drivers: cpufreq: added smartass2 governor.

This commit is contained in:
tytung 2012-01-07 20:47:05 +08:00
parent db9b407d80
commit d8579fa109
4 changed files with 885 additions and 0 deletions

View File

@ -137,6 +137,12 @@ config CPU_FREQ_DEFAULT_GOV_INTERACTIVEX
loading your cpufreq low-level hardware driver, using the
'interactiveX' governor for latency-sensitive workloads.
config CPU_FREQ_DEFAULT_GOV_SMARTASS2
bool "smartass2"
select CPU_FREQ_GOV_SMARTASS2
help
Use the CPUFreq governor 'smartassV2' as default.
config CPU_FREQ_GOV_PERFORMANCE
tristate "'performance' governor"
help
@ -203,6 +209,13 @@ config CPU_FREQ_GOV_INTERACTIVEX
help
'interactiveX' - Modified version of interactive with sleep+wake code.
config CPU_FREQ_GOV_SMARTASS2
tristate "'smartassV2' cpufreq governor"
depends on CPU_FREQ
help
'smartassV2' - a "smart" optimized governor for the hero!
If in doubt, say N.
config CPU_FREQ_GOV_CONSERVATIVE
tristate "'conservative' cpufreq governor"
depends on CPU_FREQ

View File

@ -12,6 +12,7 @@ obj-$(CONFIG_CPU_FREQ_GOV_CONSERVATIVE) += cpufreq_conservative.o
obj-$(CONFIG_CPU_FREQ_GOV_SMARTASS) += cpufreq_smartass.o
obj-$(CONFIG_CPU_FREQ_GOV_INTERACTIVE) += cpufreq_interactive.o
obj-$(CONFIG_CPU_FREQ_GOV_INTERACTIVEX) += cpufreq_interactivex.o
obj-$(CONFIG_CPU_FREQ_GOV_SMARTASS2) += cpufreq_smartass2.o
# CPUfreq cross-arch helpers
obj-$(CONFIG_CPU_FREQ_TABLE) += freq_table.o

View File

@ -0,0 +1,868 @@
/*
* drivers/cpufreq/cpufreq_smartass2.c
*
* Copyright (C) 2010 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Erasmux
*
* Based on the interactive governor By Mike Chan (mike@android.com)
* which was adaptated to 2.6.29 kernel by Nadlabak (pavel@doshaska.net)
*
* SMP support based on mod by faux123
*
* For a general overview of smartassV2 see the relavent part in
* Documentation/cpu-freq/governors.txt
*
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/sched.h>
#include <linux/tick.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <linux/moduleparam.h>
#include <asm/cputime.h>
#include <linux/earlysuspend.h>
/******************** Tunable parameters: ********************/
/*
* The "ideal" frequency to use when awake. The governor will ramp up faster
* towards the ideal frequency and slower after it has passed it. Similarly,
* lowering the frequency towards the ideal frequency is faster than below it.
*/
#define DEFAULT_AWAKE_IDEAL_FREQ 768000
static unsigned int awake_ideal_freq;
/*
* The "ideal" frequency to use when suspended.
* When set to 0, the governor will not track the suspended state (meaning
* that practically when sleep_ideal_freq==0 the awake_ideal_freq is used
* also when suspended).
*/
#define DEFAULT_SLEEP_IDEAL_FREQ 245760
static unsigned int sleep_ideal_freq;
/*
* Freqeuncy delta when ramping up above the ideal freqeuncy.
* Zero disables and causes to always jump straight to max frequency.
* When below the ideal freqeuncy we always ramp up to the ideal freq.
*/
#define DEFAULT_RAMP_UP_STEP 128000
static unsigned int ramp_up_step;
/*
* Freqeuncy delta when ramping down below the ideal freqeuncy.
* Zero disables and will calculate ramp down according to load heuristic.
* When above the ideal freqeuncy we always ramp down to the ideal freq.
*/
#define DEFAULT_RAMP_DOWN_STEP 256000
static unsigned int ramp_down_step;
/*
* CPU freq will be increased if measured load > max_cpu_load;
*/
#define DEFAULT_MAX_CPU_LOAD 50
static unsigned long max_cpu_load;
/*
* CPU freq will be decreased if measured load < min_cpu_load;
*/
#define DEFAULT_MIN_CPU_LOAD 25
static unsigned long min_cpu_load;
/*
* The minimum amount of time to spend at a frequency before we can ramp up.
* Notice we ignore this when we are below the ideal frequency.
*/
#define DEFAULT_UP_RATE_US 48000;
static unsigned long up_rate_us;
/*
* The minimum amount of time to spend at a frequency before we can ramp down.
* Notice we ignore this when we are above the ideal frequency.
*/
#define DEFAULT_DOWN_RATE_US 99000;
static unsigned long down_rate_us;
/*
* The frequency to set when waking up from sleep.
* When sleep_ideal_freq=0 this will have no effect.
*/
#define DEFAULT_SLEEP_WAKEUP_FREQ 99999999
static unsigned int sleep_wakeup_freq;
/*
* Sampling rate, I highly recommend to leave it at 2.
*/
#define DEFAULT_SAMPLE_RATE_JIFFIES 2
static unsigned int sample_rate_jiffies;
/*************** End of tunables ***************/
static void (*pm_idle_old)(void);
static atomic_t active_count = ATOMIC_INIT(0);
struct smartass_info_s {
struct cpufreq_policy *cur_policy;
struct cpufreq_frequency_table *freq_table;
struct timer_list timer;
u64 time_in_idle;
u64 idle_exit_time;
u64 freq_change_time;
u64 freq_change_time_in_idle;
int cur_cpu_load;
int old_freq;
int ramp_dir;
unsigned int enable;
int ideal_speed;
};
static DEFINE_PER_CPU(struct smartass_info_s, smartass_info);
/* Workqueues handle frequency scaling */
static struct workqueue_struct *up_wq;
static struct workqueue_struct *down_wq;
static struct work_struct freq_scale_work;
static cpumask_t work_cpumask;
static spinlock_t cpumask_lock;
static unsigned int suspended;
#define dprintk(flag,msg...) do { \
if (debug_mask & flag) printk(KERN_DEBUG msg); \
} while (0)
enum {
SMARTASS_DEBUG_JUMPS=1,
SMARTASS_DEBUG_LOAD=2,
SMARTASS_DEBUG_ALG=4
};
/*
* Combination of the above debug flags.
*/
static unsigned long debug_mask;
static int cpufreq_governor_smartass(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_SMARTASS2
static
#endif
struct cpufreq_governor cpufreq_gov_smartass2 = {
.name = "smartassV2",
.governor = cpufreq_governor_smartass,
.max_transition_latency = 9000000,
.owner = THIS_MODULE,
};
inline static void smartass_update_min_max(struct smartass_info_s *this_smartass, struct cpufreq_policy *policy, int suspend) {
if (suspend) {
this_smartass->ideal_speed = // sleep_ideal_freq; but make sure it obeys the policy min/max
policy->max > sleep_ideal_freq ?
(sleep_ideal_freq > policy->min ? sleep_ideal_freq : policy->min) : policy->max;
} else {
this_smartass->ideal_speed = // awake_ideal_freq; but make sure it obeys the policy min/max
policy->min < awake_ideal_freq ?
(awake_ideal_freq < policy->max ? awake_ideal_freq : policy->max) : policy->min;
}
}
inline static void smartass_update_min_max_allcpus(void) {
unsigned int i;
for_each_online_cpu(i) {
struct smartass_info_s *this_smartass = &per_cpu(smartass_info, i);
if (this_smartass->enable)
smartass_update_min_max(this_smartass,this_smartass->cur_policy,suspended);
}
}
inline static unsigned int validate_freq(struct cpufreq_policy *policy, int freq) {
if (freq > (int)policy->max)
return policy->max;
if (freq < (int)policy->min)
return policy->min;
return freq;
}
inline static void reset_timer(unsigned long cpu, struct smartass_info_s *this_smartass) {
this_smartass->time_in_idle = get_cpu_idle_time_us(cpu, &this_smartass->idle_exit_time);
mod_timer(&this_smartass->timer, jiffies + sample_rate_jiffies);
}
inline static void work_cpumask_set(unsigned long cpu) {
unsigned long flags;
spin_lock_irqsave(&cpumask_lock, flags);
cpumask_set_cpu(cpu, &work_cpumask);
spin_unlock_irqrestore(&cpumask_lock, flags);
}
inline static int work_cpumask_test_and_clear(unsigned long cpu) {
unsigned long flags;
int res = 0;
spin_lock_irqsave(&cpumask_lock, flags);
res = cpumask_test_and_clear_cpu(cpu, &work_cpumask);
spin_unlock_irqrestore(&cpumask_lock, flags);
return res;
}
inline static int target_freq(struct cpufreq_policy *policy, struct smartass_info_s *this_smartass,
int new_freq, int old_freq, int prefered_relation) {
int index, target;
struct cpufreq_frequency_table *table = this_smartass->freq_table;
if (new_freq == old_freq)
return 0;
new_freq = validate_freq(policy,new_freq);
if (new_freq == old_freq)
return 0;
if (table &&
!cpufreq_frequency_table_target(policy,table,new_freq,prefered_relation,&index))
{
target = table[index].frequency;
if (target == old_freq) {
// if for example we are ramping up to *at most* current + ramp_up_step
// but there is no such frequency higher than the current, try also
// to ramp up to *at least* current + ramp_up_step.
if (new_freq > old_freq && prefered_relation==CPUFREQ_RELATION_H
&& !cpufreq_frequency_table_target(policy,table,new_freq,
CPUFREQ_RELATION_L,&index))
target = table[index].frequency;
// simlarly for ramping down:
else if (new_freq < old_freq && prefered_relation==CPUFREQ_RELATION_L
&& !cpufreq_frequency_table_target(policy,table,new_freq,
CPUFREQ_RELATION_H,&index))
target = table[index].frequency;
}
if (target == old_freq) {
// We should not get here:
// If we got here we tried to change to a validated new_freq which is different
// from old_freq, so there is no reason for us to remain at same frequency.
printk(KERN_WARNING "Smartass: frequency change failed: %d to %d => %d\n",
old_freq,new_freq,target);
return 0;
}
}
else target = new_freq;
__cpufreq_driver_target(policy, target, prefered_relation);
dprintk(SMARTASS_DEBUG_JUMPS,"SmartassQ: jumping from %d to %d => %d (%d)\n",
old_freq,new_freq,target,policy->cur);
return target;
}
static void cpufreq_smartass_timer(unsigned long cpu)
{
u64 delta_idle;
u64 delta_time;
int cpu_load;
int old_freq;
u64 update_time;
u64 now_idle;
int queued_work = 0;
struct smartass_info_s *this_smartass = &per_cpu(smartass_info, cpu);
struct cpufreq_policy *policy = this_smartass->cur_policy;
now_idle = get_cpu_idle_time_us(cpu, &update_time);
old_freq = policy->cur;
if (this_smartass->idle_exit_time == 0 || update_time == this_smartass->idle_exit_time)
return;
delta_idle = cputime64_sub(now_idle, this_smartass->time_in_idle);
delta_time = cputime64_sub(update_time, this_smartass->idle_exit_time);
// If timer ran less than 1ms after short-term sample started, retry.
if (delta_time < 1000) {
if (!timer_pending(&this_smartass->timer))
reset_timer(cpu,this_smartass);
return;
}
if (delta_idle > delta_time)
cpu_load = 0;
else
cpu_load = 100 * (unsigned int)(delta_time - delta_idle) / (unsigned int)delta_time;
dprintk(SMARTASS_DEBUG_LOAD,"smartassT @ %d: load %d (delta_time %llu)\n",
old_freq,cpu_load,delta_time);
this_smartass->cur_cpu_load = cpu_load;
this_smartass->old_freq = old_freq;
// Scale up if load is above max or if there where no idle cycles since coming out of idle,
// additionally, if we are at or above the ideal_speed, verify we have been at this frequency
// for at least up_rate_us:
if (cpu_load > max_cpu_load || delta_idle == 0)
{
if (old_freq < policy->max &&
(old_freq < this_smartass->ideal_speed || delta_idle == 0 ||
cputime64_sub(update_time, this_smartass->freq_change_time) >= up_rate_us))
{
dprintk(SMARTASS_DEBUG_ALG,"smartassT @ %d ramp up: load %d (delta_idle %llu)\n",
old_freq,cpu_load,delta_idle);
this_smartass->ramp_dir = 1;
work_cpumask_set(cpu);
queue_work(up_wq, &freq_scale_work);
queued_work = 1;
}
else this_smartass->ramp_dir = 0;
}
// Similarly for scale down: load should be below min and if we are at or below ideal
// frequency we require that we have been at this frequency for at least down_rate_us:
else if (cpu_load < min_cpu_load && old_freq > policy->min &&
(old_freq > this_smartass->ideal_speed ||
cputime64_sub(update_time, this_smartass->freq_change_time) >= down_rate_us))
{
dprintk(SMARTASS_DEBUG_ALG,"smartassT @ %d ramp down: load %d (delta_idle %llu)\n",
old_freq,cpu_load,delta_idle);
this_smartass->ramp_dir = -1;
work_cpumask_set(cpu);
queue_work(down_wq, &freq_scale_work);
queued_work = 1;
}
else this_smartass->ramp_dir = 0;
// To avoid unnecessary load when the CPU is already at high load, we don't
// reset ourselves if we are at max speed. If and when there are idle cycles,
// the idle loop will activate the timer.
// Additionally, if we queued some work, the work task will reset the timer
// after it has done its adjustments.
if (!queued_work && old_freq < policy->max)
reset_timer(cpu,this_smartass);
}
static void cpufreq_idle(void)
{
struct smartass_info_s *this_smartass = &per_cpu(smartass_info, smp_processor_id());
struct cpufreq_policy *policy = this_smartass->cur_policy;
if (!this_smartass->enable) {
pm_idle_old();
return;
}
if (policy->cur == policy->min && timer_pending(&this_smartass->timer))
del_timer(&this_smartass->timer);
pm_idle_old();
if (!timer_pending(&this_smartass->timer))
reset_timer(smp_processor_id(), this_smartass);
}
/* We use the same work function to sale up and down */
static void cpufreq_smartass_freq_change_time_work(struct work_struct *work)
{
unsigned int cpu;
int new_freq;
int old_freq;
int ramp_dir;
struct smartass_info_s *this_smartass;
struct cpufreq_policy *policy;
unsigned int relation = CPUFREQ_RELATION_L;
for_each_possible_cpu(cpu) {
this_smartass = &per_cpu(smartass_info, cpu);
if (!work_cpumask_test_and_clear(cpu))
continue;
ramp_dir = this_smartass->ramp_dir;
this_smartass->ramp_dir = 0;
old_freq = this_smartass->old_freq;
policy = this_smartass->cur_policy;
if (old_freq != policy->cur) {
// frequency was changed by someone else?
printk(KERN_WARNING "Smartass: frequency changed by 3rd party: %d to %d\n",
old_freq,policy->cur);
new_freq = old_freq;
}
else if (ramp_dir > 0 && nr_running() > 1) {
// ramp up logic:
if (old_freq < this_smartass->ideal_speed)
new_freq = this_smartass->ideal_speed;
else if (ramp_up_step) {
new_freq = old_freq + ramp_up_step;
relation = CPUFREQ_RELATION_H;
}
else {
new_freq = policy->max;
relation = CPUFREQ_RELATION_H;
}
dprintk(SMARTASS_DEBUG_ALG,"smartassQ @ %d ramp up: ramp_dir=%d ideal=%d\n",
old_freq,ramp_dir,this_smartass->ideal_speed);
}
else if (ramp_dir < 0) {
// ramp down logic:
if (old_freq > this_smartass->ideal_speed) {
new_freq = this_smartass->ideal_speed;
relation = CPUFREQ_RELATION_H;
}
else if (ramp_down_step)
new_freq = old_freq - ramp_down_step;
else {
// Load heuristics: Adjust new_freq such that, assuming a linear
// scaling of load vs. frequency, the load in the new frequency
// will be max_cpu_load:
new_freq = old_freq * this_smartass->cur_cpu_load / max_cpu_load;
if (new_freq > old_freq) // min_cpu_load > max_cpu_load ?!
new_freq = old_freq -1;
}
dprintk(SMARTASS_DEBUG_ALG,"smartassQ @ %d ramp down: ramp_dir=%d ideal=%d\n",
old_freq,ramp_dir,this_smartass->ideal_speed);
}
else { // ramp_dir==0 ?! Could the timer change its mind about a queued ramp up/down
// before the work task gets to run?
// This may also happen if we refused to ramp up because the nr_running()==1
new_freq = old_freq;
dprintk(SMARTASS_DEBUG_ALG,"smartassQ @ %d nothing: ramp_dir=%d nr_running=%lu\n",
old_freq,ramp_dir,nr_running());
}
// do actual ramp up (returns 0, if frequency change failed):
new_freq = target_freq(policy,this_smartass,new_freq,old_freq,relation);
if (new_freq)
this_smartass->freq_change_time_in_idle =
get_cpu_idle_time_us(cpu,&this_smartass->freq_change_time);
// reset timer:
if (new_freq < policy->max)
reset_timer(cpu,this_smartass);
// if we are maxed out, it is pointless to use the timer
// (idle cycles wake up the timer when the timer comes)
else if (timer_pending(&this_smartass->timer))
del_timer(&this_smartass->timer);
}
}
static ssize_t show_debug_mask(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", debug_mask);
}
static ssize_t store_debug_mask(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0)
debug_mask = input;
return res;
}
static ssize_t show_up_rate_us(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", up_rate_us);
}
static ssize_t store_up_rate_us(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input >= 0 && input <= 100000000)
up_rate_us = input;
return res;
}
static ssize_t show_down_rate_us(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", down_rate_us);
}
static ssize_t store_down_rate_us(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input >= 0 && input <= 100000000)
down_rate_us = input;
return res;
}
static ssize_t show_sleep_ideal_freq(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", sleep_ideal_freq);
}
static ssize_t store_sleep_ideal_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input >= 0) {
sleep_ideal_freq = input;
if (suspended)
smartass_update_min_max_allcpus();
}
return res;
}
static ssize_t show_sleep_wakeup_freq(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", sleep_wakeup_freq);
}
static ssize_t store_sleep_wakeup_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input >= 0)
sleep_wakeup_freq = input;
return res;
}
static ssize_t show_awake_ideal_freq(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", awake_ideal_freq);
}
static ssize_t store_awake_ideal_freq(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input >= 0) {
awake_ideal_freq = input;
if (!suspended)
smartass_update_min_max_allcpus();
}
return res;
}
static ssize_t show_sample_rate_jiffies(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", sample_rate_jiffies);
}
static ssize_t store_sample_rate_jiffies(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input > 0 && input <= 1000)
sample_rate_jiffies = input;
return res;
}
static ssize_t show_ramp_up_step(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", ramp_up_step);
}
static ssize_t store_ramp_up_step(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input >= 0)
ramp_up_step = input;
return res;
}
static ssize_t show_ramp_down_step(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", ramp_down_step);
}
static ssize_t store_ramp_down_step(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input >= 0)
ramp_down_step = input;
return res;
}
static ssize_t show_max_cpu_load(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", max_cpu_load);
}
static ssize_t store_max_cpu_load(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input > 0 && input <= 100)
max_cpu_load = input;
return res;
}
static ssize_t show_min_cpu_load(struct kobject *kobj, struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", min_cpu_load);
}
static ssize_t store_min_cpu_load(struct kobject *kobj, struct attribute *attr, const char *buf, size_t count)
{
ssize_t res;
unsigned long input;
res = strict_strtoul(buf, 0, &input);
if (res >= 0 && input > 0 && input < 100)
min_cpu_load = input;
return res;
}
#define define_global_rw_attr(_name) \
static struct global_attr _name##_attr = \
__ATTR(_name, 0644, show_##_name, store_##_name)
define_global_rw_attr(debug_mask);
define_global_rw_attr(up_rate_us);
define_global_rw_attr(down_rate_us);
define_global_rw_attr(sleep_ideal_freq);
define_global_rw_attr(sleep_wakeup_freq);
define_global_rw_attr(awake_ideal_freq);
define_global_rw_attr(sample_rate_jiffies);
define_global_rw_attr(ramp_up_step);
define_global_rw_attr(ramp_down_step);
define_global_rw_attr(max_cpu_load);
define_global_rw_attr(min_cpu_load);
static struct attribute * smartass_attributes[] = {
&debug_mask_attr.attr,
&up_rate_us_attr.attr,
&down_rate_us_attr.attr,
&sleep_ideal_freq_attr.attr,
&sleep_wakeup_freq_attr.attr,
&awake_ideal_freq_attr.attr,
&sample_rate_jiffies_attr.attr,
&ramp_up_step_attr.attr,
&ramp_down_step_attr.attr,
&max_cpu_load_attr.attr,
&min_cpu_load_attr.attr,
NULL,
};
static struct attribute_group smartass_attr_group = {
.attrs = smartass_attributes,
.name = "smartass",
};
static int cpufreq_governor_smartass(struct cpufreq_policy *new_policy,
unsigned int event)
{
unsigned int cpu = new_policy->cpu;
int rc;
struct smartass_info_s *this_smartass = &per_cpu(smartass_info, cpu);
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) || (!new_policy->cur))
return -EINVAL;
this_smartass->cur_policy = new_policy;
this_smartass->enable = 1;
smartass_update_min_max(this_smartass,new_policy,suspended);
this_smartass->freq_table = cpufreq_frequency_get_table(cpu);
if (!this_smartass->freq_table)
printk(KERN_WARNING "Smartass: no frequency table for cpu %d?!\n",cpu);
smp_wmb();
// Do not register the idle hook and create sysfs
// entries if we have already done so.
if (atomic_inc_return(&active_count) <= 1) {
rc = sysfs_create_group(cpufreq_global_kobject,
&smartass_attr_group);
if (rc)
return rc;
pm_idle_old = pm_idle;
pm_idle = cpufreq_idle;
}
if (this_smartass->cur_policy->cur < new_policy->max && !timer_pending(&this_smartass->timer))
reset_timer(cpu,this_smartass);
break;
case CPUFREQ_GOV_LIMITS:
smartass_update_min_max(this_smartass,new_policy,suspended);
if (this_smartass->cur_policy->cur > new_policy->max) {
dprintk(SMARTASS_DEBUG_JUMPS,"SmartassI: jumping to new max freq: %d\n",new_policy->max);
__cpufreq_driver_target(this_smartass->cur_policy,
new_policy->max, CPUFREQ_RELATION_H);
}
else if (this_smartass->cur_policy->cur < new_policy->min) {
dprintk(SMARTASS_DEBUG_JUMPS,"SmartassI: jumping to new min freq: %d\n",new_policy->min);
__cpufreq_driver_target(this_smartass->cur_policy,
new_policy->min, CPUFREQ_RELATION_L);
}
if (this_smartass->cur_policy->cur < new_policy->max && !timer_pending(&this_smartass->timer))
reset_timer(cpu,this_smartass);
break;
case CPUFREQ_GOV_STOP:
this_smartass->enable = 0;
smp_wmb();
del_timer(&this_smartass->timer);
flush_work(&freq_scale_work);
this_smartass->idle_exit_time = 0;
if (atomic_dec_return(&active_count) <= 1) {
sysfs_remove_group(cpufreq_global_kobject,
&smartass_attr_group);
pm_idle = pm_idle_old;
}
break;
}
return 0;
}
static void smartass_suspend(int cpu, int suspend)
{
struct smartass_info_s *this_smartass = &per_cpu(smartass_info, smp_processor_id());
struct cpufreq_policy *policy = this_smartass->cur_policy;
unsigned int new_freq;
if (!this_smartass->enable)
return;
smartass_update_min_max(this_smartass,policy,suspend);
if (!suspend) { // resume at max speed:
new_freq = validate_freq(policy,sleep_wakeup_freq);
dprintk(SMARTASS_DEBUG_JUMPS,"SmartassS: awaking at %d\n",new_freq);
__cpufreq_driver_target(policy, new_freq,
CPUFREQ_RELATION_L);
} else {
// to avoid wakeup issues with quick sleep/wakeup don't change actual frequency when entering sleep
// to allow some time to settle down. Instead we just reset our statistics (and reset the timer).
// Eventually, the timer will adjust the frequency if necessary.
this_smartass->freq_change_time_in_idle =
get_cpu_idle_time_us(cpu,&this_smartass->freq_change_time);
dprintk(SMARTASS_DEBUG_JUMPS,"SmartassS: suspending at %d\n",policy->cur);
}
reset_timer(smp_processor_id(),this_smartass);
}
static void smartass_early_suspend(struct early_suspend *handler) {
int i;
if (suspended || sleep_ideal_freq==0) // disable behavior for sleep_ideal_freq==0
return;
suspended = 1;
for_each_online_cpu(i)
smartass_suspend(i,1);
}
static void smartass_late_resume(struct early_suspend *handler) {
int i;
if (!suspended) // already not suspended so nothing to do
return;
suspended = 0;
for_each_online_cpu(i)
smartass_suspend(i,0);
}
static struct early_suspend smartass_power_suspend = {
.suspend = smartass_early_suspend,
.resume = smartass_late_resume,
#ifdef CONFIG_MACH_HERO
.level = EARLY_SUSPEND_LEVEL_DISABLE_FB + 1,
#endif
};
static int __init cpufreq_smartass_init(void)
{
unsigned int i;
struct smartass_info_s *this_smartass;
debug_mask = 0;
up_rate_us = DEFAULT_UP_RATE_US;
down_rate_us = DEFAULT_DOWN_RATE_US;
sleep_ideal_freq = DEFAULT_SLEEP_IDEAL_FREQ;
sleep_wakeup_freq = DEFAULT_SLEEP_WAKEUP_FREQ;
awake_ideal_freq = DEFAULT_AWAKE_IDEAL_FREQ;
sample_rate_jiffies = DEFAULT_SAMPLE_RATE_JIFFIES;
ramp_up_step = DEFAULT_RAMP_UP_STEP;
ramp_down_step = DEFAULT_RAMP_DOWN_STEP;
max_cpu_load = DEFAULT_MAX_CPU_LOAD;
min_cpu_load = DEFAULT_MIN_CPU_LOAD;
spin_lock_init(&cpumask_lock);
suspended = 0;
/* Initalize per-cpu data: */
for_each_possible_cpu(i) {
this_smartass = &per_cpu(smartass_info, i);
this_smartass->enable = 0;
this_smartass->cur_policy = 0;
this_smartass->ramp_dir = 0;
this_smartass->time_in_idle = 0;
this_smartass->idle_exit_time = 0;
this_smartass->freq_change_time = 0;
this_smartass->freq_change_time_in_idle = 0;
this_smartass->cur_cpu_load = 0;
// intialize timer:
init_timer_deferrable(&this_smartass->timer);
this_smartass->timer.function = cpufreq_smartass_timer;
this_smartass->timer.data = i;
work_cpumask_test_and_clear(i);
}
// Scale up is high priority
up_wq = create_rt_workqueue("ksmartass_up");
down_wq = create_workqueue("ksmartass_down");
if (!up_wq || !down_wq)
return -ENOMEM;
INIT_WORK(&freq_scale_work, cpufreq_smartass_freq_change_time_work);
register_early_suspend(&smartass_power_suspend);
return cpufreq_register_governor(&cpufreq_gov_smartass2);
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SMARTASS2
fs_initcall(cpufreq_smartass_init);
#else
module_init(cpufreq_smartass_init);
#endif
static void __exit cpufreq_smartass_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_smartass2);
destroy_workqueue(up_wq);
destroy_workqueue(down_wq);
}
module_exit(cpufreq_smartass_exit);
MODULE_AUTHOR ("Erasmux");
MODULE_DESCRIPTION ("'cpufreq_smartass2' - A smart cpufreq governor");
MODULE_LICENSE ("GPL");

View File

@ -347,6 +347,9 @@ extern struct cpufreq_governor cpufreq_gov_interactive;
#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVEX)
extern struct cpufreq_governor cpufreq_gov_interactivex;
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_interactivex)
#elif defined(CONFIG_CPU_FREQ_DEFAULT_GOV_SMARTASS2)
extern struct cpufreq_governor cpufreq_gov_smartass2;
#define CPUFREQ_DEFAULT_GOVERNOR (&cpufreq_gov_smartass2)
#endif