/* * drivers/cpufreq/cpufreq_ondemand.c * * Copyright (C) 2001 Russell King * (C) 2003 Venkatesh Pallipadi . * Jun Nakajima * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* * dbs is used in this file as a shortform for demandbased switching * It helps to keep variable names smaller, simpler */ #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (30) #define DEF_FREQUENCY_UP_THRESHOLD (65) #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3) #define MICRO_FREQUENCY_UP_THRESHOLD (95) #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (9500) #define MIN_FREQUENCY_UP_THRESHOLD (11) #define MAX_FREQUENCY_UP_THRESHOLD (100) /* * The polling frequency of this governor depends on the capability of * the processor. Default polling frequency is 1000 times the transition * latency of the processor. The governor will work on any processor with * transition latency <= 10mS, using appropriate sampling * rate. * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) * this governor will not work. * All times here are in uS. */ #define MIN_SAMPLING_RATE_RATIO (2) static unsigned int min_sampling_rate; #define LATENCY_MULTIPLIER (1000) #define MIN_LATENCY_MULTIPLIER (100) #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000) static void do_dbs_timer(struct work_struct *work); static int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event); #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND static #endif struct cpufreq_governor cpufreq_gov_ondemand = { .name = "ondemand", .governor = cpufreq_governor_dbs, .max_transition_latency = TRANSITION_LATENCY_LIMIT, .owner = THIS_MODULE, }; /* Sampling types */ enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE}; struct cpu_dbs_info_s { cputime64_t prev_cpu_idle; cputime64_t prev_cpu_wall; cputime64_t prev_cpu_nice; struct cpufreq_policy *cur_policy; struct delayed_work work; struct cpufreq_frequency_table *freq_table; unsigned int freq_lo; unsigned int freq_lo_jiffies; unsigned int freq_hi_jiffies; int cpu; unsigned int sample_type:1; /* * percpu mutex that serializes governor limit change with * do_dbs_timer invocation. We do not want do_dbs_timer to run * when user is changing the governor or limits. */ struct mutex timer_mutex; }; static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info); static unsigned int dbs_enable; /* number of CPUs using this policy */ /* * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on * different CPUs. It protects dbs_enable in governor start/stop. */ static DEFINE_MUTEX(dbs_mutex); static struct workqueue_struct *kondemand_wq; static struct dbs_tuners { unsigned int sampling_rate; unsigned int up_threshold; unsigned int down_differential; unsigned int ignore_nice; unsigned int powersave_bias; } dbs_tuners_ins = { .up_threshold = DEF_FREQUENCY_UP_THRESHOLD, .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL, .ignore_nice = 0, .powersave_bias = 0, }; static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu, cputime64_t *wall) { cputime64_t idle_time; cputime64_t cur_wall_time; cputime64_t busy_time; cur_wall_time = jiffies64_to_cputime64(get_jiffies_64()); busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user, kstat_cpu(cpu).cpustat.system); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal); busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice); idle_time = cputime64_sub(cur_wall_time, busy_time); if (wall) *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time); return (cputime64_t)jiffies_to_usecs(idle_time); } static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall) { u64 idle_time = get_cpu_idle_time_us(cpu, wall); if (idle_time == -1ULL) return get_cpu_idle_time_jiffy(cpu, wall); return idle_time; } /* * Find right freq to be set now with powersave_bias on. * Returns the freq_hi to be used right now and will set freq_hi_jiffies, * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs. */ static unsigned int powersave_bias_target(struct cpufreq_policy *policy, unsigned int freq_next, unsigned int relation) { unsigned int freq_req, freq_reduc, freq_avg; unsigned int freq_hi, freq_lo; unsigned int index = 0; unsigned int jiffies_total, jiffies_hi, jiffies_lo; struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu); if (!dbs_info->freq_table) { dbs_info->freq_lo = 0; dbs_info->freq_lo_jiffies = 0; return freq_next; } cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next, relation, &index); freq_req = dbs_info->freq_table[index].frequency; freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000; freq_avg = freq_req - freq_reduc; /* Find freq bounds for freq_avg in freq_table */ index = 0; cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, CPUFREQ_RELATION_H, &index); freq_lo = dbs_info->freq_table[index].frequency; index = 0; cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg, CPUFREQ_RELATION_L, &index); freq_hi = dbs_info->freq_table[index].frequency; /* Find out how long we have to be in hi and lo freqs */ if (freq_hi == freq_lo) { dbs_info->freq_lo = 0; dbs_info->freq_lo_jiffies = 0; return freq_lo; } jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); jiffies_hi = (freq_avg - freq_lo) * jiffies_total; jiffies_hi += ((freq_hi - freq_lo) / 2); jiffies_hi /= (freq_hi - freq_lo); jiffies_lo = jiffies_total - jiffies_hi; dbs_info->freq_lo = freq_lo; dbs_info->freq_lo_jiffies = jiffies_lo; dbs_info->freq_hi_jiffies = jiffies_hi; return freq_hi; } static void ondemand_powersave_bias_init_cpu(int cpu) { struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu); dbs_info->freq_table = cpufreq_frequency_get_table(cpu); dbs_info->freq_lo = 0; } static void ondemand_powersave_bias_init(void) { int i; for_each_online_cpu(i) { ondemand_powersave_bias_init_cpu(i); } } /************************** sysfs interface ************************/ static ssize_t show_sampling_rate_max(struct kobject *kobj, struct attribute *attr, char *buf) { printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max " "sysfs file is deprecated - used by: %s\n", current->comm); return sprintf(buf, "%u\n", -1U); } static ssize_t show_sampling_rate_min(struct kobject *kobj, struct attribute *attr, char *buf) { return sprintf(buf, "%u\n", min_sampling_rate); } #define define_one_ro(_name) \ static struct global_attr _name = \ __ATTR(_name, 0444, show_##_name, NULL) define_one_ro(sampling_rate_max); define_one_ro(sampling_rate_min); /* cpufreq_ondemand Governor Tunables */ #define show_one(file_name, object) \ static ssize_t show_##file_name \ (struct kobject *kobj, struct attribute *attr, char *buf) \ { \ return sprintf(buf, "%u\n", dbs_tuners_ins.object); \ } show_one(sampling_rate, sampling_rate); show_one(up_threshold, up_threshold); show_one(ignore_nice_load, ignore_nice); show_one(powersave_bias, powersave_bias); /*** delete after deprecation time ***/ #define DEPRECATION_MSG(file_name) \ printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \ "interface is deprecated - " #file_name "\n"); #define show_one_old(file_name) \ static ssize_t show_##file_name##_old \ (struct cpufreq_policy *unused, char *buf) \ { \ printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \ "interface is deprecated - " #file_name "\n"); \ return show_##file_name(NULL, NULL, buf); \ } show_one_old(sampling_rate); show_one_old(up_threshold); show_one_old(ignore_nice_load); show_one_old(powersave_bias); show_one_old(sampling_rate_min); show_one_old(sampling_rate_max); #define define_one_ro_old(object, _name) \ static struct freq_attr object = \ __ATTR(_name, 0444, show_##_name##_old, NULL) define_one_ro_old(sampling_rate_min_old, sampling_rate_min); define_one_ro_old(sampling_rate_max_old, sampling_rate_max); /*** delete after deprecation time ***/ static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; mutex_lock(&dbs_mutex); dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate); mutex_unlock(&dbs_mutex); return count; } static ssize_t store_up_threshold(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || input < MIN_FREQUENCY_UP_THRESHOLD) { return -EINVAL; } mutex_lock(&dbs_mutex); dbs_tuners_ins.up_threshold = input; mutex_unlock(&dbs_mutex); return count; } static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; unsigned int j; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; if (input > 1) input = 1; mutex_lock(&dbs_mutex); if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */ mutex_unlock(&dbs_mutex); return count; } dbs_tuners_ins.ignore_nice = input; /* we need to re-evaluate prev_cpu_idle */ for_each_online_cpu(j) { struct cpu_dbs_info_s *dbs_info; dbs_info = &per_cpu(od_cpu_dbs_info, j); dbs_info->prev_cpu_idle = get_cpu_idle_time(j, &dbs_info->prev_cpu_wall); if (dbs_tuners_ins.ignore_nice) dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; } mutex_unlock(&dbs_mutex); return count; } static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b, const char *buf, size_t count) { unsigned int input; int ret; ret = sscanf(buf, "%u", &input); if (ret != 1) return -EINVAL; if (input > 1000) input = 1000; mutex_lock(&dbs_mutex); dbs_tuners_ins.powersave_bias = input; ondemand_powersave_bias_init(); mutex_unlock(&dbs_mutex); return count; } #define define_one_rw(_name) \ static struct global_attr _name = \ __ATTR(_name, 0644, show_##_name, store_##_name) define_one_rw(sampling_rate); define_one_rw(up_threshold); define_one_rw(ignore_nice_load); define_one_rw(powersave_bias); static struct attribute *dbs_attributes[] = { &sampling_rate_max.attr, &sampling_rate_min.attr, &sampling_rate.attr, &up_threshold.attr, &ignore_nice_load.attr, &powersave_bias.attr, NULL }; static struct attribute_group dbs_attr_group = { .attrs = dbs_attributes, .name = "ondemand", }; /*** delete after deprecation time ***/ #define write_one_old(file_name) \ static ssize_t store_##file_name##_old \ (struct cpufreq_policy *unused, const char *buf, size_t count) \ { \ printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \ "interface is deprecated - " #file_name "\n"); \ return store_##file_name(NULL, NULL, buf, count); \ } write_one_old(sampling_rate); write_one_old(up_threshold); write_one_old(ignore_nice_load); write_one_old(powersave_bias); #define define_one_rw_old(object, _name) \ static struct freq_attr object = \ __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old) define_one_rw_old(sampling_rate_old, sampling_rate); define_one_rw_old(up_threshold_old, up_threshold); define_one_rw_old(ignore_nice_load_old, ignore_nice_load); define_one_rw_old(powersave_bias_old, powersave_bias); static struct attribute *dbs_attributes_old[] = { &sampling_rate_max_old.attr, &sampling_rate_min_old.attr, &sampling_rate_old.attr, &up_threshold_old.attr, &ignore_nice_load_old.attr, &powersave_bias_old.attr, NULL }; static struct attribute_group dbs_attr_group_old = { .attrs = dbs_attributes_old, .name = "ondemand", }; /*** delete after deprecation time ***/ /************************** sysfs end ************************/ static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info) { unsigned int max_load_freq; struct cpufreq_policy *policy; unsigned int j; this_dbs_info->freq_lo = 0; policy = this_dbs_info->cur_policy; /* * Every sampling_rate, we check, if current idle time is less * than 20% (default), then we try to increase frequency * Every sampling_rate, we look for a the lowest * frequency which can sustain the load while keeping idle time over * 30%. If such a frequency exist, we try to decrease to this frequency. * * Any frequency increase takes it to the maximum frequency. * Frequency reduction happens at minimum steps of * 5% (default) of current frequency */ /* Get Absolute Load - in terms of freq */ max_load_freq = 0; for_each_cpu(j, policy->cpus) { struct cpu_dbs_info_s *j_dbs_info; cputime64_t cur_wall_time, cur_idle_time; unsigned int idle_time, wall_time; unsigned int load, load_freq; int freq_avg; j_dbs_info = &per_cpu(od_cpu_dbs_info, j); cur_idle_time = get_cpu_idle_time(j, &cur_wall_time); wall_time = (unsigned int) cputime64_sub(cur_wall_time, j_dbs_info->prev_cpu_wall); j_dbs_info->prev_cpu_wall = cur_wall_time; idle_time = (unsigned int) cputime64_sub(cur_idle_time, j_dbs_info->prev_cpu_idle); j_dbs_info->prev_cpu_idle = cur_idle_time; if (dbs_tuners_ins.ignore_nice) { cputime64_t cur_nice; unsigned long cur_nice_jiffies; cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice, j_dbs_info->prev_cpu_nice); /* * Assumption: nice time between sampling periods will * be less than 2^32 jiffies for 32 bit sys */ cur_nice_jiffies = (unsigned long) cputime64_to_jiffies64(cur_nice); j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; idle_time += jiffies_to_usecs(cur_nice_jiffies); } if (unlikely(!wall_time || wall_time < idle_time)) continue; load = 100 * (wall_time - idle_time) / wall_time; freq_avg = __cpufreq_driver_getavg(policy, j); if (freq_avg <= 0) freq_avg = policy->cur; load_freq = load * freq_avg; if (load_freq > max_load_freq) max_load_freq = load_freq; } /* Check for frequency increase */ if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) { /* if we are already at full speed then break out early */ if (!dbs_tuners_ins.powersave_bias) { if (policy->cur == policy->max) return; __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H); } else { int freq = powersave_bias_target(policy, policy->max, CPUFREQ_RELATION_H); __cpufreq_driver_target(policy, freq, CPUFREQ_RELATION_L); } return; } /* Check for frequency decrease */ /* if we cannot reduce the frequency anymore, break out early */ if (policy->cur == policy->min) return; /* * The optimal frequency is the frequency that is the lowest that * can support the current CPU usage without triggering the up * policy. To be safe, we focus 10 points under the threshold. */ if (max_load_freq < (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) * policy->cur) { unsigned int freq_next; freq_next = max_load_freq / (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential); if (!dbs_tuners_ins.powersave_bias) { __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L); } else { int freq = powersave_bias_target(policy, freq_next, CPUFREQ_RELATION_L); __cpufreq_driver_target(policy, freq, CPUFREQ_RELATION_L); } } } static void do_dbs_timer(struct work_struct *work) { struct cpu_dbs_info_s *dbs_info = container_of(work, struct cpu_dbs_info_s, work.work); unsigned int cpu = dbs_info->cpu; int sample_type = dbs_info->sample_type; /* We want all CPUs to do sampling nearly on same jiffy */ int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); if (num_online_cpus() > 1) delay -= jiffies % delay; mutex_lock(&dbs_info->timer_mutex); /* Common NORMAL_SAMPLE setup */ dbs_info->sample_type = DBS_NORMAL_SAMPLE; if (!dbs_tuners_ins.powersave_bias || sample_type == DBS_NORMAL_SAMPLE) { dbs_check_cpu(dbs_info); if (dbs_info->freq_lo) { /* Setup timer for SUB_SAMPLE */ dbs_info->sample_type = DBS_SUB_SAMPLE; delay = dbs_info->freq_hi_jiffies; } } else { __cpufreq_driver_target(dbs_info->cur_policy, dbs_info->freq_lo, CPUFREQ_RELATION_H); } queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay); mutex_unlock(&dbs_info->timer_mutex); } static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info) { /* We want all CPUs to do sampling nearly on same jiffy */ int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate); delay -= jiffies % delay; dbs_info->sample_type = DBS_NORMAL_SAMPLE; INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer); queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work, delay); } static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info) { cancel_delayed_work_sync(&dbs_info->work); } static void dbs_refresh_callback(struct work_struct *unused) { struct cpufreq_policy *policy; struct cpu_dbs_info_s *this_dbs_info; if (lock_policy_rwsem_write(0) < 0) return; this_dbs_info = &per_cpu(od_cpu_dbs_info, 0); policy = this_dbs_info->cur_policy; if (policy->cur < policy->max) { __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_L); this_dbs_info->prev_cpu_idle = get_cpu_idle_time(0, &this_dbs_info->prev_cpu_wall); } unlock_policy_rwsem_write(0); } static DECLARE_WORK(dbs_refresh_work, dbs_refresh_callback); static void dbs_input_event(struct input_handle *handle, unsigned int type, unsigned int code, int value) { schedule_work(&dbs_refresh_work); } static int dbs_input_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct input_handle *handle; int error; handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL); if (!handle) return -ENOMEM; handle->dev = dev; handle->handler = handler; handle->name = "cpufreq"; error = input_register_handle(handle); if (error) goto err2; error = input_open_device(handle); if (error) goto err1; return 0; err1: input_unregister_handle(handle); err2: kfree(handle); return error; } static void dbs_input_disconnect(struct input_handle *handle) { input_close_device(handle); input_unregister_handle(handle); kfree(handle); } static const struct input_device_id dbs_ids[] = { { .driver_info = 1 }, { }, }; static struct input_handler dbs_input_handler = { .event = dbs_input_event, .connect = dbs_input_connect, .disconnect = dbs_input_disconnect, .name = "cpufreq_ond", .id_table = dbs_ids, }; static int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event) { unsigned int cpu = policy->cpu; struct cpu_dbs_info_s *this_dbs_info; unsigned int j; int rc; this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu); switch (event) { case CPUFREQ_GOV_START: if ((!cpu_online(cpu)) || (!policy->cur)) return -EINVAL; mutex_lock(&dbs_mutex); rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old); if (rc) { mutex_unlock(&dbs_mutex); return rc; } dbs_enable++; for_each_cpu(j, policy->cpus) { struct cpu_dbs_info_s *j_dbs_info; j_dbs_info = &per_cpu(od_cpu_dbs_info, j); j_dbs_info->cur_policy = policy; j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j, &j_dbs_info->prev_cpu_wall); if (dbs_tuners_ins.ignore_nice) { j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice; } } this_dbs_info->cpu = cpu; ondemand_powersave_bias_init_cpu(cpu); /* * Start the timerschedule work, when this governor * is used for first time */ if (dbs_enable == 1) { unsigned int latency; rc = sysfs_create_group(cpufreq_global_kobject, &dbs_attr_group); if (rc) { mutex_unlock(&dbs_mutex); return rc; } /* policy latency is in nS. Convert it to uS first */ latency = policy->cpuinfo.transition_latency / 1000; if (latency == 0) latency = 1; /* Bring kernel and HW constraints together */ min_sampling_rate = max(min_sampling_rate, MIN_LATENCY_MULTIPLIER * latency); dbs_tuners_ins.sampling_rate = max(min_sampling_rate, latency * LATENCY_MULTIPLIER); } rc = input_register_handler(&dbs_input_handler); mutex_unlock(&dbs_mutex); mutex_init(&this_dbs_info->timer_mutex); dbs_timer_init(this_dbs_info); break; case CPUFREQ_GOV_STOP: dbs_timer_exit(this_dbs_info); mutex_lock(&dbs_mutex); sysfs_remove_group(&policy->kobj, &dbs_attr_group_old); mutex_destroy(&this_dbs_info->timer_mutex); dbs_enable--; input_unregister_handler(&dbs_input_handler); mutex_unlock(&dbs_mutex); if (!dbs_enable) sysfs_remove_group(cpufreq_global_kobject, &dbs_attr_group); break; case CPUFREQ_GOV_LIMITS: mutex_lock(&this_dbs_info->timer_mutex); if (policy->max < this_dbs_info->cur_policy->cur) __cpufreq_driver_target(this_dbs_info->cur_policy, policy->max, CPUFREQ_RELATION_H); else if (policy->min > this_dbs_info->cur_policy->cur) __cpufreq_driver_target(this_dbs_info->cur_policy, policy->min, CPUFREQ_RELATION_L); mutex_unlock(&this_dbs_info->timer_mutex); break; } return 0; } static int __init cpufreq_gov_dbs_init(void) { int err; cputime64_t wall; u64 idle_time; int cpu = get_cpu(); idle_time = get_cpu_idle_time_us(cpu, &wall); put_cpu(); if (idle_time != -1ULL) { /* Idle micro accounting is supported. Use finer thresholds */ dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD; dbs_tuners_ins.down_differential = MICRO_FREQUENCY_DOWN_DIFFERENTIAL; /* * In no_hz/micro accounting case we set the minimum frequency * not depending on HZ, but fixed (very low). The deferred * timer might skip some samples if idle/sleeping as needed. */ min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE; } else { /* For correct statistics, we need 10 ticks for each measure */ min_sampling_rate = MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10); } kondemand_wq = create_workqueue("kondemand"); if (!kondemand_wq) { printk(KERN_ERR "Creation of kondemand failed\n"); return -EFAULT; } err = cpufreq_register_governor(&cpufreq_gov_ondemand); if (err) destroy_workqueue(kondemand_wq); return err; } static void __exit cpufreq_gov_dbs_exit(void) { cpufreq_unregister_governor(&cpufreq_gov_ondemand); destroy_workqueue(kondemand_wq); } MODULE_AUTHOR("Venkatesh Pallipadi "); MODULE_AUTHOR("Alexey Starikovskiy "); MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for " "Low Latency Frequency Transition capable processors"); MODULE_LICENSE("GPL"); #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND fs_initcall(cpufreq_gov_dbs_init); #else module_init(cpufreq_gov_dbs_init); #endif module_exit(cpufreq_gov_dbs_exit);