376 lines
11 KiB
C
376 lines
11 KiB
C
|
|
||
|
#ifdef CONFIG_SCHEDSTATS
|
||
|
/*
|
||
|
* bump this up when changing the output format or the meaning of an existing
|
||
|
* format, so that tools can adapt (or abort)
|
||
|
*/
|
||
|
#define SCHEDSTAT_VERSION 15
|
||
|
|
||
|
static int show_schedstat(struct seq_file *seq, void *v)
|
||
|
{
|
||
|
int cpu;
|
||
|
int mask_len = DIV_ROUND_UP(NR_CPUS, 32) * 9;
|
||
|
char *mask_str = kmalloc(mask_len, GFP_KERNEL);
|
||
|
|
||
|
if (mask_str == NULL)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
|
||
|
seq_printf(seq, "timestamp %lu\n", jiffies);
|
||
|
for_each_online_cpu(cpu) {
|
||
|
struct rq *rq = cpu_rq(cpu);
|
||
|
#ifdef CONFIG_SMP
|
||
|
struct sched_domain *sd;
|
||
|
int dcount = 0;
|
||
|
#endif
|
||
|
|
||
|
/* runqueue-specific stats */
|
||
|
seq_printf(seq,
|
||
|
"cpu%d %u %u %u %u %u %u %llu %llu %lu",
|
||
|
cpu, rq->yld_count,
|
||
|
rq->sched_switch, rq->sched_count, rq->sched_goidle,
|
||
|
rq->ttwu_count, rq->ttwu_local,
|
||
|
rq->rq_cpu_time,
|
||
|
rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
|
||
|
|
||
|
seq_printf(seq, "\n");
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/* domain-specific stats */
|
||
|
preempt_disable();
|
||
|
for_each_domain(cpu, sd) {
|
||
|
enum cpu_idle_type itype;
|
||
|
|
||
|
cpumask_scnprintf(mask_str, mask_len,
|
||
|
sched_domain_span(sd));
|
||
|
seq_printf(seq, "domain%d %s", dcount++, mask_str);
|
||
|
for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
|
||
|
itype++) {
|
||
|
seq_printf(seq, " %u %u %u %u %u %u %u %u",
|
||
|
sd->lb_count[itype],
|
||
|
sd->lb_balanced[itype],
|
||
|
sd->lb_failed[itype],
|
||
|
sd->lb_imbalance[itype],
|
||
|
sd->lb_gained[itype],
|
||
|
sd->lb_hot_gained[itype],
|
||
|
sd->lb_nobusyq[itype],
|
||
|
sd->lb_nobusyg[itype]);
|
||
|
}
|
||
|
seq_printf(seq,
|
||
|
" %u %u %u %u %u %u %u %u %u %u %u %u\n",
|
||
|
sd->alb_count, sd->alb_failed, sd->alb_pushed,
|
||
|
sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
|
||
|
sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
|
||
|
sd->ttwu_wake_remote, sd->ttwu_move_affine,
|
||
|
sd->ttwu_move_balance);
|
||
|
}
|
||
|
preempt_enable();
|
||
|
#endif
|
||
|
}
|
||
|
kfree(mask_str);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int schedstat_open(struct inode *inode, struct file *file)
|
||
|
{
|
||
|
unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
|
||
|
char *buf = kmalloc(size, GFP_KERNEL);
|
||
|
struct seq_file *m;
|
||
|
int res;
|
||
|
|
||
|
if (!buf)
|
||
|
return -ENOMEM;
|
||
|
res = single_open(file, show_schedstat, NULL);
|
||
|
if (!res) {
|
||
|
m = file->private_data;
|
||
|
m->buf = buf;
|
||
|
m->size = size;
|
||
|
} else
|
||
|
kfree(buf);
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
static const struct file_operations proc_schedstat_operations = {
|
||
|
.open = schedstat_open,
|
||
|
.read = seq_read,
|
||
|
.llseek = seq_lseek,
|
||
|
.release = single_release,
|
||
|
};
|
||
|
|
||
|
static int __init proc_schedstat_init(void)
|
||
|
{
|
||
|
proc_create("schedstat", 0, NULL, &proc_schedstat_operations);
|
||
|
return 0;
|
||
|
}
|
||
|
module_init(proc_schedstat_init);
|
||
|
|
||
|
/*
|
||
|
* Expects runqueue lock to be held for atomicity of update
|
||
|
*/
|
||
|
static inline void
|
||
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
||
|
{
|
||
|
if (rq) {
|
||
|
rq->rq_sched_info.run_delay += delta;
|
||
|
rq->rq_sched_info.pcount++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Expects runqueue lock to be held for atomicity of update
|
||
|
*/
|
||
|
static inline void
|
||
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
||
|
{
|
||
|
if (rq)
|
||
|
rq->rq_cpu_time += delta;
|
||
|
}
|
||
|
|
||
|
static inline void
|
||
|
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
|
||
|
{
|
||
|
if (rq)
|
||
|
rq->rq_sched_info.run_delay += delta;
|
||
|
}
|
||
|
# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
|
||
|
# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
|
||
|
# define schedstat_set(var, val) do { var = (val); } while (0)
|
||
|
#else /* !CONFIG_SCHEDSTATS */
|
||
|
static inline void
|
||
|
rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
|
||
|
{}
|
||
|
static inline void
|
||
|
rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
|
||
|
{}
|
||
|
static inline void
|
||
|
rq_sched_info_depart(struct rq *rq, unsigned long long delta)
|
||
|
{}
|
||
|
# define schedstat_inc(rq, field) do { } while (0)
|
||
|
# define schedstat_add(rq, field, amt) do { } while (0)
|
||
|
# define schedstat_set(var, val) do { } while (0)
|
||
|
#endif
|
||
|
|
||
|
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
|
||
|
static inline void sched_info_reset_dequeued(struct task_struct *t)
|
||
|
{
|
||
|
t->sched_info.last_queued = 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when a process is dequeued from the active array and given
|
||
|
* the cpu. We should note that with the exception of interactive
|
||
|
* tasks, the expired queue will become the active queue after the active
|
||
|
* queue is empty, without explicitly dequeuing and requeuing tasks in the
|
||
|
* expired queue. (Interactive tasks may be requeued directly to the
|
||
|
* active queue, thus delaying tasks in the expired queue from running;
|
||
|
* see scheduler_tick()).
|
||
|
*
|
||
|
* Though we are interested in knowing how long it was from the *first* time a
|
||
|
* task was queued to the time that it finally hit a cpu, we call this routine
|
||
|
* from dequeue_task() to account for possible rq->clock skew across cpus. The
|
||
|
* delta taken on each cpu would annul the skew.
|
||
|
*/
|
||
|
static inline void sched_info_dequeued(struct task_struct *t)
|
||
|
{
|
||
|
unsigned long long now = task_rq(t)->clock, delta = 0;
|
||
|
|
||
|
if (unlikely(sched_info_on()))
|
||
|
if (t->sched_info.last_queued)
|
||
|
delta = now - t->sched_info.last_queued;
|
||
|
sched_info_reset_dequeued(t);
|
||
|
t->sched_info.run_delay += delta;
|
||
|
|
||
|
rq_sched_info_dequeued(task_rq(t), delta);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when a task finally hits the cpu. We can now calculate how
|
||
|
* long it was waiting to run. We also note when it began so that we
|
||
|
* can keep stats on how long its timeslice is.
|
||
|
*/
|
||
|
static void sched_info_arrive(struct task_struct *t)
|
||
|
{
|
||
|
unsigned long long now = task_rq(t)->clock, delta = 0;
|
||
|
|
||
|
if (t->sched_info.last_queued)
|
||
|
delta = now - t->sched_info.last_queued;
|
||
|
sched_info_reset_dequeued(t);
|
||
|
t->sched_info.run_delay += delta;
|
||
|
t->sched_info.last_arrival = now;
|
||
|
t->sched_info.pcount++;
|
||
|
|
||
|
rq_sched_info_arrive(task_rq(t), delta);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when a process is queued into either the active or expired
|
||
|
* array. The time is noted and later used to determine how long we
|
||
|
* had to wait for us to reach the cpu. Since the expired queue will
|
||
|
* become the active queue after active queue is empty, without dequeuing
|
||
|
* and requeuing any tasks, we are interested in queuing to either. It
|
||
|
* is unusual but not impossible for tasks to be dequeued and immediately
|
||
|
* requeued in the same or another array: this can happen in sched_yield(),
|
||
|
* set_user_nice(), and even load_balance() as it moves tasks from runqueue
|
||
|
* to runqueue.
|
||
|
*
|
||
|
* This function is only called from enqueue_task(), but also only updates
|
||
|
* the timestamp if it is already not set. It's assumed that
|
||
|
* sched_info_dequeued() will clear that stamp when appropriate.
|
||
|
*/
|
||
|
static inline void sched_info_queued(struct task_struct *t)
|
||
|
{
|
||
|
if (unlikely(sched_info_on()))
|
||
|
if (!t->sched_info.last_queued)
|
||
|
t->sched_info.last_queued = task_rq(t)->clock;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when a process ceases being the active-running process, either
|
||
|
* voluntarily or involuntarily. Now we can calculate how long we ran.
|
||
|
* Also, if the process is still in the TASK_RUNNING state, call
|
||
|
* sched_info_queued() to mark that it has now again started waiting on
|
||
|
* the runqueue.
|
||
|
*/
|
||
|
static inline void sched_info_depart(struct task_struct *t)
|
||
|
{
|
||
|
unsigned long long delta = task_rq(t)->clock -
|
||
|
t->sched_info.last_arrival;
|
||
|
|
||
|
rq_sched_info_depart(task_rq(t), delta);
|
||
|
|
||
|
if (t->state == TASK_RUNNING)
|
||
|
sched_info_queued(t);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Called when tasks are switched involuntarily due, typically, to expiring
|
||
|
* their time slice. (This may also be called when switching to or from
|
||
|
* the idle task.) We are only called when prev != next.
|
||
|
*/
|
||
|
static inline void
|
||
|
__sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
||
|
{
|
||
|
struct rq *rq = task_rq(prev);
|
||
|
|
||
|
/*
|
||
|
* prev now departs the cpu. It's not interesting to record
|
||
|
* stats about how efficient we were at scheduling the idle
|
||
|
* process, however.
|
||
|
*/
|
||
|
if (prev != rq->idle)
|
||
|
sched_info_depart(prev);
|
||
|
|
||
|
if (next != rq->idle)
|
||
|
sched_info_arrive(next);
|
||
|
}
|
||
|
static inline void
|
||
|
sched_info_switch(struct task_struct *prev, struct task_struct *next)
|
||
|
{
|
||
|
if (unlikely(sched_info_on()))
|
||
|
__sched_info_switch(prev, next);
|
||
|
}
|
||
|
#else
|
||
|
#define sched_info_queued(t) do { } while (0)
|
||
|
#define sched_info_reset_dequeued(t) do { } while (0)
|
||
|
#define sched_info_dequeued(t) do { } while (0)
|
||
|
#define sched_info_switch(t, next) do { } while (0)
|
||
|
#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
|
||
|
|
||
|
/*
|
||
|
* The following are functions that support scheduler-internal time accounting.
|
||
|
* These functions are generally called at the timer tick. None of this depends
|
||
|
* on CONFIG_SCHEDSTATS.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* account_group_user_time - Maintain utime for a thread group.
|
||
|
*
|
||
|
* @tsk: Pointer to task structure.
|
||
|
* @cputime: Time value by which to increment the utime field of the
|
||
|
* thread_group_cputime structure.
|
||
|
*
|
||
|
* If thread group time is being maintained, get the structure for the
|
||
|
* running CPU and update the utime field there.
|
||
|
*/
|
||
|
static inline void account_group_user_time(struct task_struct *tsk,
|
||
|
cputime_t cputime)
|
||
|
{
|
||
|
struct thread_group_cputimer *cputimer;
|
||
|
|
||
|
/* tsk == current, ensure it is safe to use ->signal */
|
||
|
if (unlikely(tsk->exit_state))
|
||
|
return;
|
||
|
|
||
|
cputimer = &tsk->signal->cputimer;
|
||
|
|
||
|
if (!cputimer->running)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&cputimer->lock);
|
||
|
cputimer->cputime.utime =
|
||
|
cputime_add(cputimer->cputime.utime, cputime);
|
||
|
spin_unlock(&cputimer->lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* account_group_system_time - Maintain stime for a thread group.
|
||
|
*
|
||
|
* @tsk: Pointer to task structure.
|
||
|
* @cputime: Time value by which to increment the stime field of the
|
||
|
* thread_group_cputime structure.
|
||
|
*
|
||
|
* If thread group time is being maintained, get the structure for the
|
||
|
* running CPU and update the stime field there.
|
||
|
*/
|
||
|
static inline void account_group_system_time(struct task_struct *tsk,
|
||
|
cputime_t cputime)
|
||
|
{
|
||
|
struct thread_group_cputimer *cputimer;
|
||
|
|
||
|
/* tsk == current, ensure it is safe to use ->signal */
|
||
|
if (unlikely(tsk->exit_state))
|
||
|
return;
|
||
|
|
||
|
cputimer = &tsk->signal->cputimer;
|
||
|
|
||
|
if (!cputimer->running)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&cputimer->lock);
|
||
|
cputimer->cputime.stime =
|
||
|
cputime_add(cputimer->cputime.stime, cputime);
|
||
|
spin_unlock(&cputimer->lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* account_group_exec_runtime - Maintain exec runtime for a thread group.
|
||
|
*
|
||
|
* @tsk: Pointer to task structure.
|
||
|
* @ns: Time value by which to increment the sum_exec_runtime field
|
||
|
* of the thread_group_cputime structure.
|
||
|
*
|
||
|
* If thread group time is being maintained, get the structure for the
|
||
|
* running CPU and update the sum_exec_runtime field there.
|
||
|
*/
|
||
|
static inline void account_group_exec_runtime(struct task_struct *tsk,
|
||
|
unsigned long long ns)
|
||
|
{
|
||
|
struct thread_group_cputimer *cputimer;
|
||
|
struct signal_struct *sig;
|
||
|
|
||
|
sig = tsk->signal;
|
||
|
/* see __exit_signal()->task_rq_unlock_wait() */
|
||
|
barrier();
|
||
|
if (unlikely(!sig))
|
||
|
return;
|
||
|
|
||
|
cputimer = &sig->cputimer;
|
||
|
|
||
|
if (!cputimer->running)
|
||
|
return;
|
||
|
|
||
|
spin_lock(&cputimer->lock);
|
||
|
cputimer->cputime.sum_exec_runtime += ns;
|
||
|
spin_unlock(&cputimer->lock);
|
||
|
}
|