/* * linux/arch/arm/mm/init.c * * Copyright (C) 1995-2005 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mm.h" static unsigned long phys_initrd_start __initdata = 0; static unsigned long phys_initrd_size __initdata = 0; static void __init early_initrd(char **p) { unsigned long start, size; start = memparse(*p, p); if (**p == ',') { size = memparse((*p) + 1, p); phys_initrd_start = start; phys_initrd_size = size; } } __early_param("initrd=", early_initrd); static int __init parse_tag_initrd(const struct tag *tag) { printk(KERN_WARNING "ATAG_INITRD is deprecated; " "please update your bootloader.\n"); phys_initrd_start = __virt_to_phys(tag->u.initrd.start); phys_initrd_size = tag->u.initrd.size; return 0; } __tagtable(ATAG_INITRD, parse_tag_initrd); static int __init parse_tag_initrd2(const struct tag *tag) { phys_initrd_start = tag->u.initrd.start; phys_initrd_size = tag->u.initrd.size; return 0; } __tagtable(ATAG_INITRD2, parse_tag_initrd2); /* * This keeps memory configuration data used by a couple memory * initialization functions, as well as show_mem() for the skipping * of holes in the memory map. It is populated by arm_add_memory(). */ struct meminfo meminfo; void show_mem(void) { int free = 0, total = 0, reserved = 0; int shared = 0, cached = 0, slab = 0, node, i; struct meminfo * mi = &meminfo; printk("Mem-info:\n"); show_free_areas(); for_each_online_node(node) { pg_data_t *n = NODE_DATA(node); struct page *map = pgdat_page_nr(n, 0) - n->node_start_pfn; for_each_nodebank (i,mi,node) { struct membank *bank = &mi->bank[i]; unsigned int pfn1, pfn2; struct page *page, *end; pfn1 = bank_pfn_start(bank); pfn2 = bank_pfn_end(bank); page = map + pfn1; end = map + pfn2; do { total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (PageSlab(page)) slab++; else if (!page_count(page)) free++; else shared += page_count(page) - 1; page++; } while (page < end); } } printk("%d pages of RAM\n", total); printk("%d free pages\n", free); printk("%d reserved pages\n", reserved); printk("%d slab pages\n", slab); printk("%d pages shared\n", shared); printk("%d pages swap cached\n", cached); } static void __init find_node_limits(int node, struct meminfo *mi, unsigned long *min, unsigned long *max_low, unsigned long *max_high) { int i; *min = -1UL; *max_low = *max_high = 0; for_each_nodebank(i, mi, node) { struct membank *bank = &mi->bank[i]; unsigned long start, end; start = bank_pfn_start(bank); end = bank_pfn_end(bank); if (*min > start) *min = start; if (*max_high < end) *max_high = end; if (bank->highmem) continue; if (*max_low < end) *max_low = end; } } /* * FIXME: We really want to avoid allocating the bootmap bitmap * over the top of the initrd. Hopefully, this is located towards * the start of a bank, so if we allocate the bootmap bitmap at * the end, we won't clash. */ static unsigned int __init find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages) { unsigned int start_pfn, i, bootmap_pfn; start_pfn = PAGE_ALIGN(__pa(_end)) >> PAGE_SHIFT; bootmap_pfn = 0; for_each_nodebank(i, mi, node) { struct membank *bank = &mi->bank[i]; unsigned int start, end; start = bank_pfn_start(bank); end = bank_pfn_end(bank); if (end < start_pfn) continue; if (start < start_pfn) start = start_pfn; if (end <= start) continue; if (end - start >= bootmap_pages) { bootmap_pfn = start; break; } } if (bootmap_pfn == 0) BUG(); return bootmap_pfn; } static int __init check_initrd(struct meminfo *mi) { int initrd_node = -2; #ifdef CONFIG_BLK_DEV_INITRD unsigned long end = phys_initrd_start + phys_initrd_size; /* * Make sure that the initrd is within a valid area of * memory. */ if (phys_initrd_size) { unsigned int i; initrd_node = -1; for (i = 0; i < mi->nr_banks; i++) { struct membank *bank = &mi->bank[i]; if (bank_phys_start(bank) <= phys_initrd_start && end <= bank_phys_end(bank)) initrd_node = bank->node; } } if (initrd_node == -1) { printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond " "physical memory - disabling initrd\n", phys_initrd_start, phys_initrd_size); phys_initrd_start = phys_initrd_size = 0; } #endif return initrd_node; } static inline void map_memory_bank(struct membank *bank) { #ifdef CONFIG_MMU struct map_desc map; map.pfn = bank_pfn_start(bank); map.virtual = __phys_to_virt(bank_phys_start(bank)); map.length = bank_phys_size(bank); map.type = MT_MEMORY; create_mapping(&map); #endif } static void __init bootmem_init_node(int node, struct meminfo *mi, unsigned long start_pfn, unsigned long end_pfn) { unsigned long boot_pfn; unsigned int boot_pages; pg_data_t *pgdat; int i; /* * Map the memory banks for this node. */ for_each_nodebank(i, mi, node) { struct membank *bank = &mi->bank[i]; #if defined(CONFIG_FLATMEM) && !defined(CONFIG_HOLES_IN_ZONE) /* * The VM code assumes that hole end addresses are aligned if * CONFIG_HOLES_IN_ZONE is not enabled. This results in * panics since we free unused memmap entries on ARM. * This check shouldn't be necessary for the last bank's end * address, since the VM code accounts for the total zone size. */ if ((i < (mi->nr_banks - 1)) && (bank_pfn_end(bank) & (MAX_ORDER_NR_PAGES - 1))) { pr_err("Memory bank[%d] not aligned to 0x%x bytes.\n" "\tMake bank end address align with MAX_ORDER\n" "\tor enable option CONFIG_HOLES_IN_ZONE.\n", i, __pfn_to_phys(MAX_ORDER_NR_PAGES)); BUG(); } #endif if (!bank->highmem) map_memory_bank(bank); } /* * Allocate the bootmem bitmap page. */ boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn); boot_pfn = find_bootmap_pfn(node, mi, boot_pages); /* * Initialise the bootmem allocator for this node, handing the * memory banks over to bootmem. */ node_set_online(node); pgdat = NODE_DATA(node); init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn); for_each_nodebank(i, mi, node) { struct membank *bank = &mi->bank[i]; if (!bank->highmem) free_bootmem_node(pgdat, bank_phys_start(bank), bank_phys_size(bank)); } /* * Reserve the bootmem bitmap for this node. */ reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT, boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT); } static void __init bootmem_reserve_initrd(int node) { #ifdef CONFIG_BLK_DEV_INITRD pg_data_t *pgdat = NODE_DATA(node); int res; res = reserve_bootmem_node(pgdat, phys_initrd_start, phys_initrd_size, BOOTMEM_EXCLUSIVE); if (res == 0) { initrd_start = __phys_to_virt(phys_initrd_start); initrd_end = initrd_start + phys_initrd_size; } else { printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx overlaps in-use " "memory region - disabling initrd\n", phys_initrd_start, phys_initrd_size); } #endif } static void __init bootmem_free_node(int node, struct meminfo *mi) { unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; unsigned long min, max_low, max_high; int i; find_node_limits(node, mi, &min, &max_low, &max_high); /* * initialise the zones within this node. */ memset(zone_size, 0, sizeof(zone_size)); /* * The size of this node has already been determined. If we need * to do anything fancy with the allocation of this memory to the * zones, now is the time to do it. */ zone_size[0] = max_low - min; #ifdef CONFIG_HIGHMEM zone_size[ZONE_HIGHMEM] = max_high - max_low; #endif /* * For each bank in this node, calculate the size of the holes. * holes = node_size - sum(bank_sizes_in_node) */ memcpy(zhole_size, zone_size, sizeof(zhole_size)); for_each_nodebank(i, mi, node) { int idx = 0; #ifdef CONFIG_HIGHMEM if (mi->bank[i].highmem) idx = ZONE_HIGHMEM; #endif zhole_size[idx] -= bank_pfn_size(&mi->bank[i]); } /* * Adjust the sizes according to any special requirements for * this machine type. */ arch_adjust_zones(node, zone_size, zhole_size); free_area_init_node(node, zone_size, min, zhole_size); } #ifndef CONFIG_SPARSEMEM int pfn_valid(unsigned long pfn) { struct meminfo *mi = &meminfo; unsigned int left = 0, right = mi->nr_banks; do { unsigned int mid = (right + left) / 2; struct membank *bank = &mi->bank[mid]; if (pfn < bank_pfn_start(bank)) right = mid; else if (pfn >= bank_pfn_end(bank)) left = mid + 1; else return 1; } while (left < right); return 0; } EXPORT_SYMBOL(pfn_valid); static void arm_memory_present(struct meminfo *mi, int node) { } #else static void arm_memory_present(struct meminfo *mi, int node) { int i; for_each_nodebank(i, mi, node) { struct membank *bank = &mi->bank[i]; memory_present(node, bank_pfn_start(bank), bank_pfn_end(bank)); } } #endif static int __init meminfo_cmp(const void *_a, const void *_b) { const struct membank *a = _a, *b = _b; long cmp = bank_pfn_start(a) - bank_pfn_start(b); return cmp < 0 ? -1 : cmp > 0 ? 1 : 0; } void __init bootmem_init(void) { struct meminfo *mi = &meminfo; unsigned long min, max_low, max_high; int node, initrd_node; sort(&mi->bank, mi->nr_banks, sizeof(mi->bank[0]), meminfo_cmp, NULL); /* * Locate which node contains the ramdisk image, if any. */ initrd_node = check_initrd(mi); max_low = max_high = 0; /* * Run through each node initialising the bootmem allocator. */ for_each_node(node) { unsigned long node_low, node_high; find_node_limits(node, mi, &min, &node_low, &node_high); if (node_low > max_low) max_low = node_low; if (node_high > max_high) max_high = node_high; /* * If there is no memory in this node, ignore it. * (We can't have nodes which have no lowmem) */ if (node_low == 0) continue; bootmem_init_node(node, mi, min, node_low); /* * Reserve any special node zero regions. */ if (node == 0) reserve_node_zero(NODE_DATA(node)); /* * If the initrd is in this node, reserve its memory. */ if (node == initrd_node) bootmem_reserve_initrd(node); /* * Sparsemem tries to allocate bootmem in memory_present(), * so must be done after the fixed reservations */ arm_memory_present(mi, node); } /* * sparse_init() needs the bootmem allocator up and running. */ sparse_init(); /* * Now free memory in each node - free_area_init_node needs * the sparse mem_map arrays initialized by sparse_init() * for memmap_init_zone(), otherwise all PFNs are invalid. */ for_each_node(node) bootmem_free_node(node, mi); high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1; /* * This doesn't seem to be used by the Linux memory manager any * more, but is used by ll_rw_block. If we can get rid of it, we * also get rid of some of the stuff above as well. * * Note: max_low_pfn and max_pfn reflect the number of _pages_ in * the system, not the maximum PFN. */ max_low_pfn = max_low - PHYS_PFN_OFFSET; max_pfn = max_high - PHYS_PFN_OFFSET; } static inline int free_area(unsigned long pfn, unsigned long end, char *s) { unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10); for (; pfn < end; pfn++) { struct page *page = pfn_to_page(pfn); ClearPageReserved(page); init_page_count(page); __free_page(page); pages++; } if (size && s) printk(KERN_INFO "Freeing %s memory: %dK\n", s, size); return pages; } static inline void free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn) { struct page *start_pg, *end_pg; unsigned long pg, pgend; /* * Convert start_pfn/end_pfn to a struct page pointer. */ start_pg = pfn_to_page(start_pfn - 1) + 1; end_pg = pfn_to_page(end_pfn); /* * Convert to physical addresses, and * round start upwards and end downwards. */ pg = PAGE_ALIGN(__pa(start_pg)); pgend = __pa(end_pg) & PAGE_MASK; /* * If there are free pages between these, * free the section of the memmap array. */ if (pg < pgend) free_bootmem_node(NODE_DATA(node), pg, pgend - pg); } /* * The mem_map array can get very big. Free the unused area of the memory map. */ static void __init free_unused_memmap_node(int node, struct meminfo *mi) { unsigned long bank_start, prev_bank_end = 0; unsigned int i; /* * This relies on each bank being in address order. The banks * are sorted previously in bootmem_init(). */ for_each_nodebank(i, mi, node) { struct membank *bank = &mi->bank[i]; bank_start = bank_pfn_start(bank); if (bank_start < prev_bank_end) { printk(KERN_ERR "MEM: unordered memory banks. " "Not freeing memmap.\n"); break; } /* * If we had a previous bank, and there is a space * between the current bank and the previous, free it. */ if (prev_bank_end && prev_bank_end != bank_start) free_memmap(node, prev_bank_end, bank_start); prev_bank_end = bank_pfn_end(bank); } } /* * mem_init() marks the free areas in the mem_map and tells us how much * memory is free. This is done after various parts of the system have * claimed their memory after the kernel image. */ void __init mem_init(void) { unsigned int codesize, datasize, initsize; int i, node; #ifndef CONFIG_DISCONTIGMEM max_mapnr = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map; #endif /* this will put all unused low memory onto the freelists */ for_each_online_node(node) { pg_data_t *pgdat = NODE_DATA(node); free_unused_memmap_node(node, &meminfo); if (pgdat->node_spanned_pages != 0) totalram_pages += free_all_bootmem_node(pgdat); } #ifdef CONFIG_SA1111 /* now that our DMA memory is actually so designated, we can free it */ totalram_pages += free_area(PHYS_PFN_OFFSET, __phys_to_pfn(__pa(swapper_pg_dir)), NULL); #endif #ifdef CONFIG_HIGHMEM /* set highmem page free */ for_each_online_node(node) { for_each_nodebank (i, &meminfo, node) { unsigned long start = bank_pfn_start(&meminfo.bank[i]); unsigned long end = bank_pfn_end(&meminfo.bank[i]); if (start >= max_low_pfn + PHYS_PFN_OFFSET) totalhigh_pages += free_area(start, end, NULL); } } totalram_pages += totalhigh_pages; #endif /* * Since our memory may not be contiguous, calculate the * real number of pages we have in this system */ printk(KERN_INFO "Memory:"); num_physpages = 0; for (i = 0; i < meminfo.nr_banks; i++) { num_physpages += bank_pfn_size(&meminfo.bank[i]); printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20); } printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT)); codesize = _etext - _text; datasize = _end - _data; initsize = __init_end - __init_begin; printk(KERN_NOTICE "Memory: %luKB available (%dK code, " "%dK data, %dK init, %luK highmem)\n", nr_free_pages() << (PAGE_SHIFT-10), codesize >> 10, datasize >> 10, initsize >> 10, (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))); if (PAGE_SIZE >= 16384 && num_physpages <= 128) { extern int sysctl_overcommit_memory; /* * On a machine this small we won't get * anywhere without overcommit, so turn * it on by default. */ sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; } } void free_initmem(void) { #ifdef CONFIG_HAVE_TCM extern char *__tcm_start, *__tcm_end; totalram_pages += free_area(__phys_to_pfn(__pa(__tcm_start)), __phys_to_pfn(__pa(__tcm_end)), "TCM link"); #endif if (!machine_is_integrator() && !machine_is_cintegrator()) totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)), __phys_to_pfn(__pa(__init_end)), "init"); } #ifdef CONFIG_BLK_DEV_INITRD static int keep_initrd; void free_initrd_mem(unsigned long start, unsigned long end) { if (!keep_initrd) totalram_pages += free_area(__phys_to_pfn(__pa(start)), __phys_to_pfn(__pa(end)), "initrd"); } static int __init keepinitrd_setup(char *__unused) { keep_initrd = 1; return 1; } __setup("keepinitrd", keepinitrd_setup); #endif