android_kernel_cmhtcleo/arch/arm/mach-msm/timer.c

724 lines
21 KiB
C
Raw Normal View History

2010-08-27 09:19:57 +00:00
/* linux/arch/arm/mach-msm/timer.c
*
* Copyright (C) 2007 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/init.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <asm/mach/time.h>
#include <mach/msm_iomap.h>
#include "smd_private.h"
enum {
MSM_TIMER_DEBUG_SYNC_STATE = 1U << 0,
MSM_TIMER_DEBUG_SYNC_UPDATE = 1U << 1,
MSM_TIMER_DEBUG_SYNC = 1U << 2,
};
static int msm_timer_debug_mask;
module_param_named(debug_mask, msm_timer_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP);
#ifdef CONFIG_ARCH_MSM7X30
#define MSM_DGT_BASE (MSM_TMR_BASE + 0x24)
#else
#define MSM_DGT_BASE (MSM_GPT_BASE + 0x10)
#endif
#define TIMER_MATCH_VAL 0x0000
#define TIMER_COUNT_VAL 0x0004
#define TIMER_ENABLE 0x0008
#define TIMER_ENABLE_CLR_ON_MATCH_EN 2
#define TIMER_ENABLE_EN 1
#define TIMER_CLEAR 0x000C
#define CSR_PROTECTION 0x0020
#define CSR_PROTECTION_EN 1
#define GPT_HZ 32768
#ifdef CONFIG_ARCH_MSM7X30
#define DGT_HZ 6144000 /* Uses LPXO/4 (24.576 MHz / 4) */
#define MSM_DGT_SHIFT (0)
#elif CONFIG_ARCH_MSM_SCORPION
#define DGT_HZ (19200000 / 4) /* 19.2 MHz / 4 by default */
#define MSM_DGT_SHIFT (0)
#else
#define DGT_HZ 19200000 /* 19.2 MHz or 600 KHz after shift */
#define MSM_DGT_SHIFT (5)
#endif
enum {
MSM_CLOCK_FLAGS_UNSTABLE_COUNT = 1U << 0,
MSM_CLOCK_FLAGS_ODD_MATCH_WRITE = 1U << 1,
MSM_CLOCK_FLAGS_DELAYED_WRITE_POST = 1U << 2,
};
struct msm_clock {
struct clock_event_device clockevent;
struct clocksource clocksource;
struct irqaction irq;
void __iomem *regbase;
uint32_t freq;
uint32_t shift;
uint32_t flags;
uint32_t write_delay;
uint32_t last_set;
uint32_t offset;
uint32_t alarm_vtime;
uint32_t smem_offset;
uint32_t smem_in_sync;
cycle_t stopped_tick;
int stopped;
};
enum {
MSM_CLOCK_GPT,
MSM_CLOCK_DGT,
};
static struct msm_clock msm_clocks[];
static struct msm_clock *msm_active_clock;
static DEFINE_SPINLOCK(msm_fast_timer_lock);
static int msm_fast_timer_enabled;
static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = dev_id;
if (evt->event_handler)
evt->event_handler(evt);
return IRQ_HANDLED;
}
static uint32_t msm_read_timer_count(struct msm_clock *clock)
{
uint32_t t1, t2;
int loop_count = 0;
t1 = readl(clock->regbase + TIMER_COUNT_VAL);
if (!(clock->flags & MSM_CLOCK_FLAGS_UNSTABLE_COUNT))
return t1;
while (1) {
t2 = readl(clock->regbase + TIMER_COUNT_VAL);
if (t1 == t2)
return t1;
if (loop_count++ > 10) {
printk(KERN_ERR "msm_read_timer_count timer %s did not"
"stabilize %u != %u\n", clock->clockevent.name,
t2, t1);
return t2;
}
t1 = t2;
}
}
static cycle_t msm_gpt_read(struct clocksource *cs)
{
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT];
if (clock->stopped)
return clock->stopped_tick;
else
return msm_read_timer_count(clock) + clock->offset;
}
static cycle_t msm_dgt_read(struct clocksource *cs)
{
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT];
if (clock->stopped)
return clock->stopped_tick;
return (msm_read_timer_count(clock) + clock->offset) >> MSM_DGT_SHIFT;
}
static int msm_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
int i;
struct msm_clock *clock;
uint32_t now;
uint32_t alarm;
int late;
clock = container_of(evt, struct msm_clock, clockevent);
now = msm_read_timer_count(clock);
alarm = now + (cycles << clock->shift);
if (clock->flags & MSM_CLOCK_FLAGS_ODD_MATCH_WRITE)
while (now == clock->last_set)
now = msm_read_timer_count(clock);
writel(alarm, clock->regbase + TIMER_MATCH_VAL);
if (clock->flags & MSM_CLOCK_FLAGS_DELAYED_WRITE_POST) {
/* read the counter four extra times to make sure write posts
before reading the time */
for (i = 0; i < 4; i++)
readl(clock->regbase + TIMER_COUNT_VAL);
}
now = msm_read_timer_count(clock);
clock->last_set = now;
clock->alarm_vtime = alarm + clock->offset;
late = now - alarm;
if (late >= (int)(-clock->write_delay << clock->shift) && late < DGT_HZ*5) {
static int print_limit = 10;
if (print_limit > 0) {
print_limit--;
printk(KERN_NOTICE "msm_timer_set_next_event(%lu) "
"clock %s, alarm already expired, now %x, "
"alarm %x, late %d%s\n",
cycles, clock->clockevent.name, now, alarm, late,
print_limit ? "" : " stop printing");
}
return -ETIME;
}
return 0;
}
static void msm_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
struct msm_clock *clock;
unsigned long irq_flags;
clock = container_of(evt, struct msm_clock, clockevent);
local_irq_save(irq_flags);
switch (mode) {
case CLOCK_EVT_MODE_RESUME:
case CLOCK_EVT_MODE_PERIODIC:
break;
case CLOCK_EVT_MODE_ONESHOT:
clock->stopped = 0;
clock->offset = -msm_read_timer_count(clock) + clock->stopped_tick;
msm_active_clock = clock;
writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
msm_active_clock = NULL;
clock->smem_in_sync = 0;
clock->stopped = 1;
clock->stopped_tick = (msm_read_timer_count(clock) +
clock->offset) >> clock->shift;
writel(0, clock->regbase + TIMER_ENABLE);
break;
}
local_irq_restore(irq_flags);
}
static inline int check_timeout(struct msm_clock *clock, uint32_t timeout)
{
return (int32_t)(msm_read_timer_count(clock) - timeout) <= 0;
}
#ifndef CONFIG_MSM_N_WAY_SMD
static uint32_t msm_timer_sync_smem_clock(int exit_sleep)
{
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT];
uint32_t *smem_clock;
uint32_t smem_clock_val;
uint32_t timeout;
uint32_t entry_time;
uint32_t timeout_delta;
uint32_t last_state;
uint32_t state;
uint32_t new_offset;
smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE,
sizeof(uint32_t));
if (smem_clock == NULL) {
printk(KERN_ERR "no smem clock\n");
return 0;
}
if (!exit_sleep && clock->smem_in_sync)
return 0;
timeout_delta = (clock->freq >> (7 - clock->shift)); /* 7.8ms */
last_state = state = smsm_get_state(SMSM_STATE_MODEM);
if (*smem_clock) {
printk(KERN_INFO "get_smem_clock: invalid start state %x "
"clock %u\n", state, *smem_clock);
smsm_change_state(SMSM_STATE_APPS, SMSM_TIMEWAIT, SMSM_TIMEINIT);
entry_time = msm_read_timer_count(clock);
timeout = entry_time + timeout_delta;
while (*smem_clock != 0 && check_timeout(clock, timeout))
;
if (*smem_clock) {
printk(KERN_INFO "get_smem_clock: timeout still "
"invalid state %x clock %u in %d ticks\n",
state, *smem_clock,
msm_read_timer_count(clock) - entry_time);
return 0;
}
}
entry_time = msm_read_timer_count(clock);
timeout = entry_time + timeout_delta;
smsm_change_state(SMSM_STATE_APPS, SMSM_TIMEINIT, SMSM_TIMEWAIT);
do {
smem_clock_val = *smem_clock;
state = smsm_get_state(SMSM_STATE_MODEM);
if (state != last_state) {
last_state = state;
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC_STATE)
pr_info("get_smem_clock: state %x clock %u\n",
state, smem_clock_val);
}
} while (smem_clock_val == 0 && check_timeout(clock, timeout));
if (smem_clock_val) {
new_offset = smem_clock_val - msm_read_timer_count(clock);
if (clock->offset + clock->smem_offset != new_offset) {
if (exit_sleep)
clock->offset = new_offset - clock->smem_offset;
else
clock->smem_offset = new_offset - clock->offset;
clock->smem_in_sync = 1;
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC_UPDATE)
printk(KERN_INFO "get_smem_clock: state %x "
"clock %u new offset %u+%u\n",
state, smem_clock_val,
clock->offset, clock->smem_offset);
} else if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) {
printk(KERN_INFO "get_smem_clock: state %x "
"clock %u offset %u+%u\n",
state, smem_clock_val,
clock->offset, clock->smem_offset);
}
} else {
printk(KERN_INFO "get_smem_clock: timeout state %x clock %u "
"in %d ticks\n", state, *smem_clock,
msm_read_timer_count(clock) - entry_time);
}
smsm_change_state(SMSM_STATE_APPS, SMSM_TIMEWAIT, SMSM_TIMEINIT);
entry_time = msm_read_timer_count(clock);
timeout = entry_time + timeout_delta;
while (*smem_clock != 0 && check_timeout(clock, timeout)) {
uint32_t astate = smsm_get_state(SMSM_STATE_APPS);
if ((astate & SMSM_TIMEWAIT) || !(astate & SMSM_TIMEINIT)) {
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC_STATE)
pr_info("get_smem_clock: modem overwrote "
"apps state %x\n", astate);
smsm_change_state(SMSM_STATE_APPS,
SMSM_TIMEWAIT, SMSM_TIMEINIT);
}
}
if (*smem_clock)
printk(KERN_INFO "get_smem_clock: exit timeout state %x "
"clock %u in %d ticks\n", state, *smem_clock,
msm_read_timer_count(clock) - entry_time);
return smem_clock_val;
}
#else
/* Time Master State Bits */
#define DEM_TIME_MASTER_TIME_PENDING_APPS BIT(0)
/* Time Slave State Bits */
#define DEM_TIME_SLAVE_TIME_REQUEST 0x0400
#define DEM_TIME_SLAVE_TIME_POLL 0x0800
#define DEM_TIME_SLAVE_TIME_INIT 0x1000
static uint32_t msm_timer_sync_smem_clock(int exit_sleep)
{
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT];
uint32_t *smem_clock;
uint32_t smem_clock_val;
uint32_t bad_clock = 0;
uint32_t timeout;
uint32_t entry_time;
uint32_t timeout_delta;
uint32_t last_state;
uint32_t state;
uint32_t new_offset;
smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE,
sizeof(uint32_t));
if (smem_clock == NULL) {
printk(KERN_ERR "no smem clock\n");
return 0;
}
if (!exit_sleep && clock->smem_in_sync)
return 0;
timeout_delta = (clock->freq >> (7 - clock->shift)); /* 7.8ms */
entry_time = msm_read_timer_count(clock);
last_state = state = smsm_get_state(SMSM_STATE_TIME_MASTER_DEM);
timeout = entry_time + timeout_delta;
while ((smsm_get_state(SMSM_STATE_TIME_MASTER_DEM)
& DEM_TIME_MASTER_TIME_PENDING_APPS)
&& check_timeout(clock, timeout))
;
if ((smsm_get_state(SMSM_STATE_TIME_MASTER_DEM) &
DEM_TIME_MASTER_TIME_PENDING_APPS)) {
printk(KERN_INFO "get_smem_clock: invalid start state %x "
"clock %u in %d ticks\n",
state, *smem_clock,
msm_read_timer_count(clock) - entry_time);
bad_clock = *smem_clock;
}
entry_time = msm_read_timer_count(clock);
timeout = entry_time + timeout_delta;
smsm_change_state(SMSM_STATE_APPS_DEM,
DEM_TIME_SLAVE_TIME_INIT, DEM_TIME_SLAVE_TIME_REQUEST);
while (!(smsm_get_state(SMSM_STATE_TIME_MASTER_DEM)
& DEM_TIME_MASTER_TIME_PENDING_APPS)
&& check_timeout(clock, timeout))
;
if (!(smsm_get_state(SMSM_STATE_TIME_MASTER_DEM) &
DEM_TIME_MASTER_TIME_PENDING_APPS)) {
printk(KERN_INFO "get_smem_clock: invalid start state %x "
"clock %u in %d ticks\n",
state, *smem_clock,
msm_read_timer_count(clock) - entry_time);
bad_clock = *smem_clock;
}
smsm_change_state(SMSM_STATE_APPS_DEM,
DEM_TIME_SLAVE_TIME_REQUEST, DEM_TIME_SLAVE_TIME_POLL);
do {
smem_clock_val = *smem_clock;
state = smsm_get_state(SMSM_STATE_TIME_MASTER_DEM);
if (state != last_state) {
last_state = state;
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC_STATE)
pr_info("get_smem_clock: state %x clock %u\n",
state, smem_clock_val);
}
} while ((!smem_clock_val || smem_clock_val == bad_clock)
&& check_timeout(clock, timeout));
if (smem_clock_val && smem_clock_val != bad_clock) {
new_offset = smem_clock_val - msm_read_timer_count(clock);
if (clock->offset + clock->smem_offset != new_offset) {
if (exit_sleep)
clock->offset = new_offset - clock->smem_offset;
else
clock->smem_offset = new_offset - clock->offset;
clock->smem_in_sync = 1;
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC_UPDATE)
printk(KERN_INFO "get_smem_clock: state %x "
"clock %u new offset %u+%u\n",
state, smem_clock_val,
clock->offset, clock->smem_offset);
} else if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC) {
printk(KERN_INFO "get_smem_clock: state %x "
"clock %u offset %u+%u\n",
state, smem_clock_val,
clock->offset, clock->smem_offset);
}
} else {
printk(KERN_INFO "get_smem_clock: timeout state %x clock %u "
"in %d ticks\n", state, *smem_clock,
msm_read_timer_count(clock) - entry_time);
}
smsm_change_state(SMSM_STATE_APPS_DEM,
DEM_TIME_SLAVE_TIME_POLL, DEM_TIME_SLAVE_TIME_INIT);
#if 1 /* debug */
entry_time = msm_read_timer_count(clock);
timeout = entry_time + timeout_delta;
while ((smsm_get_state(SMSM_STATE_TIME_MASTER_DEM)
& DEM_TIME_MASTER_TIME_PENDING_APPS)
&& check_timeout(clock, timeout))
;
if (smsm_get_state(SMSM_STATE_TIME_MASTER_DEM) &
DEM_TIME_MASTER_TIME_PENDING_APPS)
printk(KERN_INFO "get_smem_clock: exit timeout state %x "
"clock %u in %d ticks\n", state, *smem_clock,
msm_read_timer_count(clock) - entry_time);
#endif
return smem_clock_val;
}
#endif
static void msm_timer_reactivate_alarm(struct msm_clock *clock)
{
long alarm_delta = clock->alarm_vtime - clock->offset -
msm_read_timer_count(clock);
if (alarm_delta < (long)clock->write_delay + 4)
alarm_delta = clock->write_delay + 4;
while (msm_timer_set_next_event(alarm_delta, &clock->clockevent))
;
}
int64_t msm_timer_enter_idle(void)
{
struct msm_clock *clock = msm_active_clock;
uint32_t alarm;
uint32_t count;
int32_t delta;
if (clock != &msm_clocks[MSM_CLOCK_GPT] || msm_fast_timer_enabled)
return 0;
msm_timer_sync_smem_clock(0);
count = msm_read_timer_count(clock);
if (clock->stopped++ == 0)
clock->stopped_tick = (count + clock->offset) >> clock->shift;
alarm = clock->alarm_vtime - clock->offset;
delta = alarm - count;
if (delta <= -(int32_t)((clock->freq << clock->shift) >> 10)) {
/* timer should have triggered 1ms ago */
printk(KERN_ERR "msm_timer_enter_idle: timer late %d, "
"reprogram it\n", delta);
msm_timer_reactivate_alarm(clock);
}
if (delta <= 0)
return 0;
return clocksource_cyc2ns((alarm - count) >> clock->shift,
clock->clocksource.mult, clock->clocksource.shift);
}
void msm_timer_exit_idle(int low_power)
{
struct msm_clock *clock = msm_active_clock;
uint32_t smem_clock;
if (clock != &msm_clocks[MSM_CLOCK_GPT])
return;
if (low_power) {
if (!(readl(clock->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN)) {
writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
smem_clock = msm_timer_sync_smem_clock(1);
}
msm_timer_reactivate_alarm(clock);
}
clock->stopped--;
}
unsigned long long sched_clock(void)
{
static cycle_t saved_ticks;
static int saved_ticks_valid;
static unsigned long long base;
static unsigned long long last_result;
unsigned long irq_flags;
static cycle_t last_ticks;
cycle_t ticks;
static unsigned long long result;
struct clocksource *cs;
struct msm_clock *clock = msm_active_clock;
local_irq_save(irq_flags);
if (clock) {
cs = &clock->clocksource;
last_ticks = saved_ticks;
saved_ticks = ticks = cs->read(cs);
if (!saved_ticks_valid) {
saved_ticks_valid = 1;
last_ticks = ticks;
base -= clocksource_cyc2ns(ticks, cs->mult, cs->shift);
}
if (ticks < last_ticks) {
base += clocksource_cyc2ns(cs->mask,
cs->mult, cs->shift);
base += clocksource_cyc2ns(1, cs->mult, cs->shift);
}
last_result = result =
clocksource_cyc2ns(ticks, cs->mult, cs->shift) + base;
} else {
base = result = last_result;
saved_ticks_valid = 0;
}
local_irq_restore(irq_flags);
return result;
}
#ifdef CONFIG_MSM7X00A_USE_GP_TIMER
#define DG_TIMER_RATING 100
#else
#define DG_TIMER_RATING 300
#endif
static struct msm_clock msm_clocks[] = {
[MSM_CLOCK_GPT] = {
.clockevent = {
.name = "gp_timer",
.features = CLOCK_EVT_FEAT_ONESHOT,
.shift = 32,
.rating = 200,
.set_next_event = msm_timer_set_next_event,
.set_mode = msm_timer_set_mode,
},
.clocksource = {
.name = "gp_timer",
.rating = 200,
.read = msm_gpt_read,
.mask = CLOCKSOURCE_MASK(32),
.shift = 17,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
},
.irq = {
.name = "gp_timer",
.flags = IRQF_DISABLED | IRQF_TIMER |
IRQF_TRIGGER_RISING,
.handler = msm_timer_interrupt,
.dev_id = &msm_clocks[0].clockevent,
.irq = INT_GP_TIMER_EXP
},
#if defined(CONFIG_ARCH_MSM7X30)
.regbase = MSM_TMR_BASE + 4,
#else
.regbase = MSM_GPT_BASE,
#endif
.freq = GPT_HZ,
.flags =
MSM_CLOCK_FLAGS_UNSTABLE_COUNT |
MSM_CLOCK_FLAGS_ODD_MATCH_WRITE |
MSM_CLOCK_FLAGS_DELAYED_WRITE_POST,
.write_delay = 9,
},
[MSM_CLOCK_DGT] = {
.clockevent = {
.name = "dg_timer",
.features = CLOCK_EVT_FEAT_ONESHOT,
.shift = 32 + MSM_DGT_SHIFT,
.rating = DG_TIMER_RATING,
.set_next_event = msm_timer_set_next_event,
.set_mode = msm_timer_set_mode,
},
.clocksource = {
.name = "dg_timer",
.rating = DG_TIMER_RATING,
.read = msm_dgt_read,
.mask = CLOCKSOURCE_MASK((32-MSM_DGT_SHIFT)),
.shift = 24 - MSM_DGT_SHIFT,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
},
.irq = {
.name = "dg_timer",
.flags = IRQF_DISABLED | IRQF_TIMER |
IRQF_TRIGGER_RISING,
.handler = msm_timer_interrupt,
.dev_id = &msm_clocks[1].clockevent,
.irq = INT_DEBUG_TIMER_EXP
},
.regbase = MSM_DGT_BASE,
.freq = DGT_HZ >> MSM_DGT_SHIFT,
.shift = MSM_DGT_SHIFT,
.write_delay = 2,
}
};
/**
* msm_enable_fast_timer - Enable fast timer
*
* Prevents low power idle, but the caller must call msm_disable_fast_timer
* before suspend completes.
* Reference counted.
*/
void msm_enable_fast_timer(void)
{
u32 max;
unsigned long irq_flags;
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT];
spin_lock_irqsave(&msm_fast_timer_lock, irq_flags);
if (msm_fast_timer_enabled++)
goto done;
if (msm_active_clock == &msm_clocks[MSM_CLOCK_DGT]) {
pr_warning("msm_enable_fast_timer: timer already in use, "
"returned time will jump when hardware timer wraps\n");
goto done;
}
max = (clock->clockevent.mult >> (clock->clockevent.shift - 32)) - 1;
writel(max, clock->regbase + TIMER_MATCH_VAL);
writel(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN,
clock->regbase + TIMER_ENABLE);
done:
spin_unlock_irqrestore(&msm_fast_timer_lock, irq_flags);
}
/**
* msm_enable_fast_timer - Disable fast timer
*/
void msm_disable_fast_timer(void)
{
unsigned long irq_flags;
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT];
spin_lock_irqsave(&msm_fast_timer_lock, irq_flags);
if (!WARN(!msm_fast_timer_enabled, "msm_disable_fast_timer undeflow")
&& !--msm_fast_timer_enabled
&& msm_active_clock != &msm_clocks[MSM_CLOCK_DGT])
writel(0, clock->regbase + TIMER_ENABLE);
spin_unlock_irqrestore(&msm_fast_timer_lock, irq_flags);
}
/**
* msm_enable_fast_timer - Read fast timer
*
* Returns 32bit nanosecond time value.
*/
u32 msm_read_fast_timer(void)
{
cycle_t ticks;
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT];
ticks = msm_read_timer_count(clock) >> MSM_DGT_SHIFT;
return clocksource_cyc2ns(ticks, clock->clocksource.mult,
clock->clocksource.shift);
}
static void __init msm_timer_init(void)
{
int i;
int res;
for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) {
struct msm_clock *clock = &msm_clocks[i];
struct clock_event_device *ce = &clock->clockevent;
struct clocksource *cs = &clock->clocksource;
writel(0, clock->regbase + TIMER_ENABLE);
// The timer should be cleared by setting the first bit.
writel(1, clock->regbase + TIMER_CLEAR);
writel(0, clock->regbase + TIMER_COUNT_VAL);
2010-08-27 09:19:57 +00:00
writel(~0, clock->regbase + TIMER_MATCH_VAL);
while (msm_read_timer_count(clock)) ; /* wait for clock to clear */
ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift);
/* allow at least 10 seconds to notice that the timer wrapped */
ce->max_delta_ns =
clockevent_delta2ns(0xf0000000 >> clock->shift, ce);
/* ticks gets rounded down by one */
ce->min_delta_ns =
clockevent_delta2ns(clock->write_delay + 4, ce);
ce->cpumask = cpumask_of(0);
cs->mult = clocksource_hz2mult(clock->freq, cs->shift);
res = clocksource_register(cs);
if (res)
printk(KERN_ERR "msm_timer_init: clocksource_register "
"failed for %s\n", cs->name);
res = setup_irq(clock->irq.irq, &clock->irq);
if (res)
printk(KERN_ERR "msm_timer_init: setup_irq "
"failed for %s\n", cs->name);
clockevents_register_device(ce);
}
}
struct sys_timer msm_timer = {
.init = msm_timer_init
};