490 lines
13 KiB
ArmAsm
490 lines
13 KiB
ArmAsm
|
/*
|
||
|
* CRISv32 kernel startup code.
|
||
|
*
|
||
|
* Copyright (C) 2003, Axis Communications AB
|
||
|
*/
|
||
|
|
||
|
#define ASSEMBLER_MACROS_ONLY
|
||
|
|
||
|
/*
|
||
|
* The macros found in mmu_defs_asm.h uses the ## concatenation operator, so
|
||
|
* -traditional must not be used when assembling this file.
|
||
|
*/
|
||
|
#include <linux/autoconf.h>
|
||
|
#include <arch/memmap.h>
|
||
|
#include <hwregs/reg_rdwr.h>
|
||
|
#include <hwregs/intr_vect.h>
|
||
|
#include <hwregs/asm/mmu_defs_asm.h>
|
||
|
#include <hwregs/asm/reg_map_asm.h>
|
||
|
#include <mach/startup.inc>
|
||
|
|
||
|
#define CRAMFS_MAGIC 0x28cd3d45
|
||
|
#define JHEAD_MAGIC 0x1FF528A6
|
||
|
#define JHEAD_SIZE 8
|
||
|
#define RAM_INIT_MAGIC 0x56902387
|
||
|
#define COMMAND_LINE_MAGIC 0x87109563
|
||
|
#define NAND_BOOT_MAGIC 0x9a9db001
|
||
|
|
||
|
;; NOTE: R8 and R9 carry information from the decompressor (if the
|
||
|
;; kernel was compressed). They must not be used in the code below
|
||
|
;; until they are read!
|
||
|
|
||
|
;; Exported symbols.
|
||
|
.global etrax_irv
|
||
|
.global romfs_start
|
||
|
.global romfs_length
|
||
|
.global romfs_in_flash
|
||
|
.global nand_boot
|
||
|
.global swapper_pg_dir
|
||
|
|
||
|
;; Dummy section to make it bootable with current VCS simulator
|
||
|
#ifdef CONFIG_ETRAX_VCS_SIM
|
||
|
.section ".boot", "ax"
|
||
|
ba tstart
|
||
|
nop
|
||
|
#endif
|
||
|
|
||
|
.text
|
||
|
tstart:
|
||
|
;; This is the entry point of the kernel. The CPU is currently in
|
||
|
;; supervisor mode.
|
||
|
;;
|
||
|
;; 0x00000000 if flash.
|
||
|
;; 0x40004000 if DRAM.
|
||
|
;;
|
||
|
di
|
||
|
|
||
|
START_CLOCKS
|
||
|
|
||
|
SETUP_WAIT_STATES
|
||
|
|
||
|
GIO_INIT
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
secondary_cpu_entry: /* Entry point for secondary CPUs */
|
||
|
di
|
||
|
#endif
|
||
|
|
||
|
;; Setup and enable the MMU. Use same configuration for both the data
|
||
|
;; and the instruction MMU.
|
||
|
;;
|
||
|
;; Note; 3 cycles is needed for a bank-select to take effect. Further;
|
||
|
;; bank 1 is the instruction MMU, bank 2 is the data MMU.
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
move.d REG_FIELD(mmu, rw_mm_kbase_hi, base_e, 8) \
|
||
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_c, 4) \
|
||
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_b, 0xb), $r0
|
||
|
#else
|
||
|
;; Map the virtual DRAM to the RW eprom area at address 0.
|
||
|
;; Also map 0xa for the hook calls,
|
||
|
move.d REG_FIELD(mmu, rw_mm_kbase_hi, base_e, 8) \
|
||
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_c, 4) \
|
||
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_b, 0xb) \
|
||
|
| REG_FIELD(mmu, rw_mm_kbase_hi, base_a, 0xa), $r0
|
||
|
#endif
|
||
|
|
||
|
;; Temporary map of 0x40 -> 0x40 and 0x00 -> 0x00.
|
||
|
move.d REG_FIELD(mmu, rw_mm_kbase_lo, base_4, 4) \
|
||
|
| REG_FIELD(mmu, rw_mm_kbase_lo, base_0, 0), $r1
|
||
|
|
||
|
;; Enable certain page protections and setup linear mapping
|
||
|
;; for f,e,c,b,4,0.
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
move.d REG_STATE(mmu, rw_mm_cfg, we, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, acc, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, ex, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, inv, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_f, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_e, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_d, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_c, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_b, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_a, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_9, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_8, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_7, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_6, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_5, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_4, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_3, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_2, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_1, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_0, linear), $r2
|
||
|
#else
|
||
|
move.d REG_STATE(mmu, rw_mm_cfg, we, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, acc, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, ex, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, inv, on) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_f, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_e, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_d, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_c, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_b, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_a, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_9, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_8, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_7, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_6, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_5, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_4, linear) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_3, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_2, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_1, page) \
|
||
|
| REG_STATE(mmu, rw_mm_cfg, seg_0, linear), $r2
|
||
|
#endif
|
||
|
|
||
|
;; Update instruction MMU.
|
||
|
move 1, $srs
|
||
|
nop
|
||
|
nop
|
||
|
nop
|
||
|
move $r0, $s2 ; kbase_hi.
|
||
|
move $r1, $s1 ; kbase_lo.
|
||
|
move $r2, $s0 ; mm_cfg, virtual memory configuration.
|
||
|
|
||
|
;; Update data MMU.
|
||
|
move 2, $srs
|
||
|
nop
|
||
|
nop
|
||
|
nop
|
||
|
move $r0, $s2 ; kbase_hi.
|
||
|
move $r1, $s1 ; kbase_lo
|
||
|
move $r2, $s0 ; mm_cfg, virtual memory configuration.
|
||
|
|
||
|
;; Enable data and instruction MMU.
|
||
|
move 0, $srs
|
||
|
moveq 0xf, $r0 ; IMMU, DMMU, DCache, Icache on
|
||
|
nop
|
||
|
nop
|
||
|
nop
|
||
|
move $r0, $s0
|
||
|
nop
|
||
|
nop
|
||
|
nop
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
;; Read CPU ID
|
||
|
move 0, $srs
|
||
|
nop
|
||
|
nop
|
||
|
nop
|
||
|
move $s12, $r0
|
||
|
cmpq 0, $r0
|
||
|
beq master_cpu
|
||
|
nop
|
||
|
slave_cpu:
|
||
|
; Time to boot-up. Get stack location provided by master CPU.
|
||
|
move.d smp_init_current_idle_thread, $r1
|
||
|
move.d [$r1], $sp
|
||
|
add.d 8192, $sp
|
||
|
move.d ebp_start, $r0 ; Defined in linker-script.
|
||
|
move $r0, $ebp
|
||
|
jsr smp_callin
|
||
|
nop
|
||
|
master_cpu:
|
||
|
/* Set up entry point for secondary CPUs. The boot ROM has set up
|
||
|
* EBP at start of internal memory. The CPU will get there
|
||
|
* later when we issue an IPI to them... */
|
||
|
move.d MEM_INTMEM_START + IPI_INTR_VECT * 4, $r0
|
||
|
move.d secondary_cpu_entry, $r1
|
||
|
move.d $r1, [$r0]
|
||
|
#endif
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
; Check if starting from DRAM (network->RAM boot or unpacked
|
||
|
; compressed kernel), or directly from flash.
|
||
|
lapcq ., $r0
|
||
|
and.d 0x7fffffff, $r0 ; Mask off the non-cache bit.
|
||
|
cmp.d 0x10000, $r0 ; Arbitrary, something above this code.
|
||
|
blo _inflash0
|
||
|
nop
|
||
|
#endif
|
||
|
|
||
|
jump _inram ; Jump to cached RAM.
|
||
|
nop
|
||
|
|
||
|
;; Jumpgate.
|
||
|
_inflash0:
|
||
|
jump _inflash
|
||
|
nop
|
||
|
|
||
|
;; Put the following in a section so that storage for it can be
|
||
|
;; reclaimed after init is finished.
|
||
|
.section ".init.text", "ax"
|
||
|
|
||
|
_inflash:
|
||
|
|
||
|
;; Initialize DRAM.
|
||
|
cmp.d RAM_INIT_MAGIC, $r8 ; Already initialized?
|
||
|
beq _dram_initialized
|
||
|
nop
|
||
|
|
||
|
#if defined CONFIG_ETRAXFS
|
||
|
#include "../mach-fs/dram_init.S"
|
||
|
#elif defined CONFIG_CRIS_MACH_ARTPEC3
|
||
|
#include "../mach-a3/dram_init.S"
|
||
|
#else
|
||
|
#error Only ETRAXFS and ARTPEC-3 supported!
|
||
|
#endif
|
||
|
|
||
|
|
||
|
_dram_initialized:
|
||
|
;; Copy the text and data section to DRAM. This depends on that the
|
||
|
;; variables used below are correctly set up by the linker script.
|
||
|
;; The calculated value stored in R4 is used below.
|
||
|
;; Leave the cramfs file system (piggybacked after the kernel) in flash.
|
||
|
moveq 0, $r0 ; Source.
|
||
|
move.d text_start, $r1 ; Destination.
|
||
|
move.d __vmlinux_end, $r2
|
||
|
move.d $r2, $r4
|
||
|
sub.d $r1, $r4
|
||
|
1: move.w [$r0+], $r3
|
||
|
move.w $r3, [$r1+]
|
||
|
cmp.d $r2, $r1
|
||
|
blo 1b
|
||
|
nop
|
||
|
|
||
|
;; Check for cramfs.
|
||
|
moveq 0, $r0
|
||
|
move.d romfs_length, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
move.d [$r4], $r0 ; cramfs_super.magic
|
||
|
cmp.d CRAMFS_MAGIC, $r0
|
||
|
bne 1f
|
||
|
nop
|
||
|
|
||
|
;; Set length and start of cramfs, set romfs_in_flash flag
|
||
|
addoq +4, $r4, $acr
|
||
|
move.d [$acr], $r0
|
||
|
move.d romfs_length, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
add.d 0xf0000000, $r4 ; Add cached flash start in virtual memory.
|
||
|
move.d romfs_start, $r1
|
||
|
move.d $r4, [$r1]
|
||
|
1: moveq 1, $r0
|
||
|
move.d romfs_in_flash, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
|
||
|
jump _start_it ; Jump to cached code.
|
||
|
nop
|
||
|
|
||
|
_inram:
|
||
|
;; Check if booting from NAND flash; if so, set appropriate flags
|
||
|
;; and move on.
|
||
|
cmp.d NAND_BOOT_MAGIC, $r12
|
||
|
bne move_cramfs ; not nand, jump
|
||
|
moveq 1, $r0
|
||
|
move.d nand_boot, $r1 ; tell axisflashmap we're booting from NAND
|
||
|
move.d $r0, [$r1]
|
||
|
moveq 0, $r0 ; tell axisflashmap romfs is not in
|
||
|
move.d romfs_in_flash, $r1 ; (directly accessed) flash
|
||
|
move.d $r0, [$r1]
|
||
|
jump _start_it ; continue with boot
|
||
|
nop
|
||
|
|
||
|
move_cramfs:
|
||
|
;; kernel is in DRAM.
|
||
|
;; Must figure out if there is a piggybacked rootfs image or not.
|
||
|
;; Set romfs_length to 0 => no rootfs image available by default.
|
||
|
moveq 0, $r0
|
||
|
move.d romfs_length, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
;; The kernel could have been unpacked to DRAM by the loader, but
|
||
|
;; the cramfs image could still be in the flash immediately
|
||
|
;; following the compressed kernel image. The loader passes the address
|
||
|
;; of the byte succeeding the last compressed byte in the flash in
|
||
|
;; register R9 when starting the kernel.
|
||
|
cmp.d 0x0ffffff8, $r9
|
||
|
bhs _no_romfs_in_flash ; R9 points outside the flash area.
|
||
|
nop
|
||
|
#else
|
||
|
ba _no_romfs_in_flash
|
||
|
nop
|
||
|
#endif
|
||
|
;; cramfs rootfs might to be in flash. Check for it.
|
||
|
move.d [$r9], $r0 ; cramfs_super.magic
|
||
|
cmp.d CRAMFS_MAGIC, $r0
|
||
|
bne _no_romfs_in_flash
|
||
|
nop
|
||
|
|
||
|
;; found cramfs in flash. set address and size, and romfs_in_flash flag.
|
||
|
addoq +4, $r9, $acr
|
||
|
move.d [$acr], $r0
|
||
|
move.d romfs_length, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
add.d 0xf0000000, $r9 ; Add cached flash start in virtual memory.
|
||
|
move.d romfs_start, $r1
|
||
|
move.d $r9, [$r1]
|
||
|
moveq 1, $r0
|
||
|
move.d romfs_in_flash, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
|
||
|
jump _start_it ; Jump to cached code.
|
||
|
nop
|
||
|
|
||
|
_no_romfs_in_flash:
|
||
|
;; No romfs in flash, so look for cramfs, or jffs2 with jhead,
|
||
|
;; after kernel in RAM, as is the case with network->RAM boot.
|
||
|
;; For cramfs, partition starts with magic and length.
|
||
|
;; For jffs2, a jhead is prepended which contains with magic and length.
|
||
|
;; The jhead is not part of the jffs2 partition however.
|
||
|
#ifndef CONFIG_ETRAXFS_SIM
|
||
|
move.d __vmlinux_end, $r0
|
||
|
#else
|
||
|
move.d __end, $r0
|
||
|
#endif
|
||
|
move.d [$r0], $r1
|
||
|
cmp.d CRAMFS_MAGIC, $r1 ; cramfs magic?
|
||
|
beq 2f ; yes, jump
|
||
|
nop
|
||
|
cmp.d JHEAD_MAGIC, $r1 ; jffs2 (jhead) magic?
|
||
|
bne 4f ; no, skip copy
|
||
|
nop
|
||
|
addq 4, $r0 ; location of jffs2 size
|
||
|
move.d [$r0+], $r2 ; fetch jffs2 size -> r2
|
||
|
; r0 now points to start of jffs2
|
||
|
ba 3f
|
||
|
nop
|
||
|
2:
|
||
|
addoq +4, $r0, $acr ; location of cramfs size
|
||
|
move.d [$acr], $r2 ; fetch cramfs size -> r2
|
||
|
; r0 still points to start of cramfs
|
||
|
3:
|
||
|
;; Now, move the root fs to after kernel's BSS
|
||
|
|
||
|
move.d _end, $r1 ; start of cramfs -> r1
|
||
|
move.d romfs_start, $r3
|
||
|
move.d $r1, [$r3] ; store at romfs_start (for axisflashmap)
|
||
|
move.d romfs_length, $r3
|
||
|
move.d $r2, [$r3] ; store size at romfs_length
|
||
|
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
add.d $r2, $r0 ; copy from end and downwards
|
||
|
add.d $r2, $r1
|
||
|
|
||
|
lsrq 1, $r2 ; Size is in bytes, we copy words.
|
||
|
addq 1, $r2
|
||
|
1:
|
||
|
move.w [$r0], $r3
|
||
|
move.w $r3, [$r1]
|
||
|
subq 2, $r0
|
||
|
subq 2, $r1
|
||
|
subq 1, $r2
|
||
|
bne 1b
|
||
|
nop
|
||
|
#endif
|
||
|
|
||
|
4:
|
||
|
;; BSS move done.
|
||
|
;; Clear romfs_in_flash flag, as we now know romfs is in DRAM
|
||
|
;; Also clear nand_boot flag; if we got here, we know we've not
|
||
|
;; booted from NAND flash.
|
||
|
moveq 0, $r0
|
||
|
move.d romfs_in_flash, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
moveq 0, $r0
|
||
|
move.d nand_boot, $r1
|
||
|
move.d $r0, [$r1]
|
||
|
|
||
|
jump _start_it ; Jump to cached code.
|
||
|
nop
|
||
|
|
||
|
_start_it:
|
||
|
|
||
|
;; Check if kernel command line is supplied
|
||
|
cmp.d COMMAND_LINE_MAGIC, $r10
|
||
|
bne no_command_line
|
||
|
nop
|
||
|
|
||
|
move.d 256, $r13
|
||
|
move.d cris_command_line, $r10
|
||
|
or.d 0x80000000, $r11 ; Make it virtual
|
||
|
1:
|
||
|
move.b [$r11+], $r1
|
||
|
move.b $r1, [$r10+]
|
||
|
subq 1, $r13
|
||
|
bne 1b
|
||
|
nop
|
||
|
|
||
|
no_command_line:
|
||
|
|
||
|
;; The kernel stack contains a task structure for each task. This
|
||
|
;; the initial kernel stack is in the same page as the init_task,
|
||
|
;; but starts at the top of the page, i.e. + 8192 bytes.
|
||
|
move.d init_thread_union + 8192, $sp
|
||
|
move.d ebp_start, $r0 ; Defined in linker-script.
|
||
|
move $r0, $ebp
|
||
|
move.d etrax_irv, $r1 ; Set the exception base register and pointer.
|
||
|
move.d $r0, [$r1]
|
||
|
|
||
|
#ifndef CONFIG_ETRAX_VCS_SIM
|
||
|
;; Clear the BSS region from _bss_start to _end.
|
||
|
move.d __bss_start, $r0
|
||
|
move.d _end, $r1
|
||
|
1: clear.d [$r0+]
|
||
|
cmp.d $r1, $r0
|
||
|
blo 1b
|
||
|
nop
|
||
|
#endif
|
||
|
|
||
|
#ifdef CONFIG_ETRAX_VCS_SIM
|
||
|
/* Set the watchdog timeout to something big. Will be removed when */
|
||
|
/* watchdog can be disabled with command line option */
|
||
|
move.d 0x7fffffff, $r10
|
||
|
jsr CPU_WATCHDOG_TIMEOUT
|
||
|
nop
|
||
|
#endif
|
||
|
|
||
|
; Initialize registers to increase determinism
|
||
|
move.d __bss_start, $r0
|
||
|
movem [$r0], $r13
|
||
|
|
||
|
#ifdef CONFIG_ETRAX_L2CACHE
|
||
|
jsr l2cache_init
|
||
|
nop
|
||
|
#endif
|
||
|
|
||
|
jump start_kernel ; Jump to start_kernel() in init/main.c.
|
||
|
nop
|
||
|
|
||
|
.data
|
||
|
etrax_irv:
|
||
|
.dword 0
|
||
|
|
||
|
; Variables for communication with the Axis flash map driver (axisflashmap),
|
||
|
; and for setting up memory in arch/cris/kernel/setup.c .
|
||
|
|
||
|
; romfs_start is set to the start of the root file system, if it exists
|
||
|
; in directly accessible memory (i.e. NOR Flash when booting from Flash,
|
||
|
; or RAM when booting directly from a network-downloaded RAM image)
|
||
|
romfs_start:
|
||
|
.dword 0
|
||
|
|
||
|
; romfs_length is set to the size of the root file system image, if it exists
|
||
|
; in directly accessible memory (see romfs_start). Otherwise it is set to 0.
|
||
|
romfs_length:
|
||
|
.dword 0
|
||
|
|
||
|
; romfs_in_flash is set to 1 if the root file system resides in directly
|
||
|
; accessible flash memory (i.e. NOR flash). It is set to 0 for RAM boot
|
||
|
; or NAND flash boot.
|
||
|
romfs_in_flash:
|
||
|
.dword 0
|
||
|
|
||
|
; nand_boot is set to 1 when the kernel has been booted from NAND flash
|
||
|
nand_boot:
|
||
|
.dword 0
|
||
|
|
||
|
swapper_pg_dir = 0xc0002000
|
||
|
|
||
|
.section ".init.data", "aw"
|
||
|
|
||
|
#if defined CONFIG_ETRAXFS
|
||
|
#include "../mach-fs/hw_settings.S"
|
||
|
#elif defined CONFIG_CRIS_MACH_ARTPEC3
|
||
|
#include "../mach-a3/hw_settings.S"
|
||
|
#else
|
||
|
#error Only ETRAXFS and ARTPEC-3 supported!
|
||
|
#endif
|