmd.audio_object = audio->aac_config.audio_object; cmd.ep_config = audio->aac_config.ep_config; cmd.aac_section_data_resilience_flag = audio->aac_config.aac_section_data_resilience_flag; cmd.aac_scalefactor_data_resilience_flag = audio->aac_config.aac_scalefactor_data_resilience_flag; cmd.aac_spectral_data_resilience_flag = audio->aac_config.aac_spectral_data_resilience_flag; cmd.sbr_on_flag = audio->aac_config.sbr_on_flag; cmd.sbr_ps_on_flag = audio->aac_config.sbr_ps_on_flag; cmd.channel_configuration = audio->aac_config.channel_configuration; audpp_send_queue2(&cmd, sizeof(cmd)); } static void audpp_cmd_cfg_routing_mode(struct audio *audio) { struct audpp_cmd_routing_mode cmd; dprintk("audpp_cmd_cfg_routing_mode()\n"); memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDPP_CMD_ROUTING_MODE; cmd.object_number = audio->dec_id; if (audio->pcm_feedback) cmd.routing_mode = ROUTING_MODE_FTRT; else cmd.routing_mode = ROUTING_MODE_RT; audpp_send_queue1(&cmd, sizeof(cmd)); } static int audplay_dsp_send_data_avail(struct audio *audio, unsigned idx, unsigned len) { audplay_cmd_bitstream_data_avail cmd; cmd.cmd_id = AUDPLAY_CMD_BITSTREAM_DATA_AVAIL; cmd.decoder_id = audio->dec_id; cmd.buf_ptr = audio->out[idx].addr; cmd.buf_size = len / 2; cmd.partition_number = 0; return audplay_send_queue0(audio, &cmd, sizeof(cmd)); } static void audplay_buffer_refresh(struct audio *audio) { struct audplay_cmd_buffer_refresh refresh_cmd; refresh_cmd.cmd_id = AUDPLAY_CMD_BUFFER_REFRESH; refresh_cmd.num_buffers = 1; refresh_cmd.buf0_address = audio->in[audio->fill_next].addr; refresh_cmd.buf0_length = audio->in[audio->fill_next].size - (audio->in[audio->fill_next].size % 1024); /* AAC frame size */ refresh_cmd.buf_read_count = 0; dprintk("audplay_buffer_fresh: buf0_addr=%x buf0_len=%d\n", refresh_cmd.buf0_address, refresh_cmd.buf0_length); (void)audplay_send_queue0(audio, &refresh_cmd, sizeof(refresh_cmd)); } static void audplay_config_hostpcm(struct audio *audio) { struct audplay_cmd_hpcm_buf_cfg cfg_cmd; dprintk("audplay_config_hostpcm()\n"); cfg_cmd.cmd_id = AUDPLAY_CMD_HPCM_BUF_CFG; cfg_cmd.max_buffers = audio->pcm_buf_count; cfg_cmd.byte_swap = 0; cfg_cmd.hostpcm_config = (0x8000) | (0x4000); cfg_cmd.feedback_frequency = 1; cfg_cmd.partition_number = 0; (void)audplay_send_queue0(audio, &cfg_cmd, sizeof(cfg_cmd)); } static void audplay_send_data(struct audio *audio, unsigned needed) { struct buffer *frame; unsigned long flags; spin_lock_irqsave(&audio->dsp_lock, flags); if (!audio->running) goto done; if (needed && !audio->wflush) { /* We were called from the callback because the DSP * requested more data. Note that the DSP does want * more data, and if a buffer was in-flight, mark it * as available (since the DSP must now be done with * it). */ audio->out_needed = 1; frame = audio->out + audio->out_tail; if (frame->used == 0xffffffff) { dprintk("frame %d free\n", audio->out_tail); frame->used = 0; audio->out_tail ^= 1; wake_up(&audio->write_wait); } } if (audio->out_needed) { /* If the DSP currently wants data and we have a * buffer available, we will send it and reset * the needed flag. We'll mark the buffer as in-flight * so that it won't be recycled until the next buffer * is requested */ frame = audio->out + audio->out_tail; if (frame->used) { BUG_ON(frame->used == 0xffffffff); /* printk("frame %d busy\n", audio->out_tail); */ audplay_dsp_send_data_avail(audio, audio->out_tail, frame->used); frame->used = 0xffffffff; audio->out_needed = 0; } } done: spin_unlock_irqrestore(&audio->dsp_lock, flags); } /* ------------------- device --------------------- */ static void audio_flush(struct audio *audio) { audio->out[0].used = 0; audio->out[1].used = 0; audio->out_head = 0; audio->out_tail = 0; audio->reserved = 0; audio->out_needed = 0; atomic_set(&audio->out_bytes, 0); } static void audio_flush_pcm_buf(struct audio *audio) { uint8_t index; for (index = 0; index < PCM_BUF_MAX_COUNT; index++) audio->in[index].used = 0; audio->buf_refresh = 0; audio->read_next = 0; audio->fill_next = 0; } static int audaac_validate_usr_config(struct msm_audio_aac_config *config) { int ret_val = -1; if (config->format != AUDIO_AAC_FORMAT_ADTS && config->format != AUDIO_AAC_FORMAT_RAW && config->format != AUDIO_AAC_FORMAT_PSUEDO_RAW && config->format != AUDIO_AAC_FORMAT_LOAS) goto done; if (config->audio_object != AUDIO_AAC_OBJECT_LC && config->audio_object != AUDIO_AAC_OBJECT_LTP && config->audio_object != AUDIO_AAC_OBJECT_ERLC) goto done; if (config->audio_object == AUDIO_AAC_OBJECT_ERLC) { if (config->ep_config > 3) goto done; if (config->aac_scalefactor_data_resilience_flag != AUDIO_AAC_SCA_DATA_RES_OFF && config->aac_scalefactor_data_resilience_flag != AUDIO_AAC_SCA_DATA_RES_ON) goto done; if (config->aac_section_data_resilience_flag != AUDIO_AAC_SEC_DATA_RES_OFF && config->aac_section_data_resilience_flag != AUDIO_AAC_SEC_DATA_RES_ON) goto done; if (config->aac_spectral_data_resilience_flag != AUDIO_AAC_SPEC_DATA_RES_OFF && config->aac_spectral_data_resilience_flag != AUDIO_AAC_SPEC_DATA_RES_ON) goto done; } else { config->aac_section_data_resilience_flag = AUDIO_AAC_SEC_DATA_RES_OFF; config->aac_scalefactor_data_resilience_flag = AUDIO_AAC_SCA_DATA_RES_OFF; config->aac_spectral_data_resilience_flag = AUDIO_AAC_SPEC_DATA_RES_OFF; } if (config->sbr_on_flag != AUDIO_AAC_SBR_ON_FLAG_OFF && config->sbr_on_flag != AUDIO_AAC_SBR_ON_FLAG_ON) goto done; if (config->sbr_ps_on_flag != AUDIO_AAC_SBR_PS_ON_FLAG_OFF && config->sbr_ps_on_flag != AUDIO_AAC_SBR_PS_ON_FLAG_ON) goto done; if (config->dual_mono_mode > AUDIO_AAC_DUAL_MONO_PL_SR) goto done; if (config->channel_configuration > 2) goto done; ret_val = 0; done: return ret_val; } static void audio_ioport_reset(struct audio *audio) { /* Make sure read/write thread are free from * sleep and knowing that system is not able * to process io request at the moment */ wake_up(&audio->write_wait); mutex_lock(&audio->write_lock); audio_flush(audio); mutex_unlock(&audio->write_lock); wake_up(&audio->read_wait); mutex_lock(&audio->read_lock); audio_flush_pcm_buf(audio); mutex_unlock(&audio->read_lock); } static long audio_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct audio *audio = file->private_data; int rc = 0; dprintk("audio_ioctl() cmd = %d\n", cmd); if (cmd == AUDIO_GET_STATS) { struct msm_audio_stats stats; stats.byte_count = audpp_avsync_byte_count(audio->dec_id); stats.sample_count = audpp_avsync_sample_count(audio->dec_id); if (copy_to_user((void *)arg, &stats, sizeof(stats))) return -EFAULT; return 0; } if (cmd == AUDIO_SET_VOLUME) { unsigned long flags; spin_lock_irqsave(&audio->dsp_lock, flags); audio->volume = arg; if (audio->running) audpp_set_volume_and_pan(audio->dec_id, arg, 0); spin_unlock_irqrestore(&audio->dsp_lock, flags); return 0; } mutex_lock(&audio->lock); switch (cmd) { case AUDIO_START: rc = audio_enable(audio); break; case AUDIO_STOP: rc = audio_disable(audio); audio->stopped = 1; audio_ioport_reset(audio); audio->stopped = 0; break; case AUDIO_FLUSH: dprintk("%s: AUDIO_FLUSH\n", __func__); audio->rflush = 1; audio->wflush = 1; audio_ioport_reset(audio); if (audio->running) audpp_flush(audio->dec_id); else { audio->rflush = 0; audio->wflush = 0; } break; case AUDIO_SET_CONFIG:{ struct msm_audio_config config; if (copy_from_user (&config, (void *)arg, sizeof(config))) { rc = -EFAULT; break; } if (config.channel_count == 1) { config.channel_count = AUDPP_CMD_PCM_INTF_MONO_V; } else if (config.channel_count == 2) { config.channel_count = AUDPP_CMD_PCM_INTF_STEREO_V; } else { rc = -EINVAL; break; } audio->out_sample_rate = config.sample_rate; audio->out_channel_mode = config.channel_count; rc = 0; break; } case AUDIO_GET_CONFIG:{ struct msm_audio_config config; config.buffer_size = BUFSZ; config.buffer_count = 2; config.sample_rate = audio->out_sample_rate; if (audio->out_channel_mode == AUDPP_CMD_PCM_INTF_MONO_V) { config.channel_count = 1; } else { config.channel_count = 2; } config.unused[0] = 0; config.unused[1] = 0; config.unused[2] = 0; if (copy_to_user((void *)arg, &config, sizeof(config))) rc = -EFAULT; else rc = 0; break; } case AUDIO_GET_AAC_CONFIG:{ if (copy_to_user((void *)arg, &audio->aac_config, sizeof(audio->aac_config))) rc = -EFAULT; else rc = 0; break; } case AUDIO_SET_AAC_CONFIG:{ struct msm_audio_aac_config usr_config; if (copy_from_user (&usr_config, (void *)arg, sizeof(usr_config))) { rc = -EFAULT; break; } if (audaac_validate_usr_config(&usr_config) == 0) { audio->aac_config = usr_config; rc = 0; } else rc = -EINVAL; break; } case AUDIO_GET_PCM_CONFIG:{ struct msm_audio_pcm_config config; config.pcm_feedback = 0; config.buffer_count = PCM_BUF_MAX_COUNT; config.buffer_size = PCM_BUFSZ_MIN; if (copy_to_user((void *)arg, &config, sizeof(config))) rc = -EFAULT; else rc = 0; break; } case AUDIO_SET_PCM_CONFIG:{ struct msm_audio_pcm_config config; if (copy_from_user (&config, (void *)arg, sizeof(config))) { rc = -EFAULT; break; } if ((config.buffer_count > PCM_BUF_MAX_COUNT) || (config.buffer_count == 1)) config.buffer_count = PCM_BUF_MAX_COUNT; if (config.buffer_size < PCM_BUFSZ_MIN) config.buffer_size = PCM_BUFSZ_MIN; /* Check if pcm feedback is required */ if ((config.pcm_feedback) && (!audio->read_data)) { dprintk("ioctl: allocate PCM buffer %d\n", config.buffer_count * config.buffer_size); audio->read_data = dma_alloc_coherent(NULL, config.buffer_size * config.buffer_count, &audio->read_phys, GFP_KERNEL); if (!audio->read_data) { pr_err("audio_aac: buf alloc fail\n"); rc = -1; } else { uint8_t index; uint32_t offset = 0; audio->pcm_feedback = 1; audio->buf_refresh = 0; audio->pcm_buf_count = config.buffer_count; audio->read_next = 0; audio->fill_next = 0; for (index = 0; index < config.buffer_count; index++) { audio->in[index].data = audio->read_data + offset; audio->in[index].addr = audio->read_phys + offset; audio->in[index].size = config.buffer_size; audio->in[index].used = 0; offset += config.buffer_size; } rc = 0; } } else { rc = 0; } break; } case AUDIO_PAUSE: dprintk("%s: AUDIO_PAUSE %ld\n", __func__, arg); rc = audpp_pause(audio->dec_id, (int) arg); break; default: rc = -EINVAL; } mutex_unlock(&audio->lock); return rc; } static ssize_t audio_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct audio *audio = file->private_data; const char __user *start = buf; int rc = 0; if (!audio->pcm_feedback) return 0; /* PCM feedback is not enabled. Nothing to read */ mutex_lock(&audio->read_lock); dprintk("audio_read() %d \n", count); while (count > 0) { rc = wait_event_interruptible(audio->read_wait, (audio->in[audio->read_next]. used > 0) || (audio->stopped) || (audio->rflush)); if (rc < 0) break; if (audio->stopped || audio->rflush) { rc = -EBUSY; break; } if (count < audio->in[audio->read_next].used) { /* Read must happen in frame boundary. Since driver does not know frame size, read count must be greater or equal to size of PCM samples */ dprintk("audio_read: no partial frame done reading\n"); break; } else { dprintk("audio_read: read from in[%d]\n", audio->read_next); if (copy_to_user (buf, audio->in[audio->read_next].data, audio->in[audio->read_next].used)) { pr_err("audio_read: invalid addr %x \n", (unsigned int)buf); rc = -EFAULT; break; } count -= audio->in[audio->read_next].used; buf += audio->in[audio->read_next].used; audio->in[audio->read_next].used = 0; if ((++audio->read_next) == audio->pcm_buf_count) audio->read_next = 0; if (audio->in[audio->read_next].used == 0) break; /* No data ready at this moment * Exit while loop to prevent * output thread sleep too long */ } } /* don't feed output buffer to HW decoder during flushing * buffer refresh command will be sent once flush completes * send buf refresh command here can confuse HW decoder */ if (audio->buf_refresh && !audio->rflush) { audio->buf_refresh = 0; dprintk("audio_read: kick start pcm feedback again\n"); audplay_buffer_refresh(audio); } mutex_unlock(&audio->read_lock); if (buf > start) rc = buf - start; dprintk("audio_read: read %d bytes\n", rc); return rc; } static ssize_t audio_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { struct audio *audio = file->private_data; const char __user *start = buf; struct buffer *frame; size_t xfer; char *cpy_ptr; int rc = 0; unsigned dsize; mutex_lock(&audio->write_lock); while (count > 0) { frame = audio->out + audio->out_head; cpy_ptr = frame->data; dsize = 0; rc = wait_event_interruptible(audio->write_wait, (frame->used == 0) || (audio->stopped) || (audio->wflush)); if (rc < 0) break; if (audio->stopped || audio->wflush) { rc = -EBUSY; break; } if (audio->reserved) { dprintk("%s: append reserved byte %x\n", __func__, audio->rsv_byte); *cpy_ptr = audio->rsv_byte; xfer = (count > (frame->size - 1)) ? frame->size - 1 : count; cpy_ptr++; dsize = 1; audio->reserved = 0; } else xfer = (count > frame->size) ? frame->size : count; if (copy_from_user(cpy_ptr, buf, xfer)) { rc = -EFAULT; break; } dsize += xfer; if (dsize & 1) { audio->rsv_byte = ((char *) frame->data)[dsize - 1]; dprintk("%s: odd length buf reserve last byte %x\n", __func__, audio->rsv_byte); audio->reserved = 1; dsize--; } count -= xfer; buf += xfer; if (dsize > 0) { audio->out_head ^= 1; frame->used = dsize; audplay_send_data(audio, 0); } } mutex_unlock(&audio->write_lock); if (buf > start) return buf - start; return rc; } static int audio_release(struct inode *inode, struct file *file) { struct audio *audio = file->private_data; dprintk("audio_release()\n"); mutex_lock(&audio->lock); audio_disable(audio); audio_flush(audio); audio_flush_pcm_buf(audio); msm_adsp_put(audio->audplay); audio->audplay = NULL; audio->opened = 0; audio->reserved = 0; dma_free_coherent(NULL, DMASZ, audio->data, audio->phys); audio->data = NULL; if (audio->read_data != NULL) { dma_free_coherent(NULL, audio->in[0].size * audio->pcm_buf_count, audio->read_data, audio->read_phys); audio->read_data = NULL; } audio->pcm_feedback = 0; mutex_unlock(&audio->lock); return 0; } struct audio the_aac_audio; static int audio_open(struct inode *inode, struct file *file) { struct audio *audio = &the_aac_audio; int rc; mutex_lock(&audio->lock); if (audio->opened) { pr_err("audio: busy\n"); rc = -EBUSY; goto done; } if (!audio->data) { audio->data = dma_alloc_coherent(NULL, DMASZ, &audio->phys, GFP_KERNEL); if (!audio->data) { pr_err("audio: could not allocate DMA buffers\n"); rc = -ENOMEM; goto done; } } rc = audmgr_open(&audio->audmgr); if (rc) goto done; rc = msm_adsp_get("AUDPLAY0TASK", &audio->audplay, &audplay_adsp_ops_aac, audio); if (rc) { pr_err("audio: failed to get audplay0 dsp module\n"); goto done; } audio->out_sample_rate = 44100; audio->out_channel_mode = AUDPP_CMD_PCM_INTF_STEREO_V; audio->aac_config.format = AUDIO_AAC_FORMAT_ADTS; audio->aac_config.audio_object = AUDIO_AAC_OBJECT_LC; audio->aac_config.ep_config = 0; audio->aac_config.aac_section_data_resilience_flag = AUDIO_AAC_SEC_DATA_RES_OFF; audio->aac_config.aac_scalefactor_data_resilience_flag = AUDIO_AAC_SCA_DATA_RES_OFF; audio->aac_config.aac_spectral_data_resilience_flag = AUDIO_AAC_SPEC_DATA_RES_OFF; audio->aac_config.sbr_on_flag = AUDIO_AAC_SBR_ON_FLAG_ON; audio->aac_config.sbr_ps_on_flag = AUDIO_AAC_SBR_PS_ON_FLAG_ON; audio->aac_config.dual_mono_mode = AUDIO_AAC_DUAL_MONO_PL_SR; audio->aac_config.channel_configuration = 2; audio->dec_id = 0; audio->out[0].data = audio->data + 0; audio->out[0].addr = audio->phys + 0; audio->out[0].size = BUFSZ; audio->out[1].data = audio->data + BUFSZ; audio->out[1].addr = audio->phys + BUFSZ; audio->out[1].size = BUFSZ; audio->volume = 0x2000; /* Q13 1.0 */ audio_flush(audio); file->private_data = audio; audio->opened = 1; rc = 0; done: mutex_unlock(&audio->lock); return rc; } static struct file_operations audio_aac_fops = { .owner = THIS_MODULE, .open = audio_open, .release = audio_release, .read = audio_read, .write = audio_write, .unlocked_ioctl = audio_ioctl, }; struct miscdevice audio_aac_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "msm_aac", .fops = &audio_aac_fops, }; static int __init audio_init(void) { mutex_init(&the_aac_audio.lock); mutex_init(&the_aac_audio.write_lock); mutex_init(&the_aac_audio.read_lock); spin_lock_init(&the_aac_audio.dsp_lock); init_waitqueue_head(&the_aac_audio.write_wait); init_waitqueue_head(&the_aac_audio.read_wait); the_aac_audio.read_data = NULL; return misc_register(&audio_aac_misc); } device_initcall(audio_init);