470 lines
11 KiB
C
470 lines
11 KiB
C
|
/*
|
||
|
** SMP Support
|
||
|
**
|
||
|
** Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
|
||
|
** Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
|
||
|
** Copyright (C) 2001,2004 Grant Grundler <grundler@parisc-linux.org>
|
||
|
**
|
||
|
** Lots of stuff stolen from arch/alpha/kernel/smp.c
|
||
|
** ...and then parisc stole from arch/ia64/kernel/smp.c. Thanks David! :^)
|
||
|
**
|
||
|
** Thanks to John Curry and Ullas Ponnadi. I learned a lot from their work.
|
||
|
** -grant (1/12/2001)
|
||
|
**
|
||
|
** This program is free software; you can redistribute it and/or modify
|
||
|
** it under the terms of the GNU General Public License as published by
|
||
|
** the Free Software Foundation; either version 2 of the License, or
|
||
|
** (at your option) any later version.
|
||
|
*/
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
#include <linux/slab.h>
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/kernel_stat.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/err.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/bitops.h>
|
||
|
#include <linux/ftrace.h>
|
||
|
|
||
|
#include <asm/system.h>
|
||
|
#include <asm/atomic.h>
|
||
|
#include <asm/current.h>
|
||
|
#include <asm/delay.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
|
||
|
#include <asm/io.h>
|
||
|
#include <asm/irq.h> /* for CPU_IRQ_REGION and friends */
|
||
|
#include <asm/mmu_context.h>
|
||
|
#include <asm/page.h>
|
||
|
#include <asm/pgtable.h>
|
||
|
#include <asm/pgalloc.h>
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/ptrace.h>
|
||
|
#include <asm/unistd.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
|
||
|
#undef DEBUG_SMP
|
||
|
#ifdef DEBUG_SMP
|
||
|
static int smp_debug_lvl = 0;
|
||
|
#define smp_debug(lvl, printargs...) \
|
||
|
if (lvl >= smp_debug_lvl) \
|
||
|
printk(printargs);
|
||
|
#else
|
||
|
#define smp_debug(lvl, ...) do { } while(0)
|
||
|
#endif /* DEBUG_SMP */
|
||
|
|
||
|
DEFINE_SPINLOCK(smp_lock);
|
||
|
|
||
|
volatile struct task_struct *smp_init_current_idle_task;
|
||
|
|
||
|
/* track which CPU is booting */
|
||
|
static volatile int cpu_now_booting __cpuinitdata;
|
||
|
|
||
|
static int parisc_max_cpus __cpuinitdata = 1;
|
||
|
|
||
|
DEFINE_PER_CPU(spinlock_t, ipi_lock) = SPIN_LOCK_UNLOCKED;
|
||
|
|
||
|
enum ipi_message_type {
|
||
|
IPI_NOP=0,
|
||
|
IPI_RESCHEDULE=1,
|
||
|
IPI_CALL_FUNC,
|
||
|
IPI_CALL_FUNC_SINGLE,
|
||
|
IPI_CPU_START,
|
||
|
IPI_CPU_STOP,
|
||
|
IPI_CPU_TEST
|
||
|
};
|
||
|
|
||
|
|
||
|
/********** SMP inter processor interrupt and communication routines */
|
||
|
|
||
|
#undef PER_CPU_IRQ_REGION
|
||
|
#ifdef PER_CPU_IRQ_REGION
|
||
|
/* XXX REVISIT Ignore for now.
|
||
|
** *May* need this "hook" to register IPI handler
|
||
|
** once we have perCPU ExtIntr switch tables.
|
||
|
*/
|
||
|
static void
|
||
|
ipi_init(int cpuid)
|
||
|
{
|
||
|
#error verify IRQ_OFFSET(IPI_IRQ) is ipi_interrupt() in new IRQ region
|
||
|
|
||
|
if(cpu_online(cpuid) )
|
||
|
{
|
||
|
switch_to_idle_task(current);
|
||
|
}
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/*
|
||
|
** Yoink this CPU from the runnable list...
|
||
|
**
|
||
|
*/
|
||
|
static void
|
||
|
halt_processor(void)
|
||
|
{
|
||
|
/* REVISIT : redirect I/O Interrupts to another CPU? */
|
||
|
/* REVISIT : does PM *know* this CPU isn't available? */
|
||
|
set_cpu_online(smp_processor_id(), false);
|
||
|
local_irq_disable();
|
||
|
for (;;)
|
||
|
;
|
||
|
}
|
||
|
|
||
|
|
||
|
irqreturn_t __irq_entry
|
||
|
ipi_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
int this_cpu = smp_processor_id();
|
||
|
struct cpuinfo_parisc *p = &per_cpu(cpu_data, this_cpu);
|
||
|
unsigned long ops;
|
||
|
unsigned long flags;
|
||
|
|
||
|
/* Count this now; we may make a call that never returns. */
|
||
|
p->ipi_count++;
|
||
|
|
||
|
mb(); /* Order interrupt and bit testing. */
|
||
|
|
||
|
for (;;) {
|
||
|
spinlock_t *lock = &per_cpu(ipi_lock, this_cpu);
|
||
|
spin_lock_irqsave(lock, flags);
|
||
|
ops = p->pending_ipi;
|
||
|
p->pending_ipi = 0;
|
||
|
spin_unlock_irqrestore(lock, flags);
|
||
|
|
||
|
mb(); /* Order bit clearing and data access. */
|
||
|
|
||
|
if (!ops)
|
||
|
break;
|
||
|
|
||
|
while (ops) {
|
||
|
unsigned long which = ffz(~ops);
|
||
|
|
||
|
ops &= ~(1 << which);
|
||
|
|
||
|
switch (which) {
|
||
|
case IPI_NOP:
|
||
|
smp_debug(100, KERN_DEBUG "CPU%d IPI_NOP\n", this_cpu);
|
||
|
break;
|
||
|
|
||
|
case IPI_RESCHEDULE:
|
||
|
smp_debug(100, KERN_DEBUG "CPU%d IPI_RESCHEDULE\n", this_cpu);
|
||
|
/*
|
||
|
* Reschedule callback. Everything to be
|
||
|
* done is done by the interrupt return path.
|
||
|
*/
|
||
|
break;
|
||
|
|
||
|
case IPI_CALL_FUNC:
|
||
|
smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC\n", this_cpu);
|
||
|
generic_smp_call_function_interrupt();
|
||
|
break;
|
||
|
|
||
|
case IPI_CALL_FUNC_SINGLE:
|
||
|
smp_debug(100, KERN_DEBUG "CPU%d IPI_CALL_FUNC_SINGLE\n", this_cpu);
|
||
|
generic_smp_call_function_single_interrupt();
|
||
|
break;
|
||
|
|
||
|
case IPI_CPU_START:
|
||
|
smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_START\n", this_cpu);
|
||
|
break;
|
||
|
|
||
|
case IPI_CPU_STOP:
|
||
|
smp_debug(100, KERN_DEBUG "CPU%d IPI_CPU_STOP\n", this_cpu);
|
||
|
halt_processor();
|
||
|
break;
|
||
|
|
||
|
case IPI_CPU_TEST:
|
||
|
smp_debug(100, KERN_DEBUG "CPU%d is alive!\n", this_cpu);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
printk(KERN_CRIT "Unknown IPI num on CPU%d: %lu\n",
|
||
|
this_cpu, which);
|
||
|
return IRQ_NONE;
|
||
|
} /* Switch */
|
||
|
/* let in any pending interrupts */
|
||
|
local_irq_enable();
|
||
|
local_irq_disable();
|
||
|
} /* while (ops) */
|
||
|
}
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
|
||
|
static inline void
|
||
|
ipi_send(int cpu, enum ipi_message_type op)
|
||
|
{
|
||
|
struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpu);
|
||
|
spinlock_t *lock = &per_cpu(ipi_lock, cpu);
|
||
|
unsigned long flags;
|
||
|
|
||
|
spin_lock_irqsave(lock, flags);
|
||
|
p->pending_ipi |= 1 << op;
|
||
|
gsc_writel(IPI_IRQ - CPU_IRQ_BASE, p->hpa);
|
||
|
spin_unlock_irqrestore(lock, flags);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
send_IPI_mask(const struct cpumask *mask, enum ipi_message_type op)
|
||
|
{
|
||
|
int cpu;
|
||
|
|
||
|
for_each_cpu(cpu, mask)
|
||
|
ipi_send(cpu, op);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
send_IPI_single(int dest_cpu, enum ipi_message_type op)
|
||
|
{
|
||
|
BUG_ON(dest_cpu == NO_PROC_ID);
|
||
|
|
||
|
ipi_send(dest_cpu, op);
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
send_IPI_allbutself(enum ipi_message_type op)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for_each_online_cpu(i) {
|
||
|
if (i != smp_processor_id())
|
||
|
send_IPI_single(i, op);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void
|
||
|
smp_send_stop(void) { send_IPI_allbutself(IPI_CPU_STOP); }
|
||
|
|
||
|
static inline void
|
||
|
smp_send_start(void) { send_IPI_allbutself(IPI_CPU_START); }
|
||
|
|
||
|
void
|
||
|
smp_send_reschedule(int cpu) { send_IPI_single(cpu, IPI_RESCHEDULE); }
|
||
|
|
||
|
void
|
||
|
smp_send_all_nop(void)
|
||
|
{
|
||
|
send_IPI_allbutself(IPI_NOP);
|
||
|
}
|
||
|
|
||
|
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
||
|
{
|
||
|
send_IPI_mask(mask, IPI_CALL_FUNC);
|
||
|
}
|
||
|
|
||
|
void arch_send_call_function_single_ipi(int cpu)
|
||
|
{
|
||
|
send_IPI_single(cpu, IPI_CALL_FUNC_SINGLE);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Flush all other CPU's tlb and then mine. Do this with on_each_cpu()
|
||
|
* as we want to ensure all TLB's flushed before proceeding.
|
||
|
*/
|
||
|
|
||
|
void
|
||
|
smp_flush_tlb_all(void)
|
||
|
{
|
||
|
on_each_cpu(flush_tlb_all_local, NULL, 1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called by secondaries to update state and initialize CPU registers.
|
||
|
*/
|
||
|
static void __init
|
||
|
smp_cpu_init(int cpunum)
|
||
|
{
|
||
|
extern int init_per_cpu(int); /* arch/parisc/kernel/processor.c */
|
||
|
extern void init_IRQ(void); /* arch/parisc/kernel/irq.c */
|
||
|
extern void start_cpu_itimer(void); /* arch/parisc/kernel/time.c */
|
||
|
|
||
|
/* Set modes and Enable floating point coprocessor */
|
||
|
(void) init_per_cpu(cpunum);
|
||
|
|
||
|
disable_sr_hashing();
|
||
|
|
||
|
mb();
|
||
|
|
||
|
/* Well, support 2.4 linux scheme as well. */
|
||
|
if (cpu_isset(cpunum, cpu_online_map))
|
||
|
{
|
||
|
extern void machine_halt(void); /* arch/parisc.../process.c */
|
||
|
|
||
|
printk(KERN_CRIT "CPU#%d already initialized!\n", cpunum);
|
||
|
machine_halt();
|
||
|
}
|
||
|
set_cpu_online(cpunum, true);
|
||
|
|
||
|
/* Initialise the idle task for this CPU */
|
||
|
atomic_inc(&init_mm.mm_count);
|
||
|
current->active_mm = &init_mm;
|
||
|
BUG_ON(current->mm);
|
||
|
enter_lazy_tlb(&init_mm, current);
|
||
|
|
||
|
init_IRQ(); /* make sure no IRQs are enabled or pending */
|
||
|
start_cpu_itimer();
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Slaves start using C here. Indirectly called from smp_slave_stext.
|
||
|
* Do what start_kernel() and main() do for boot strap processor (aka monarch)
|
||
|
*/
|
||
|
void __init smp_callin(void)
|
||
|
{
|
||
|
int slave_id = cpu_now_booting;
|
||
|
|
||
|
smp_cpu_init(slave_id);
|
||
|
preempt_disable();
|
||
|
|
||
|
flush_cache_all_local(); /* start with known state */
|
||
|
flush_tlb_all_local(NULL);
|
||
|
|
||
|
local_irq_enable(); /* Interrupts have been off until now */
|
||
|
|
||
|
cpu_idle(); /* Wait for timer to schedule some work */
|
||
|
|
||
|
/* NOTREACHED */
|
||
|
panic("smp_callin() AAAAaaaaahhhh....\n");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Bring one cpu online.
|
||
|
*/
|
||
|
int __cpuinit smp_boot_one_cpu(int cpuid)
|
||
|
{
|
||
|
const struct cpuinfo_parisc *p = &per_cpu(cpu_data, cpuid);
|
||
|
struct task_struct *idle;
|
||
|
long timeout;
|
||
|
|
||
|
/*
|
||
|
* Create an idle task for this CPU. Note the address wed* give
|
||
|
* to kernel_thread is irrelevant -- it's going to start
|
||
|
* where OS_BOOT_RENDEVZ vector in SAL says to start. But
|
||
|
* this gets all the other task-y sort of data structures set
|
||
|
* up like we wish. We need to pull the just created idle task
|
||
|
* off the run queue and stuff it into the init_tasks[] array.
|
||
|
* Sheesh . . .
|
||
|
*/
|
||
|
|
||
|
idle = fork_idle(cpuid);
|
||
|
if (IS_ERR(idle))
|
||
|
panic("SMP: fork failed for CPU:%d", cpuid);
|
||
|
|
||
|
task_thread_info(idle)->cpu = cpuid;
|
||
|
|
||
|
/* Let _start know what logical CPU we're booting
|
||
|
** (offset into init_tasks[],cpu_data[])
|
||
|
*/
|
||
|
cpu_now_booting = cpuid;
|
||
|
|
||
|
/*
|
||
|
** boot strap code needs to know the task address since
|
||
|
** it also contains the process stack.
|
||
|
*/
|
||
|
smp_init_current_idle_task = idle ;
|
||
|
mb();
|
||
|
|
||
|
printk(KERN_INFO "Releasing cpu %d now, hpa=%lx\n", cpuid, p->hpa);
|
||
|
|
||
|
/*
|
||
|
** This gets PDC to release the CPU from a very tight loop.
|
||
|
**
|
||
|
** From the PA-RISC 2.0 Firmware Architecture Reference Specification:
|
||
|
** "The MEM_RENDEZ vector specifies the location of OS_RENDEZ which
|
||
|
** is executed after receiving the rendezvous signal (an interrupt to
|
||
|
** EIR{0}). MEM_RENDEZ is valid only when it is nonzero and the
|
||
|
** contents of memory are valid."
|
||
|
*/
|
||
|
gsc_writel(TIMER_IRQ - CPU_IRQ_BASE, p->hpa);
|
||
|
mb();
|
||
|
|
||
|
/*
|
||
|
* OK, wait a bit for that CPU to finish staggering about.
|
||
|
* Slave will set a bit when it reaches smp_cpu_init().
|
||
|
* Once the "monarch CPU" sees the bit change, it can move on.
|
||
|
*/
|
||
|
for (timeout = 0; timeout < 10000; timeout++) {
|
||
|
if(cpu_online(cpuid)) {
|
||
|
/* Which implies Slave has started up */
|
||
|
cpu_now_booting = 0;
|
||
|
smp_init_current_idle_task = NULL;
|
||
|
goto alive ;
|
||
|
}
|
||
|
udelay(100);
|
||
|
barrier();
|
||
|
}
|
||
|
|
||
|
put_task_struct(idle);
|
||
|
idle = NULL;
|
||
|
|
||
|
printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
|
||
|
return -1;
|
||
|
|
||
|
alive:
|
||
|
/* Remember the Slave data */
|
||
|
smp_debug(100, KERN_DEBUG "SMP: CPU:%d came alive after %ld _us\n",
|
||
|
cpuid, timeout * 100);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void __init smp_prepare_boot_cpu(void)
|
||
|
{
|
||
|
int bootstrap_processor = per_cpu(cpu_data, 0).cpuid;
|
||
|
|
||
|
/* Setup BSP mappings */
|
||
|
printk(KERN_INFO "SMP: bootstrap CPU ID is %d\n", bootstrap_processor);
|
||
|
|
||
|
set_cpu_online(bootstrap_processor, true);
|
||
|
set_cpu_present(bootstrap_processor, true);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
** inventory.c:do_inventory() hasn't yet been run and thus we
|
||
|
** don't 'discover' the additional CPUs until later.
|
||
|
*/
|
||
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
||
|
{
|
||
|
init_cpu_present(cpumask_of(0));
|
||
|
|
||
|
parisc_max_cpus = max_cpus;
|
||
|
if (!max_cpus)
|
||
|
printk(KERN_INFO "SMP mode deactivated.\n");
|
||
|
}
|
||
|
|
||
|
|
||
|
void smp_cpus_done(unsigned int cpu_max)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
|
||
|
int __cpuinit __cpu_up(unsigned int cpu)
|
||
|
{
|
||
|
if (cpu != 0 && cpu < parisc_max_cpus)
|
||
|
smp_boot_one_cpu(cpu);
|
||
|
|
||
|
return cpu_online(cpu) ? 0 : -ENOSYS;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_PROC_FS
|
||
|
int __init
|
||
|
setup_profiling_timer(unsigned int multiplier)
|
||
|
{
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
#endif
|