557 lines
13 KiB
C
557 lines
13 KiB
C
|
/*
|
||
|
* linux/arch/arm/vfp/vfpmodule.c
|
||
|
*
|
||
|
* Copyright (C) 2004 ARM Limited.
|
||
|
* Written by Deep Blue Solutions Limited.
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License version 2 as
|
||
|
* published by the Free Software Foundation.
|
||
|
*/
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/types.h>
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/signal.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/init.h>
|
||
|
|
||
|
#include <asm/thread_notify.h>
|
||
|
#include <asm/vfp.h>
|
||
|
|
||
|
#include "vfpinstr.h"
|
||
|
#include "vfp.h"
|
||
|
|
||
|
/*
|
||
|
* Our undef handlers (in entry.S)
|
||
|
*/
|
||
|
void vfp_testing_entry(void);
|
||
|
void vfp_support_entry(void);
|
||
|
void vfp_null_entry(void);
|
||
|
|
||
|
void (*vfp_vector)(void) = vfp_null_entry;
|
||
|
union vfp_state *last_VFP_context[NR_CPUS];
|
||
|
|
||
|
/*
|
||
|
* Dual-use variable.
|
||
|
* Used in startup: set to non-zero if VFP checks fail
|
||
|
* After startup, holds VFP architecture
|
||
|
*/
|
||
|
unsigned int VFP_arch;
|
||
|
|
||
|
static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
|
||
|
{
|
||
|
struct thread_info *thread = v;
|
||
|
union vfp_state *vfp;
|
||
|
__u32 cpu = thread->cpu;
|
||
|
|
||
|
if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
|
||
|
u32 fpexc = fmrx(FPEXC);
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/*
|
||
|
* On SMP, if VFP is enabled, save the old state in
|
||
|
* case the thread migrates to a different CPU. The
|
||
|
* restoring is done lazily.
|
||
|
*/
|
||
|
if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
|
||
|
vfp_save_state(last_VFP_context[cpu], fpexc);
|
||
|
last_VFP_context[cpu]->hard.cpu = cpu;
|
||
|
}
|
||
|
/*
|
||
|
* Thread migration, just force the reloading of the
|
||
|
* state on the new CPU in case the VFP registers
|
||
|
* contain stale data.
|
||
|
*/
|
||
|
if (thread->vfpstate.hard.cpu != cpu)
|
||
|
last_VFP_context[cpu] = NULL;
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Always disable VFP so we can lazily save/restore the
|
||
|
* old state.
|
||
|
*/
|
||
|
fmxr(FPEXC, fpexc & ~FPEXC_EN);
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
vfp = &thread->vfpstate;
|
||
|
if (cmd == THREAD_NOTIFY_FLUSH) {
|
||
|
/*
|
||
|
* Per-thread VFP initialisation.
|
||
|
*/
|
||
|
memset(vfp, 0, sizeof(union vfp_state));
|
||
|
|
||
|
vfp->hard.fpexc = FPEXC_EN;
|
||
|
vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
|
||
|
|
||
|
/*
|
||
|
* Disable VFP to ensure we initialise it first.
|
||
|
*/
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
}
|
||
|
|
||
|
/* flush and release case: Per-thread VFP cleanup. */
|
||
|
if (last_VFP_context[cpu] == vfp)
|
||
|
last_VFP_context[cpu] = NULL;
|
||
|
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block vfp_notifier_block = {
|
||
|
.notifier_call = vfp_notifier,
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Raise a SIGFPE for the current process.
|
||
|
* sicode describes the signal being raised.
|
||
|
*/
|
||
|
void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
|
||
|
{
|
||
|
siginfo_t info;
|
||
|
|
||
|
memset(&info, 0, sizeof(info));
|
||
|
|
||
|
info.si_signo = SIGFPE;
|
||
|
info.si_code = sicode;
|
||
|
info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
|
||
|
|
||
|
/*
|
||
|
* This is the same as NWFPE, because it's not clear what
|
||
|
* this is used for
|
||
|
*/
|
||
|
current->thread.error_code = 0;
|
||
|
current->thread.trap_no = 6;
|
||
|
|
||
|
send_sig_info(SIGFPE, &info, current);
|
||
|
}
|
||
|
|
||
|
static void vfp_panic(char *reason, u32 inst)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
printk(KERN_ERR "VFP: Error: %s\n", reason);
|
||
|
printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
|
||
|
fmrx(FPEXC), fmrx(FPSCR), inst);
|
||
|
for (i = 0; i < 32; i += 2)
|
||
|
printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
|
||
|
i, vfp_get_float(i), i+1, vfp_get_float(i+1));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Process bitmask of exception conditions.
|
||
|
*/
|
||
|
static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
|
||
|
{
|
||
|
int si_code = 0;
|
||
|
|
||
|
pr_debug("VFP: raising exceptions %08x\n", exceptions);
|
||
|
|
||
|
if (exceptions == VFP_EXCEPTION_ERROR) {
|
||
|
vfp_panic("unhandled bounce", inst);
|
||
|
vfp_raise_sigfpe(0, regs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Update the FPSCR with the additional exception flags.
|
||
|
* Comparison instructions always return at least one of
|
||
|
* these flags set.
|
||
|
*/
|
||
|
fpscr |= exceptions;
|
||
|
|
||
|
fmxr(FPSCR, fpscr);
|
||
|
|
||
|
#define RAISE(stat,en,sig) \
|
||
|
if (exceptions & stat && fpscr & en) \
|
||
|
si_code = sig;
|
||
|
|
||
|
/*
|
||
|
* These are arranged in priority order, least to highest.
|
||
|
*/
|
||
|
RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
|
||
|
RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
|
||
|
RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
|
||
|
RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
|
||
|
RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
|
||
|
|
||
|
if (si_code)
|
||
|
vfp_raise_sigfpe(si_code, regs);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Emulate a VFP instruction.
|
||
|
*/
|
||
|
static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
|
||
|
{
|
||
|
u32 exceptions = VFP_EXCEPTION_ERROR;
|
||
|
|
||
|
pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
|
||
|
|
||
|
if (INST_CPRTDO(inst)) {
|
||
|
if (!INST_CPRT(inst)) {
|
||
|
/*
|
||
|
* CPDO
|
||
|
*/
|
||
|
if (vfp_single(inst)) {
|
||
|
exceptions = vfp_single_cpdo(inst, fpscr);
|
||
|
} else {
|
||
|
exceptions = vfp_double_cpdo(inst, fpscr);
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* A CPRT instruction can not appear in FPINST2, nor
|
||
|
* can it cause an exception. Therefore, we do not
|
||
|
* have to emulate it.
|
||
|
*/
|
||
|
}
|
||
|
} else {
|
||
|
/*
|
||
|
* A CPDT instruction can not appear in FPINST2, nor can
|
||
|
* it cause an exception. Therefore, we do not have to
|
||
|
* emulate it.
|
||
|
*/
|
||
|
}
|
||
|
return exceptions & ~VFP_NAN_FLAG;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Package up a bounce condition.
|
||
|
*/
|
||
|
void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
|
||
|
{
|
||
|
u32 fpscr, orig_fpscr, fpsid, exceptions;
|
||
|
|
||
|
pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
|
||
|
|
||
|
/*
|
||
|
* At this point, FPEXC can have the following configuration:
|
||
|
*
|
||
|
* EX DEX IXE
|
||
|
* 0 1 x - synchronous exception
|
||
|
* 1 x 0 - asynchronous exception
|
||
|
* 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
|
||
|
* 0 0 1 - synchronous on VFP9 (non-standard subarch 1
|
||
|
* implementation), undefined otherwise
|
||
|
*
|
||
|
* Clear various bits and enable access to the VFP so we can
|
||
|
* handle the bounce.
|
||
|
*/
|
||
|
fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
|
||
|
|
||
|
fpsid = fmrx(FPSID);
|
||
|
orig_fpscr = fpscr = fmrx(FPSCR);
|
||
|
|
||
|
/*
|
||
|
* Check for the special VFP subarch 1 and FPSCR.IXE bit case
|
||
|
*/
|
||
|
if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
|
||
|
&& (fpscr & FPSCR_IXE)) {
|
||
|
/*
|
||
|
* Synchronous exception, emulate the trigger instruction
|
||
|
*/
|
||
|
goto emulate;
|
||
|
}
|
||
|
|
||
|
if (fpexc & FPEXC_EX) {
|
||
|
#ifndef CONFIG_CPU_FEROCEON
|
||
|
/*
|
||
|
* Asynchronous exception. The instruction is read from FPINST
|
||
|
* and the interrupted instruction has to be restarted.
|
||
|
*/
|
||
|
trigger = fmrx(FPINST);
|
||
|
regs->ARM_pc -= 4;
|
||
|
#endif
|
||
|
} else if (!(fpexc & FPEXC_DEX)) {
|
||
|
/*
|
||
|
* Illegal combination of bits. It can be caused by an
|
||
|
* unallocated VFP instruction but with FPSCR.IXE set and not
|
||
|
* on VFP subarch 1.
|
||
|
*/
|
||
|
vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
|
||
|
goto exit;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Modify fpscr to indicate the number of iterations remaining.
|
||
|
* If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
|
||
|
* whether FPEXC.VECITR or FPSCR.LEN is used.
|
||
|
*/
|
||
|
if (fpexc & (FPEXC_EX | FPEXC_VV)) {
|
||
|
u32 len;
|
||
|
|
||
|
len = fpexc + (1 << FPEXC_LENGTH_BIT);
|
||
|
|
||
|
fpscr &= ~FPSCR_LENGTH_MASK;
|
||
|
fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Handle the first FP instruction. We used to take note of the
|
||
|
* FPEXC bounce reason, but this appears to be unreliable.
|
||
|
* Emulate the bounced instruction instead.
|
||
|
*/
|
||
|
exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
|
||
|
if (exceptions)
|
||
|
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
||
|
|
||
|
/*
|
||
|
* If there isn't a second FP instruction, exit now. Note that
|
||
|
* the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
|
||
|
*/
|
||
|
if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
|
||
|
goto exit;
|
||
|
|
||
|
/*
|
||
|
* The barrier() here prevents fpinst2 being read
|
||
|
* before the condition above.
|
||
|
*/
|
||
|
barrier();
|
||
|
trigger = fmrx(FPINST2);
|
||
|
|
||
|
emulate:
|
||
|
exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
|
||
|
if (exceptions)
|
||
|
vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
|
||
|
exit:
|
||
|
preempt_enable();
|
||
|
}
|
||
|
|
||
|
static void vfp_enable(void *unused)
|
||
|
{
|
||
|
u32 access = get_copro_access();
|
||
|
|
||
|
/*
|
||
|
* Enable full access to VFP (cp10 and cp11)
|
||
|
*/
|
||
|
set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
|
||
|
}
|
||
|
|
||
|
int vfp_flush_context(void)
|
||
|
{
|
||
|
unsigned long flags;
|
||
|
struct thread_info *ti;
|
||
|
u32 fpexc;
|
||
|
u32 cpu;
|
||
|
int saved = 0;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
|
||
|
ti = current_thread_info();
|
||
|
fpexc = fmrx(FPEXC);
|
||
|
cpu = ti->cpu;
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
/* On SMP, if VFP is enabled, save the old state */
|
||
|
if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
|
||
|
last_VFP_context[cpu]->hard.cpu = cpu;
|
||
|
#else
|
||
|
/* If there is a VFP context we must save it. */
|
||
|
if (last_VFP_context[cpu]) {
|
||
|
/* Enable VFP so we can save the old state. */
|
||
|
fmxr(FPEXC, fpexc | FPEXC_EN);
|
||
|
isb();
|
||
|
#endif
|
||
|
vfp_save_state(last_VFP_context[cpu], fpexc);
|
||
|
|
||
|
/* disable, just in case */
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
saved = 1;
|
||
|
}
|
||
|
last_VFP_context[cpu] = NULL;
|
||
|
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
return saved;
|
||
|
}
|
||
|
|
||
|
void vfp_reinit(void)
|
||
|
{
|
||
|
/* ensure we have access to the vfp */
|
||
|
vfp_enable(NULL);
|
||
|
|
||
|
/* and disable it to ensure the next usage restores the state */
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef CONFIG_PM
|
||
|
#include <linux/sysdev.h>
|
||
|
|
||
|
static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
|
||
|
{
|
||
|
struct thread_info *ti = current_thread_info();
|
||
|
u32 fpexc = fmrx(FPEXC);
|
||
|
|
||
|
/* if vfp is on, then save state for resumption */
|
||
|
if (fpexc & FPEXC_EN) {
|
||
|
printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
|
||
|
vfp_save_state(&ti->vfpstate, fpexc);
|
||
|
|
||
|
/* disable, just in case */
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
}
|
||
|
|
||
|
/* clear any information we had about last context state */
|
||
|
memset(last_VFP_context, 0, sizeof(last_VFP_context));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int vfp_pm_resume(struct sys_device *dev)
|
||
|
{
|
||
|
/* ensure we have access to the vfp */
|
||
|
vfp_enable(NULL);
|
||
|
|
||
|
/* and disable it to ensure the next usage restores the state */
|
||
|
fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct sysdev_class vfp_pm_sysclass = {
|
||
|
.name = "vfp",
|
||
|
.suspend = vfp_pm_suspend,
|
||
|
.resume = vfp_pm_resume,
|
||
|
};
|
||
|
|
||
|
static struct sys_device vfp_pm_sysdev = {
|
||
|
.cls = &vfp_pm_sysclass,
|
||
|
};
|
||
|
|
||
|
static void vfp_pm_init(void)
|
||
|
{
|
||
|
sysdev_class_register(&vfp_pm_sysclass);
|
||
|
sysdev_register(&vfp_pm_sysdev);
|
||
|
}
|
||
|
|
||
|
|
||
|
#else
|
||
|
static inline void vfp_pm_init(void) { }
|
||
|
#endif /* CONFIG_PM */
|
||
|
|
||
|
/*
|
||
|
* Synchronise the hardware VFP state of a thread other than current with the
|
||
|
* saved one. This function is used by the ptrace mechanism.
|
||
|
*/
|
||
|
#ifdef CONFIG_SMP
|
||
|
void vfp_sync_state(struct thread_info *thread)
|
||
|
{
|
||
|
/*
|
||
|
* On SMP systems, the VFP state is automatically saved at every
|
||
|
* context switch. We mark the thread VFP state as belonging to a
|
||
|
* non-existent CPU so that the saved one will be reloaded when
|
||
|
* needed.
|
||
|
*/
|
||
|
thread->vfpstate.hard.cpu = NR_CPUS;
|
||
|
}
|
||
|
#else
|
||
|
void vfp_sync_state(struct thread_info *thread)
|
||
|
{
|
||
|
unsigned int cpu = get_cpu();
|
||
|
u32 fpexc = fmrx(FPEXC);
|
||
|
|
||
|
/*
|
||
|
* If VFP is enabled, the previous state was already saved and
|
||
|
* last_VFP_context updated.
|
||
|
*/
|
||
|
if (fpexc & FPEXC_EN)
|
||
|
goto out;
|
||
|
|
||
|
if (!last_VFP_context[cpu])
|
||
|
goto out;
|
||
|
|
||
|
/*
|
||
|
* Save the last VFP state on this CPU.
|
||
|
*/
|
||
|
fmxr(FPEXC, fpexc | FPEXC_EN);
|
||
|
vfp_save_state(last_VFP_context[cpu], fpexc);
|
||
|
fmxr(FPEXC, fpexc);
|
||
|
|
||
|
/*
|
||
|
* Set the context to NULL to force a reload the next time the thread
|
||
|
* uses the VFP.
|
||
|
*/
|
||
|
last_VFP_context[cpu] = NULL;
|
||
|
|
||
|
out:
|
||
|
put_cpu();
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#include <linux/smp.h>
|
||
|
|
||
|
/*
|
||
|
* VFP support code initialisation.
|
||
|
*/
|
||
|
static int __init vfp_init(void)
|
||
|
{
|
||
|
unsigned int vfpsid;
|
||
|
unsigned int cpu_arch = cpu_architecture();
|
||
|
|
||
|
if (cpu_arch >= CPU_ARCH_ARMv6)
|
||
|
vfp_enable(NULL);
|
||
|
|
||
|
/*
|
||
|
* First check that there is a VFP that we can use.
|
||
|
* The handler is already setup to just log calls, so
|
||
|
* we just need to read the VFPSID register.
|
||
|
*/
|
||
|
vfp_vector = vfp_testing_entry;
|
||
|
barrier();
|
||
|
vfpsid = fmrx(FPSID);
|
||
|
barrier();
|
||
|
vfp_vector = vfp_null_entry;
|
||
|
|
||
|
printk(KERN_INFO "VFP support v0.3: ");
|
||
|
if (VFP_arch)
|
||
|
printk("not present\n");
|
||
|
else if (vfpsid & FPSID_NODOUBLE) {
|
||
|
printk("no double precision support\n");
|
||
|
} else {
|
||
|
smp_call_function(vfp_enable, NULL, 1);
|
||
|
|
||
|
VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
|
||
|
printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
|
||
|
(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
|
||
|
(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
|
||
|
(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
|
||
|
(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
|
||
|
(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
|
||
|
|
||
|
vfp_vector = vfp_support_entry;
|
||
|
|
||
|
thread_register_notifier(&vfp_notifier_block);
|
||
|
vfp_pm_init();
|
||
|
|
||
|
/*
|
||
|
* We detected VFP, and the support code is
|
||
|
* in place; report VFP support to userspace.
|
||
|
*/
|
||
|
elf_hwcap |= HWCAP_VFP;
|
||
|
#ifdef CONFIG_VFPv3
|
||
|
if (VFP_arch >= 3) {
|
||
|
elf_hwcap |= HWCAP_VFPv3;
|
||
|
|
||
|
/*
|
||
|
* Check for VFPv3 D16. CPUs in this configuration
|
||
|
* only have 16 x 64bit registers.
|
||
|
*/
|
||
|
if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
|
||
|
elf_hwcap |= HWCAP_VFPv3D16;
|
||
|
}
|
||
|
#endif
|
||
|
#ifdef CONFIG_NEON
|
||
|
/*
|
||
|
* Check for the presence of the Advanced SIMD
|
||
|
* load/store instructions, integer and single
|
||
|
* precision floating point operations.
|
||
|
*/
|
||
|
if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
|
||
|
elf_hwcap |= HWCAP_NEON;
|
||
|
#endif
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
late_initcall(vfp_init);
|