183 lines
5.1 KiB
C
183 lines
5.1 KiB
C
|
/* calibrate.c: default delay calibration
|
||
|
*
|
||
|
* Excised from init/main.c
|
||
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
||
|
*/
|
||
|
|
||
|
#include <linux/jiffies.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/timex.h>
|
||
|
#include <linux/smp.h>
|
||
|
|
||
|
unsigned long lpj_fine;
|
||
|
unsigned long preset_lpj;
|
||
|
static int __init lpj_setup(char *str)
|
||
|
{
|
||
|
preset_lpj = simple_strtoul(str,NULL,0);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
__setup("lpj=", lpj_setup);
|
||
|
|
||
|
#ifdef ARCH_HAS_READ_CURRENT_TIMER
|
||
|
|
||
|
/* This routine uses the read_current_timer() routine and gets the
|
||
|
* loops per jiffy directly, instead of guessing it using delay().
|
||
|
* Also, this code tries to handle non-maskable asynchronous events
|
||
|
* (like SMIs)
|
||
|
*/
|
||
|
#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
|
||
|
#define MAX_DIRECT_CALIBRATION_RETRIES 5
|
||
|
|
||
|
static unsigned long __cpuinit calibrate_delay_direct(void)
|
||
|
{
|
||
|
unsigned long pre_start, start, post_start;
|
||
|
unsigned long pre_end, end, post_end;
|
||
|
unsigned long start_jiffies;
|
||
|
unsigned long timer_rate_min, timer_rate_max;
|
||
|
unsigned long good_timer_sum = 0;
|
||
|
unsigned long good_timer_count = 0;
|
||
|
int i;
|
||
|
|
||
|
if (read_current_timer(&pre_start) < 0 )
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* A simple loop like
|
||
|
* while ( jiffies < start_jiffies+1)
|
||
|
* start = read_current_timer();
|
||
|
* will not do. As we don't really know whether jiffy switch
|
||
|
* happened first or timer_value was read first. And some asynchronous
|
||
|
* event can happen between these two events introducing errors in lpj.
|
||
|
*
|
||
|
* So, we do
|
||
|
* 1. pre_start <- When we are sure that jiffy switch hasn't happened
|
||
|
* 2. check jiffy switch
|
||
|
* 3. start <- timer value before or after jiffy switch
|
||
|
* 4. post_start <- When we are sure that jiffy switch has happened
|
||
|
*
|
||
|
* Note, we don't know anything about order of 2 and 3.
|
||
|
* Now, by looking at post_start and pre_start difference, we can
|
||
|
* check whether any asynchronous event happened or not
|
||
|
*/
|
||
|
|
||
|
for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
|
||
|
pre_start = 0;
|
||
|
read_current_timer(&start);
|
||
|
start_jiffies = jiffies;
|
||
|
while (jiffies <= (start_jiffies + 1)) {
|
||
|
pre_start = start;
|
||
|
read_current_timer(&start);
|
||
|
}
|
||
|
read_current_timer(&post_start);
|
||
|
|
||
|
pre_end = 0;
|
||
|
end = post_start;
|
||
|
while (jiffies <=
|
||
|
(start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) {
|
||
|
pre_end = end;
|
||
|
read_current_timer(&end);
|
||
|
}
|
||
|
read_current_timer(&post_end);
|
||
|
|
||
|
timer_rate_max = (post_end - pre_start) /
|
||
|
DELAY_CALIBRATION_TICKS;
|
||
|
timer_rate_min = (pre_end - post_start) /
|
||
|
DELAY_CALIBRATION_TICKS;
|
||
|
|
||
|
/*
|
||
|
* If the upper limit and lower limit of the timer_rate is
|
||
|
* >= 12.5% apart, redo calibration.
|
||
|
*/
|
||
|
if (pre_start != 0 && pre_end != 0 &&
|
||
|
(timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
|
||
|
good_timer_count++;
|
||
|
good_timer_sum += timer_rate_max;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (good_timer_count)
|
||
|
return (good_timer_sum/good_timer_count);
|
||
|
|
||
|
printk(KERN_WARNING "calibrate_delay_direct() failed to get a good "
|
||
|
"estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n");
|
||
|
return 0;
|
||
|
}
|
||
|
#else
|
||
|
static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* This is the number of bits of precision for the loops_per_jiffy. Each
|
||
|
* bit takes on average 1.5/HZ seconds. This (like the original) is a little
|
||
|
* better than 1%
|
||
|
* For the boot cpu we can skip the delay calibration and assign it a value
|
||
|
* calculated based on the timer frequency.
|
||
|
* For the rest of the CPUs we cannot assume that the timer frequency is same as
|
||
|
* the cpu frequency, hence do the calibration for those.
|
||
|
*/
|
||
|
#define LPS_PREC 8
|
||
|
|
||
|
void __cpuinit calibrate_delay(void)
|
||
|
{
|
||
|
unsigned long ticks, loopbit;
|
||
|
int lps_precision = LPS_PREC;
|
||
|
static bool printed;
|
||
|
|
||
|
if (preset_lpj) {
|
||
|
loops_per_jiffy = preset_lpj;
|
||
|
if (!printed)
|
||
|
pr_info("Calibrating delay loop (skipped) "
|
||
|
"preset value.. ");
|
||
|
} else if ((!printed) && lpj_fine) {
|
||
|
loops_per_jiffy = lpj_fine;
|
||
|
pr_info("Calibrating delay loop (skipped), "
|
||
|
"value calculated using timer frequency.. ");
|
||
|
} else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
|
||
|
if (!printed)
|
||
|
pr_info("Calibrating delay using timer "
|
||
|
"specific routine.. ");
|
||
|
} else {
|
||
|
loops_per_jiffy = (1<<12);
|
||
|
|
||
|
if (!printed)
|
||
|
pr_info("Calibrating delay loop... ");
|
||
|
while ((loops_per_jiffy <<= 1) != 0) {
|
||
|
/* wait for "start of" clock tick */
|
||
|
ticks = jiffies;
|
||
|
while (ticks == jiffies)
|
||
|
/* nothing */;
|
||
|
/* Go .. */
|
||
|
ticks = jiffies;
|
||
|
__delay(loops_per_jiffy);
|
||
|
ticks = jiffies - ticks;
|
||
|
if (ticks)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Do a binary approximation to get loops_per_jiffy set to
|
||
|
* equal one clock (up to lps_precision bits)
|
||
|
*/
|
||
|
loops_per_jiffy >>= 1;
|
||
|
loopbit = loops_per_jiffy;
|
||
|
while (lps_precision-- && (loopbit >>= 1)) {
|
||
|
loops_per_jiffy |= loopbit;
|
||
|
ticks = jiffies;
|
||
|
while (ticks == jiffies)
|
||
|
/* nothing */;
|
||
|
ticks = jiffies;
|
||
|
__delay(loops_per_jiffy);
|
||
|
if (jiffies != ticks) /* longer than 1 tick */
|
||
|
loops_per_jiffy &= ~loopbit;
|
||
|
}
|
||
|
}
|
||
|
if (!printed)
|
||
|
pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
|
||
|
loops_per_jiffy/(500000/HZ),
|
||
|
(loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
|
||
|
|
||
|
printed = true;
|
||
|
}
|