322 lines
8.9 KiB
C
322 lines
8.9 KiB
C
|
/*
|
||
|
* VMI paravirtual timer support routines.
|
||
|
*
|
||
|
* Copyright (C) 2007, VMware, Inc.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
|
||
|
* NON INFRINGEMENT. See the GNU General Public License for more
|
||
|
* details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include <linux/smp.h>
|
||
|
#include <linux/interrupt.h>
|
||
|
#include <linux/cpumask.h>
|
||
|
#include <linux/clocksource.h>
|
||
|
#include <linux/clockchips.h>
|
||
|
|
||
|
#include <asm/vmi.h>
|
||
|
#include <asm/vmi_time.h>
|
||
|
#include <asm/apicdef.h>
|
||
|
#include <asm/apic.h>
|
||
|
#include <asm/timer.h>
|
||
|
#include <asm/i8253.h>
|
||
|
#include <asm/irq_vectors.h>
|
||
|
|
||
|
#define VMI_ONESHOT (VMI_ALARM_IS_ONESHOT | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
|
||
|
#define VMI_PERIODIC (VMI_ALARM_IS_PERIODIC | VMI_CYCLES_REAL | vmi_get_alarm_wiring())
|
||
|
|
||
|
static DEFINE_PER_CPU(struct clock_event_device, local_events);
|
||
|
|
||
|
static inline u32 vmi_counter(u32 flags)
|
||
|
{
|
||
|
/* Given VMI_ONESHOT or VMI_PERIODIC, return the corresponding
|
||
|
* cycle counter. */
|
||
|
return flags & VMI_ALARM_COUNTER_MASK;
|
||
|
}
|
||
|
|
||
|
/* paravirt_ops.get_wallclock = vmi_get_wallclock */
|
||
|
unsigned long vmi_get_wallclock(void)
|
||
|
{
|
||
|
unsigned long long wallclock;
|
||
|
wallclock = vmi_timer_ops.get_wallclock(); // nsec
|
||
|
(void)do_div(wallclock, 1000000000); // sec
|
||
|
|
||
|
return wallclock;
|
||
|
}
|
||
|
|
||
|
/* paravirt_ops.set_wallclock = vmi_set_wallclock */
|
||
|
int vmi_set_wallclock(unsigned long now)
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* paravirt_ops.sched_clock = vmi_sched_clock */
|
||
|
unsigned long long vmi_sched_clock(void)
|
||
|
{
|
||
|
return cycles_2_ns(vmi_timer_ops.get_cycle_counter(VMI_CYCLES_AVAILABLE));
|
||
|
}
|
||
|
|
||
|
/* x86_platform.calibrate_tsc = vmi_tsc_khz */
|
||
|
unsigned long vmi_tsc_khz(void)
|
||
|
{
|
||
|
unsigned long long khz;
|
||
|
khz = vmi_timer_ops.get_cycle_frequency();
|
||
|
(void)do_div(khz, 1000);
|
||
|
return khz;
|
||
|
}
|
||
|
|
||
|
static inline unsigned int vmi_get_timer_vector(void)
|
||
|
{
|
||
|
#ifdef CONFIG_X86_IO_APIC
|
||
|
return FIRST_DEVICE_VECTOR;
|
||
|
#else
|
||
|
return FIRST_EXTERNAL_VECTOR;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/** vmi clockchip */
|
||
|
#ifdef CONFIG_X86_LOCAL_APIC
|
||
|
static unsigned int startup_timer_irq(unsigned int irq)
|
||
|
{
|
||
|
unsigned long val = apic_read(APIC_LVTT);
|
||
|
apic_write(APIC_LVTT, vmi_get_timer_vector());
|
||
|
|
||
|
return (val & APIC_SEND_PENDING);
|
||
|
}
|
||
|
|
||
|
static void mask_timer_irq(unsigned int irq)
|
||
|
{
|
||
|
unsigned long val = apic_read(APIC_LVTT);
|
||
|
apic_write(APIC_LVTT, val | APIC_LVT_MASKED);
|
||
|
}
|
||
|
|
||
|
static void unmask_timer_irq(unsigned int irq)
|
||
|
{
|
||
|
unsigned long val = apic_read(APIC_LVTT);
|
||
|
apic_write(APIC_LVTT, val & ~APIC_LVT_MASKED);
|
||
|
}
|
||
|
|
||
|
static void ack_timer_irq(unsigned int irq)
|
||
|
{
|
||
|
ack_APIC_irq();
|
||
|
}
|
||
|
|
||
|
static struct irq_chip vmi_chip __read_mostly = {
|
||
|
.name = "VMI-LOCAL",
|
||
|
.startup = startup_timer_irq,
|
||
|
.mask = mask_timer_irq,
|
||
|
.unmask = unmask_timer_irq,
|
||
|
.ack = ack_timer_irq
|
||
|
};
|
||
|
#endif
|
||
|
|
||
|
/** vmi clockevent */
|
||
|
#define VMI_ALARM_WIRED_IRQ0 0x00000000
|
||
|
#define VMI_ALARM_WIRED_LVTT 0x00010000
|
||
|
static int vmi_wiring = VMI_ALARM_WIRED_IRQ0;
|
||
|
|
||
|
static inline int vmi_get_alarm_wiring(void)
|
||
|
{
|
||
|
return vmi_wiring;
|
||
|
}
|
||
|
|
||
|
static void vmi_timer_set_mode(enum clock_event_mode mode,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
cycle_t now, cycles_per_hz;
|
||
|
BUG_ON(!irqs_disabled());
|
||
|
|
||
|
switch (mode) {
|
||
|
case CLOCK_EVT_MODE_ONESHOT:
|
||
|
case CLOCK_EVT_MODE_RESUME:
|
||
|
break;
|
||
|
case CLOCK_EVT_MODE_PERIODIC:
|
||
|
cycles_per_hz = vmi_timer_ops.get_cycle_frequency();
|
||
|
(void)do_div(cycles_per_hz, HZ);
|
||
|
now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_PERIODIC));
|
||
|
vmi_timer_ops.set_alarm(VMI_PERIODIC, now, cycles_per_hz);
|
||
|
break;
|
||
|
case CLOCK_EVT_MODE_UNUSED:
|
||
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
||
|
switch (evt->mode) {
|
||
|
case CLOCK_EVT_MODE_ONESHOT:
|
||
|
vmi_timer_ops.cancel_alarm(VMI_ONESHOT);
|
||
|
break;
|
||
|
case CLOCK_EVT_MODE_PERIODIC:
|
||
|
vmi_timer_ops.cancel_alarm(VMI_PERIODIC);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int vmi_timer_next_event(unsigned long delta,
|
||
|
struct clock_event_device *evt)
|
||
|
{
|
||
|
/* Unfortunately, set_next_event interface only passes relative
|
||
|
* expiry, but we want absolute expiry. It'd be better if were
|
||
|
* were passed an aboslute expiry, since a bunch of time may
|
||
|
* have been stolen between the time the delta is computed and
|
||
|
* when we set the alarm below. */
|
||
|
cycle_t now = vmi_timer_ops.get_cycle_counter(vmi_counter(VMI_ONESHOT));
|
||
|
|
||
|
BUG_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
|
||
|
vmi_timer_ops.set_alarm(VMI_ONESHOT, now + delta, 0);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct clock_event_device vmi_clockevent = {
|
||
|
.name = "vmi-timer",
|
||
|
.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
|
||
|
.shift = 22,
|
||
|
.set_mode = vmi_timer_set_mode,
|
||
|
.set_next_event = vmi_timer_next_event,
|
||
|
.rating = 1000,
|
||
|
.irq = 0,
|
||
|
};
|
||
|
|
||
|
static irqreturn_t vmi_timer_interrupt(int irq, void *dev_id)
|
||
|
{
|
||
|
struct clock_event_device *evt = &__get_cpu_var(local_events);
|
||
|
evt->event_handler(evt);
|
||
|
return IRQ_HANDLED;
|
||
|
}
|
||
|
|
||
|
static struct irqaction vmi_clock_action = {
|
||
|
.name = "vmi-timer",
|
||
|
.handler = vmi_timer_interrupt,
|
||
|
.flags = IRQF_DISABLED | IRQF_NOBALANCING | IRQF_TIMER,
|
||
|
};
|
||
|
|
||
|
static void __devinit vmi_time_init_clockevent(void)
|
||
|
{
|
||
|
cycle_t cycles_per_msec;
|
||
|
struct clock_event_device *evt;
|
||
|
|
||
|
int cpu = smp_processor_id();
|
||
|
evt = &__get_cpu_var(local_events);
|
||
|
|
||
|
/* Use cycles_per_msec since div_sc params are 32-bits. */
|
||
|
cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
|
||
|
(void)do_div(cycles_per_msec, 1000);
|
||
|
|
||
|
memcpy(evt, &vmi_clockevent, sizeof(*evt));
|
||
|
/* Must pick .shift such that .mult fits in 32-bits. Choosing
|
||
|
* .shift to be 22 allows 2^(32-22) cycles per nano-seconds
|
||
|
* before overflow. */
|
||
|
evt->mult = div_sc(cycles_per_msec, NSEC_PER_MSEC, evt->shift);
|
||
|
/* Upper bound is clockevent's use of ulong for cycle deltas. */
|
||
|
evt->max_delta_ns = clockevent_delta2ns(ULONG_MAX, evt);
|
||
|
evt->min_delta_ns = clockevent_delta2ns(1, evt);
|
||
|
evt->cpumask = cpumask_of(cpu);
|
||
|
|
||
|
printk(KERN_WARNING "vmi: registering clock event %s. mult=%lu shift=%u\n",
|
||
|
evt->name, evt->mult, evt->shift);
|
||
|
clockevents_register_device(evt);
|
||
|
}
|
||
|
|
||
|
void __init vmi_time_init(void)
|
||
|
{
|
||
|
unsigned int cpu;
|
||
|
/* Disable PIT: BIOSes start PIT CH0 with 18.2hz peridic. */
|
||
|
outb_pit(0x3a, PIT_MODE); /* binary, mode 5, LSB/MSB, ch 0 */
|
||
|
|
||
|
vmi_time_init_clockevent();
|
||
|
setup_irq(0, &vmi_clock_action);
|
||
|
for_each_possible_cpu(cpu)
|
||
|
per_cpu(vector_irq, cpu)[vmi_get_timer_vector()] = 0;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_LOCAL_APIC
|
||
|
void __devinit vmi_time_bsp_init(void)
|
||
|
{
|
||
|
/*
|
||
|
* On APIC systems, we want local timers to fire on each cpu. We do
|
||
|
* this by programming LVTT to deliver timer events to the IRQ handler
|
||
|
* for IRQ-0, since we can't re-use the APIC local timer handler
|
||
|
* without interfering with that code.
|
||
|
*/
|
||
|
clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
|
||
|
local_irq_disable();
|
||
|
#ifdef CONFIG_SMP
|
||
|
/*
|
||
|
* XXX handle_percpu_irq only defined for SMP; we need to switch over
|
||
|
* to using it, since this is a local interrupt, which each CPU must
|
||
|
* handle individually without locking out or dropping simultaneous
|
||
|
* local timers on other CPUs. We also don't want to trigger the
|
||
|
* quirk workaround code for interrupts which gets invoked from
|
||
|
* handle_percpu_irq via eoi, so we use our own IRQ chip.
|
||
|
*/
|
||
|
set_irq_chip_and_handler_name(0, &vmi_chip, handle_percpu_irq, "lvtt");
|
||
|
#else
|
||
|
set_irq_chip_and_handler_name(0, &vmi_chip, handle_edge_irq, "lvtt");
|
||
|
#endif
|
||
|
vmi_wiring = VMI_ALARM_WIRED_LVTT;
|
||
|
apic_write(APIC_LVTT, vmi_get_timer_vector());
|
||
|
local_irq_enable();
|
||
|
clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
|
||
|
}
|
||
|
|
||
|
void __devinit vmi_time_ap_init(void)
|
||
|
{
|
||
|
vmi_time_init_clockevent();
|
||
|
apic_write(APIC_LVTT, vmi_get_timer_vector());
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/** vmi clocksource */
|
||
|
static struct clocksource clocksource_vmi;
|
||
|
|
||
|
static cycle_t read_real_cycles(struct clocksource *cs)
|
||
|
{
|
||
|
cycle_t ret = (cycle_t)vmi_timer_ops.get_cycle_counter(VMI_CYCLES_REAL);
|
||
|
return max(ret, clocksource_vmi.cycle_last);
|
||
|
}
|
||
|
|
||
|
static struct clocksource clocksource_vmi = {
|
||
|
.name = "vmi-timer",
|
||
|
.rating = 450,
|
||
|
.read = read_real_cycles,
|
||
|
.mask = CLOCKSOURCE_MASK(64),
|
||
|
.mult = 0, /* to be set */
|
||
|
.shift = 22,
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
|
||
|
};
|
||
|
|
||
|
static int __init init_vmi_clocksource(void)
|
||
|
{
|
||
|
cycle_t cycles_per_msec;
|
||
|
|
||
|
if (!vmi_timer_ops.get_cycle_frequency)
|
||
|
return 0;
|
||
|
/* Use khz2mult rather than hz2mult since hz arg is only 32-bits. */
|
||
|
cycles_per_msec = vmi_timer_ops.get_cycle_frequency();
|
||
|
(void)do_div(cycles_per_msec, 1000);
|
||
|
|
||
|
/* Note that clocksource.{mult, shift} converts in the opposite direction
|
||
|
* as clockevents. */
|
||
|
clocksource_vmi.mult = clocksource_khz2mult(cycles_per_msec,
|
||
|
clocksource_vmi.shift);
|
||
|
|
||
|
printk(KERN_WARNING "vmi: registering clock source khz=%lld\n", cycles_per_msec);
|
||
|
return clocksource_register(&clocksource_vmi);
|
||
|
|
||
|
}
|
||
|
module_init(init_vmi_clocksource);
|