970 lines
25 KiB
C
970 lines
25 KiB
C
|
#include <linux/kernel.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/timer.h>
|
||
|
#include <linux/acpi_pmtmr.h>
|
||
|
#include <linux/cpufreq.h>
|
||
|
#include <linux/dmi.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/clocksource.h>
|
||
|
#include <linux/percpu.h>
|
||
|
#include <linux/timex.h>
|
||
|
|
||
|
#include <asm/hpet.h>
|
||
|
#include <asm/timer.h>
|
||
|
#include <asm/vgtod.h>
|
||
|
#include <asm/time.h>
|
||
|
#include <asm/delay.h>
|
||
|
#include <asm/hypervisor.h>
|
||
|
#include <asm/nmi.h>
|
||
|
#include <asm/x86_init.h>
|
||
|
|
||
|
unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
|
||
|
EXPORT_SYMBOL(cpu_khz);
|
||
|
|
||
|
unsigned int __read_mostly tsc_khz;
|
||
|
EXPORT_SYMBOL(tsc_khz);
|
||
|
|
||
|
/*
|
||
|
* TSC can be unstable due to cpufreq or due to unsynced TSCs
|
||
|
*/
|
||
|
static int __read_mostly tsc_unstable;
|
||
|
|
||
|
/* native_sched_clock() is called before tsc_init(), so
|
||
|
we must start with the TSC soft disabled to prevent
|
||
|
erroneous rdtsc usage on !cpu_has_tsc processors */
|
||
|
static int __read_mostly tsc_disabled = -1;
|
||
|
|
||
|
static int tsc_clocksource_reliable;
|
||
|
/*
|
||
|
* Scheduler clock - returns current time in nanosec units.
|
||
|
*/
|
||
|
u64 native_sched_clock(void)
|
||
|
{
|
||
|
u64 this_offset;
|
||
|
|
||
|
/*
|
||
|
* Fall back to jiffies if there's no TSC available:
|
||
|
* ( But note that we still use it if the TSC is marked
|
||
|
* unstable. We do this because unlike Time Of Day,
|
||
|
* the scheduler clock tolerates small errors and it's
|
||
|
* very important for it to be as fast as the platform
|
||
|
* can achive it. )
|
||
|
*/
|
||
|
if (unlikely(tsc_disabled)) {
|
||
|
/* No locking but a rare wrong value is not a big deal: */
|
||
|
return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
|
||
|
}
|
||
|
|
||
|
/* read the Time Stamp Counter: */
|
||
|
rdtscll(this_offset);
|
||
|
|
||
|
/* return the value in ns */
|
||
|
return __cycles_2_ns(this_offset);
|
||
|
}
|
||
|
|
||
|
/* We need to define a real function for sched_clock, to override the
|
||
|
weak default version */
|
||
|
#ifdef CONFIG_PARAVIRT
|
||
|
unsigned long long sched_clock(void)
|
||
|
{
|
||
|
return paravirt_sched_clock();
|
||
|
}
|
||
|
#else
|
||
|
unsigned long long
|
||
|
sched_clock(void) __attribute__((alias("native_sched_clock")));
|
||
|
#endif
|
||
|
|
||
|
int check_tsc_unstable(void)
|
||
|
{
|
||
|
return tsc_unstable;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(check_tsc_unstable);
|
||
|
|
||
|
#ifdef CONFIG_X86_TSC
|
||
|
int __init notsc_setup(char *str)
|
||
|
{
|
||
|
printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
|
||
|
"cannot disable TSC completely.\n");
|
||
|
tsc_disabled = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
#else
|
||
|
/*
|
||
|
* disable flag for tsc. Takes effect by clearing the TSC cpu flag
|
||
|
* in cpu/common.c
|
||
|
*/
|
||
|
int __init notsc_setup(char *str)
|
||
|
{
|
||
|
setup_clear_cpu_cap(X86_FEATURE_TSC);
|
||
|
return 1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
__setup("notsc", notsc_setup);
|
||
|
|
||
|
static int __init tsc_setup(char *str)
|
||
|
{
|
||
|
if (!strcmp(str, "reliable"))
|
||
|
tsc_clocksource_reliable = 1;
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
__setup("tsc=", tsc_setup);
|
||
|
|
||
|
#define MAX_RETRIES 5
|
||
|
#define SMI_TRESHOLD 50000
|
||
|
|
||
|
/*
|
||
|
* Read TSC and the reference counters. Take care of SMI disturbance
|
||
|
*/
|
||
|
static u64 tsc_read_refs(u64 *p, int hpet)
|
||
|
{
|
||
|
u64 t1, t2;
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < MAX_RETRIES; i++) {
|
||
|
t1 = get_cycles();
|
||
|
if (hpet)
|
||
|
*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
|
||
|
else
|
||
|
*p = acpi_pm_read_early();
|
||
|
t2 = get_cycles();
|
||
|
if ((t2 - t1) < SMI_TRESHOLD)
|
||
|
return t2;
|
||
|
}
|
||
|
return ULLONG_MAX;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the TSC frequency from HPET reference
|
||
|
*/
|
||
|
static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
|
||
|
{
|
||
|
u64 tmp;
|
||
|
|
||
|
if (hpet2 < hpet1)
|
||
|
hpet2 += 0x100000000ULL;
|
||
|
hpet2 -= hpet1;
|
||
|
tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
|
||
|
do_div(tmp, 1000000);
|
||
|
do_div(deltatsc, tmp);
|
||
|
|
||
|
return (unsigned long) deltatsc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Calculate the TSC frequency from PMTimer reference
|
||
|
*/
|
||
|
static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
|
||
|
{
|
||
|
u64 tmp;
|
||
|
|
||
|
if (!pm1 && !pm2)
|
||
|
return ULONG_MAX;
|
||
|
|
||
|
if (pm2 < pm1)
|
||
|
pm2 += (u64)ACPI_PM_OVRRUN;
|
||
|
pm2 -= pm1;
|
||
|
tmp = pm2 * 1000000000LL;
|
||
|
do_div(tmp, PMTMR_TICKS_PER_SEC);
|
||
|
do_div(deltatsc, tmp);
|
||
|
|
||
|
return (unsigned long) deltatsc;
|
||
|
}
|
||
|
|
||
|
#define CAL_MS 10
|
||
|
#define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
|
||
|
#define CAL_PIT_LOOPS 1000
|
||
|
|
||
|
#define CAL2_MS 50
|
||
|
#define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
|
||
|
#define CAL2_PIT_LOOPS 5000
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Try to calibrate the TSC against the Programmable
|
||
|
* Interrupt Timer and return the frequency of the TSC
|
||
|
* in kHz.
|
||
|
*
|
||
|
* Return ULONG_MAX on failure to calibrate.
|
||
|
*/
|
||
|
static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
|
||
|
{
|
||
|
u64 tsc, t1, t2, delta;
|
||
|
unsigned long tscmin, tscmax;
|
||
|
int pitcnt;
|
||
|
|
||
|
/* Set the Gate high, disable speaker */
|
||
|
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
||
|
|
||
|
/*
|
||
|
* Setup CTC channel 2* for mode 0, (interrupt on terminal
|
||
|
* count mode), binary count. Set the latch register to 50ms
|
||
|
* (LSB then MSB) to begin countdown.
|
||
|
*/
|
||
|
outb(0xb0, 0x43);
|
||
|
outb(latch & 0xff, 0x42);
|
||
|
outb(latch >> 8, 0x42);
|
||
|
|
||
|
tsc = t1 = t2 = get_cycles();
|
||
|
|
||
|
pitcnt = 0;
|
||
|
tscmax = 0;
|
||
|
tscmin = ULONG_MAX;
|
||
|
while ((inb(0x61) & 0x20) == 0) {
|
||
|
t2 = get_cycles();
|
||
|
delta = t2 - tsc;
|
||
|
tsc = t2;
|
||
|
if ((unsigned long) delta < tscmin)
|
||
|
tscmin = (unsigned int) delta;
|
||
|
if ((unsigned long) delta > tscmax)
|
||
|
tscmax = (unsigned int) delta;
|
||
|
pitcnt++;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Sanity checks:
|
||
|
*
|
||
|
* If we were not able to read the PIT more than loopmin
|
||
|
* times, then we have been hit by a massive SMI
|
||
|
*
|
||
|
* If the maximum is 10 times larger than the minimum,
|
||
|
* then we got hit by an SMI as well.
|
||
|
*/
|
||
|
if (pitcnt < loopmin || tscmax > 10 * tscmin)
|
||
|
return ULONG_MAX;
|
||
|
|
||
|
/* Calculate the PIT value */
|
||
|
delta = t2 - t1;
|
||
|
do_div(delta, ms);
|
||
|
return delta;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This reads the current MSB of the PIT counter, and
|
||
|
* checks if we are running on sufficiently fast and
|
||
|
* non-virtualized hardware.
|
||
|
*
|
||
|
* Our expectations are:
|
||
|
*
|
||
|
* - the PIT is running at roughly 1.19MHz
|
||
|
*
|
||
|
* - each IO is going to take about 1us on real hardware,
|
||
|
* but we allow it to be much faster (by a factor of 10) or
|
||
|
* _slightly_ slower (ie we allow up to a 2us read+counter
|
||
|
* update - anything else implies a unacceptably slow CPU
|
||
|
* or PIT for the fast calibration to work.
|
||
|
*
|
||
|
* - with 256 PIT ticks to read the value, we have 214us to
|
||
|
* see the same MSB (and overhead like doing a single TSC
|
||
|
* read per MSB value etc).
|
||
|
*
|
||
|
* - We're doing 2 reads per loop (LSB, MSB), and we expect
|
||
|
* them each to take about a microsecond on real hardware.
|
||
|
* So we expect a count value of around 100. But we'll be
|
||
|
* generous, and accept anything over 50.
|
||
|
*
|
||
|
* - if the PIT is stuck, and we see *many* more reads, we
|
||
|
* return early (and the next caller of pit_expect_msb()
|
||
|
* then consider it a failure when they don't see the
|
||
|
* next expected value).
|
||
|
*
|
||
|
* These expectations mean that we know that we have seen the
|
||
|
* transition from one expected value to another with a fairly
|
||
|
* high accuracy, and we didn't miss any events. We can thus
|
||
|
* use the TSC value at the transitions to calculate a pretty
|
||
|
* good value for the TSC frequencty.
|
||
|
*/
|
||
|
static inline int pit_verify_msb(unsigned char val)
|
||
|
{
|
||
|
/* Ignore LSB */
|
||
|
inb(0x42);
|
||
|
return inb(0x42) == val;
|
||
|
}
|
||
|
|
||
|
static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
|
||
|
{
|
||
|
int count;
|
||
|
u64 tsc = 0;
|
||
|
|
||
|
for (count = 0; count < 50000; count++) {
|
||
|
if (!pit_verify_msb(val))
|
||
|
break;
|
||
|
tsc = get_cycles();
|
||
|
}
|
||
|
*deltap = get_cycles() - tsc;
|
||
|
*tscp = tsc;
|
||
|
|
||
|
/*
|
||
|
* We require _some_ success, but the quality control
|
||
|
* will be based on the error terms on the TSC values.
|
||
|
*/
|
||
|
return count > 5;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* How many MSB values do we want to see? We aim for
|
||
|
* a maximum error rate of 500ppm (in practice the
|
||
|
* real error is much smaller), but refuse to spend
|
||
|
* more than 25ms on it.
|
||
|
*/
|
||
|
#define MAX_QUICK_PIT_MS 25
|
||
|
#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
|
||
|
|
||
|
static unsigned long quick_pit_calibrate(void)
|
||
|
{
|
||
|
int i;
|
||
|
u64 tsc, delta;
|
||
|
unsigned long d1, d2;
|
||
|
|
||
|
/* Set the Gate high, disable speaker */
|
||
|
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
|
||
|
|
||
|
/*
|
||
|
* Counter 2, mode 0 (one-shot), binary count
|
||
|
*
|
||
|
* NOTE! Mode 2 decrements by two (and then the
|
||
|
* output is flipped each time, giving the same
|
||
|
* final output frequency as a decrement-by-one),
|
||
|
* so mode 0 is much better when looking at the
|
||
|
* individual counts.
|
||
|
*/
|
||
|
outb(0xb0, 0x43);
|
||
|
|
||
|
/* Start at 0xffff */
|
||
|
outb(0xff, 0x42);
|
||
|
outb(0xff, 0x42);
|
||
|
|
||
|
/*
|
||
|
* The PIT starts counting at the next edge, so we
|
||
|
* need to delay for a microsecond. The easiest way
|
||
|
* to do that is to just read back the 16-bit counter
|
||
|
* once from the PIT.
|
||
|
*/
|
||
|
pit_verify_msb(0);
|
||
|
|
||
|
if (pit_expect_msb(0xff, &tsc, &d1)) {
|
||
|
for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
|
||
|
if (!pit_expect_msb(0xff-i, &delta, &d2))
|
||
|
break;
|
||
|
|
||
|
/*
|
||
|
* Iterate until the error is less than 500 ppm
|
||
|
*/
|
||
|
delta -= tsc;
|
||
|
if (d1+d2 >= delta >> 11)
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* Check the PIT one more time to verify that
|
||
|
* all TSC reads were stable wrt the PIT.
|
||
|
*
|
||
|
* This also guarantees serialization of the
|
||
|
* last cycle read ('d2') in pit_expect_msb.
|
||
|
*/
|
||
|
if (!pit_verify_msb(0xfe - i))
|
||
|
break;
|
||
|
goto success;
|
||
|
}
|
||
|
}
|
||
|
printk("Fast TSC calibration failed\n");
|
||
|
return 0;
|
||
|
|
||
|
success:
|
||
|
/*
|
||
|
* Ok, if we get here, then we've seen the
|
||
|
* MSB of the PIT decrement 'i' times, and the
|
||
|
* error has shrunk to less than 500 ppm.
|
||
|
*
|
||
|
* As a result, we can depend on there not being
|
||
|
* any odd delays anywhere, and the TSC reads are
|
||
|
* reliable (within the error). We also adjust the
|
||
|
* delta to the middle of the error bars, just
|
||
|
* because it looks nicer.
|
||
|
*
|
||
|
* kHz = ticks / time-in-seconds / 1000;
|
||
|
* kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
|
||
|
* kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
|
||
|
*/
|
||
|
delta += (long)(d2 - d1)/2;
|
||
|
delta *= PIT_TICK_RATE;
|
||
|
do_div(delta, i*256*1000);
|
||
|
printk("Fast TSC calibration using PIT\n");
|
||
|
return delta;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* native_calibrate_tsc - calibrate the tsc on boot
|
||
|
*/
|
||
|
unsigned long native_calibrate_tsc(void)
|
||
|
{
|
||
|
u64 tsc1, tsc2, delta, ref1, ref2;
|
||
|
unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
|
||
|
unsigned long flags, latch, ms, fast_calibrate;
|
||
|
int hpet = is_hpet_enabled(), i, loopmin;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
fast_calibrate = quick_pit_calibrate();
|
||
|
local_irq_restore(flags);
|
||
|
if (fast_calibrate)
|
||
|
return fast_calibrate;
|
||
|
|
||
|
/*
|
||
|
* Run 5 calibration loops to get the lowest frequency value
|
||
|
* (the best estimate). We use two different calibration modes
|
||
|
* here:
|
||
|
*
|
||
|
* 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
|
||
|
* load a timeout of 50ms. We read the time right after we
|
||
|
* started the timer and wait until the PIT count down reaches
|
||
|
* zero. In each wait loop iteration we read the TSC and check
|
||
|
* the delta to the previous read. We keep track of the min
|
||
|
* and max values of that delta. The delta is mostly defined
|
||
|
* by the IO time of the PIT access, so we can detect when a
|
||
|
* SMI/SMM disturbance happend between the two reads. If the
|
||
|
* maximum time is significantly larger than the minimum time,
|
||
|
* then we discard the result and have another try.
|
||
|
*
|
||
|
* 2) Reference counter. If available we use the HPET or the
|
||
|
* PMTIMER as a reference to check the sanity of that value.
|
||
|
* We use separate TSC readouts and check inside of the
|
||
|
* reference read for a SMI/SMM disturbance. We dicard
|
||
|
* disturbed values here as well. We do that around the PIT
|
||
|
* calibration delay loop as we have to wait for a certain
|
||
|
* amount of time anyway.
|
||
|
*/
|
||
|
|
||
|
/* Preset PIT loop values */
|
||
|
latch = CAL_LATCH;
|
||
|
ms = CAL_MS;
|
||
|
loopmin = CAL_PIT_LOOPS;
|
||
|
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
unsigned long tsc_pit_khz;
|
||
|
|
||
|
/*
|
||
|
* Read the start value and the reference count of
|
||
|
* hpet/pmtimer when available. Then do the PIT
|
||
|
* calibration, which will take at least 50ms, and
|
||
|
* read the end value.
|
||
|
*/
|
||
|
local_irq_save(flags);
|
||
|
tsc1 = tsc_read_refs(&ref1, hpet);
|
||
|
tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
|
||
|
tsc2 = tsc_read_refs(&ref2, hpet);
|
||
|
local_irq_restore(flags);
|
||
|
|
||
|
/* Pick the lowest PIT TSC calibration so far */
|
||
|
tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
|
||
|
|
||
|
/* hpet or pmtimer available ? */
|
||
|
if (!hpet && !ref1 && !ref2)
|
||
|
continue;
|
||
|
|
||
|
/* Check, whether the sampling was disturbed by an SMI */
|
||
|
if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
|
||
|
continue;
|
||
|
|
||
|
tsc2 = (tsc2 - tsc1) * 1000000LL;
|
||
|
if (hpet)
|
||
|
tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
|
||
|
else
|
||
|
tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
|
||
|
|
||
|
tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
|
||
|
|
||
|
/* Check the reference deviation */
|
||
|
delta = ((u64) tsc_pit_min) * 100;
|
||
|
do_div(delta, tsc_ref_min);
|
||
|
|
||
|
/*
|
||
|
* If both calibration results are inside a 10% window
|
||
|
* then we can be sure, that the calibration
|
||
|
* succeeded. We break out of the loop right away. We
|
||
|
* use the reference value, as it is more precise.
|
||
|
*/
|
||
|
if (delta >= 90 && delta <= 110) {
|
||
|
printk(KERN_INFO
|
||
|
"TSC: PIT calibration matches %s. %d loops\n",
|
||
|
hpet ? "HPET" : "PMTIMER", i + 1);
|
||
|
return tsc_ref_min;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Check whether PIT failed more than once. This
|
||
|
* happens in virtualized environments. We need to
|
||
|
* give the virtual PC a slightly longer timeframe for
|
||
|
* the HPET/PMTIMER to make the result precise.
|
||
|
*/
|
||
|
if (i == 1 && tsc_pit_min == ULONG_MAX) {
|
||
|
latch = CAL2_LATCH;
|
||
|
ms = CAL2_MS;
|
||
|
loopmin = CAL2_PIT_LOOPS;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Now check the results.
|
||
|
*/
|
||
|
if (tsc_pit_min == ULONG_MAX) {
|
||
|
/* PIT gave no useful value */
|
||
|
printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
|
||
|
|
||
|
/* We don't have an alternative source, disable TSC */
|
||
|
if (!hpet && !ref1 && !ref2) {
|
||
|
printk("TSC: No reference (HPET/PMTIMER) available\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* The alternative source failed as well, disable TSC */
|
||
|
if (tsc_ref_min == ULONG_MAX) {
|
||
|
printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
|
||
|
"failed.\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* Use the alternative source */
|
||
|
printk(KERN_INFO "TSC: using %s reference calibration\n",
|
||
|
hpet ? "HPET" : "PMTIMER");
|
||
|
|
||
|
return tsc_ref_min;
|
||
|
}
|
||
|
|
||
|
/* We don't have an alternative source, use the PIT calibration value */
|
||
|
if (!hpet && !ref1 && !ref2) {
|
||
|
printk(KERN_INFO "TSC: Using PIT calibration value\n");
|
||
|
return tsc_pit_min;
|
||
|
}
|
||
|
|
||
|
/* The alternative source failed, use the PIT calibration value */
|
||
|
if (tsc_ref_min == ULONG_MAX) {
|
||
|
printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
|
||
|
"Using PIT calibration\n");
|
||
|
return tsc_pit_min;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The calibration values differ too much. In doubt, we use
|
||
|
* the PIT value as we know that there are PMTIMERs around
|
||
|
* running at double speed. At least we let the user know:
|
||
|
*/
|
||
|
printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
|
||
|
hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
|
||
|
printk(KERN_INFO "TSC: Using PIT calibration value\n");
|
||
|
return tsc_pit_min;
|
||
|
}
|
||
|
|
||
|
int recalibrate_cpu_khz(void)
|
||
|
{
|
||
|
#ifndef CONFIG_SMP
|
||
|
unsigned long cpu_khz_old = cpu_khz;
|
||
|
|
||
|
if (cpu_has_tsc) {
|
||
|
tsc_khz = x86_platform.calibrate_tsc();
|
||
|
cpu_khz = tsc_khz;
|
||
|
cpu_data(0).loops_per_jiffy =
|
||
|
cpufreq_scale(cpu_data(0).loops_per_jiffy,
|
||
|
cpu_khz_old, cpu_khz);
|
||
|
return 0;
|
||
|
} else
|
||
|
return -ENODEV;
|
||
|
#else
|
||
|
return -ENODEV;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL(recalibrate_cpu_khz);
|
||
|
|
||
|
|
||
|
/* Accelerators for sched_clock()
|
||
|
* convert from cycles(64bits) => nanoseconds (64bits)
|
||
|
* basic equation:
|
||
|
* ns = cycles / (freq / ns_per_sec)
|
||
|
* ns = cycles * (ns_per_sec / freq)
|
||
|
* ns = cycles * (10^9 / (cpu_khz * 10^3))
|
||
|
* ns = cycles * (10^6 / cpu_khz)
|
||
|
*
|
||
|
* Then we use scaling math (suggested by george@mvista.com) to get:
|
||
|
* ns = cycles * (10^6 * SC / cpu_khz) / SC
|
||
|
* ns = cycles * cyc2ns_scale / SC
|
||
|
*
|
||
|
* And since SC is a constant power of two, we can convert the div
|
||
|
* into a shift.
|
||
|
*
|
||
|
* We can use khz divisor instead of mhz to keep a better precision, since
|
||
|
* cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
|
||
|
* (mathieu.desnoyers@polymtl.ca)
|
||
|
*
|
||
|
* -johnstul@us.ibm.com "math is hard, lets go shopping!"
|
||
|
*/
|
||
|
|
||
|
DEFINE_PER_CPU(unsigned long, cyc2ns);
|
||
|
DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
|
||
|
|
||
|
static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
|
||
|
{
|
||
|
unsigned long long tsc_now, ns_now, *offset;
|
||
|
unsigned long flags, *scale;
|
||
|
|
||
|
local_irq_save(flags);
|
||
|
sched_clock_idle_sleep_event();
|
||
|
|
||
|
scale = &per_cpu(cyc2ns, cpu);
|
||
|
offset = &per_cpu(cyc2ns_offset, cpu);
|
||
|
|
||
|
rdtscll(tsc_now);
|
||
|
ns_now = __cycles_2_ns(tsc_now);
|
||
|
|
||
|
if (cpu_khz) {
|
||
|
*scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
|
||
|
*offset = ns_now - (tsc_now * *scale >> CYC2NS_SCALE_FACTOR);
|
||
|
}
|
||
|
|
||
|
sched_clock_idle_wakeup_event(0);
|
||
|
local_irq_restore(flags);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_CPU_FREQ
|
||
|
|
||
|
/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
|
||
|
* changes.
|
||
|
*
|
||
|
* RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
|
||
|
* not that important because current Opteron setups do not support
|
||
|
* scaling on SMP anyroads.
|
||
|
*
|
||
|
* Should fix up last_tsc too. Currently gettimeofday in the
|
||
|
* first tick after the change will be slightly wrong.
|
||
|
*/
|
||
|
|
||
|
static unsigned int ref_freq;
|
||
|
static unsigned long loops_per_jiffy_ref;
|
||
|
static unsigned long tsc_khz_ref;
|
||
|
|
||
|
static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
|
||
|
void *data)
|
||
|
{
|
||
|
struct cpufreq_freqs *freq = data;
|
||
|
unsigned long *lpj;
|
||
|
|
||
|
if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
|
||
|
return 0;
|
||
|
|
||
|
lpj = &boot_cpu_data.loops_per_jiffy;
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||
|
lpj = &cpu_data(freq->cpu).loops_per_jiffy;
|
||
|
#endif
|
||
|
|
||
|
if (!ref_freq) {
|
||
|
ref_freq = freq->old;
|
||
|
loops_per_jiffy_ref = *lpj;
|
||
|
tsc_khz_ref = tsc_khz;
|
||
|
}
|
||
|
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||
|
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
|
||
|
(val == CPUFREQ_RESUMECHANGE)) {
|
||
|
*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
|
||
|
|
||
|
tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
|
||
|
if (!(freq->flags & CPUFREQ_CONST_LOOPS))
|
||
|
mark_tsc_unstable("cpufreq changes");
|
||
|
}
|
||
|
|
||
|
set_cyc2ns_scale(tsc_khz, freq->cpu);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct notifier_block time_cpufreq_notifier_block = {
|
||
|
.notifier_call = time_cpufreq_notifier
|
||
|
};
|
||
|
|
||
|
static int __init cpufreq_tsc(void)
|
||
|
{
|
||
|
if (!cpu_has_tsc)
|
||
|
return 0;
|
||
|
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
||
|
return 0;
|
||
|
cpufreq_register_notifier(&time_cpufreq_notifier_block,
|
||
|
CPUFREQ_TRANSITION_NOTIFIER);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
core_initcall(cpufreq_tsc);
|
||
|
|
||
|
#endif /* CONFIG_CPU_FREQ */
|
||
|
|
||
|
/* clocksource code */
|
||
|
|
||
|
static struct clocksource clocksource_tsc;
|
||
|
|
||
|
/*
|
||
|
* We compare the TSC to the cycle_last value in the clocksource
|
||
|
* structure to avoid a nasty time-warp. This can be observed in a
|
||
|
* very small window right after one CPU updated cycle_last under
|
||
|
* xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
|
||
|
* is smaller than the cycle_last reference value due to a TSC which
|
||
|
* is slighty behind. This delta is nowhere else observable, but in
|
||
|
* that case it results in a forward time jump in the range of hours
|
||
|
* due to the unsigned delta calculation of the time keeping core
|
||
|
* code, which is necessary to support wrapping clocksources like pm
|
||
|
* timer.
|
||
|
*/
|
||
|
static cycle_t read_tsc(struct clocksource *cs)
|
||
|
{
|
||
|
cycle_t ret = (cycle_t)get_cycles();
|
||
|
|
||
|
return ret >= clocksource_tsc.cycle_last ?
|
||
|
ret : clocksource_tsc.cycle_last;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
static cycle_t __vsyscall_fn vread_tsc(void)
|
||
|
{
|
||
|
cycle_t ret;
|
||
|
|
||
|
/*
|
||
|
* Surround the RDTSC by barriers, to make sure it's not
|
||
|
* speculated to outside the seqlock critical section and
|
||
|
* does not cause time warps:
|
||
|
*/
|
||
|
rdtsc_barrier();
|
||
|
ret = (cycle_t)vget_cycles();
|
||
|
rdtsc_barrier();
|
||
|
|
||
|
return ret >= __vsyscall_gtod_data.clock.cycle_last ?
|
||
|
ret : __vsyscall_gtod_data.clock.cycle_last;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static void resume_tsc(void)
|
||
|
{
|
||
|
clocksource_tsc.cycle_last = 0;
|
||
|
}
|
||
|
|
||
|
static struct clocksource clocksource_tsc = {
|
||
|
.name = "tsc",
|
||
|
.rating = 300,
|
||
|
.read = read_tsc,
|
||
|
.resume = resume_tsc,
|
||
|
.mask = CLOCKSOURCE_MASK(64),
|
||
|
.shift = 22,
|
||
|
.flags = CLOCK_SOURCE_IS_CONTINUOUS |
|
||
|
CLOCK_SOURCE_MUST_VERIFY,
|
||
|
#ifdef CONFIG_X86_64
|
||
|
.vread = vread_tsc,
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
void mark_tsc_unstable(char *reason)
|
||
|
{
|
||
|
if (!tsc_unstable) {
|
||
|
tsc_unstable = 1;
|
||
|
sched_clock_stable = 0;
|
||
|
printk(KERN_INFO "Marking TSC unstable due to %s\n", reason);
|
||
|
/* Change only the rating, when not registered */
|
||
|
if (clocksource_tsc.mult)
|
||
|
clocksource_mark_unstable(&clocksource_tsc);
|
||
|
else {
|
||
|
clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
|
||
|
clocksource_tsc.rating = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EXPORT_SYMBOL_GPL(mark_tsc_unstable);
|
||
|
|
||
|
static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
|
||
|
{
|
||
|
printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
|
||
|
d->ident);
|
||
|
tsc_unstable = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* List of systems that have known TSC problems */
|
||
|
static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
|
||
|
{
|
||
|
.callback = dmi_mark_tsc_unstable,
|
||
|
.ident = "IBM Thinkpad 380XD",
|
||
|
.matches = {
|
||
|
DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
|
||
|
DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
|
||
|
},
|
||
|
},
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
static void __init check_system_tsc_reliable(void)
|
||
|
{
|
||
|
#ifdef CONFIG_MGEODE_LX
|
||
|
/* RTSC counts during suspend */
|
||
|
#define RTSC_SUSP 0x100
|
||
|
unsigned long res_low, res_high;
|
||
|
|
||
|
rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
|
||
|
/* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
|
||
|
if (res_low & RTSC_SUSP)
|
||
|
tsc_clocksource_reliable = 1;
|
||
|
#endif
|
||
|
if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
|
||
|
tsc_clocksource_reliable = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Make an educated guess if the TSC is trustworthy and synchronized
|
||
|
* over all CPUs.
|
||
|
*/
|
||
|
__cpuinit int unsynchronized_tsc(void)
|
||
|
{
|
||
|
if (!cpu_has_tsc || tsc_unstable)
|
||
|
return 1;
|
||
|
|
||
|
#ifdef CONFIG_SMP
|
||
|
if (apic_is_clustered_box())
|
||
|
return 1;
|
||
|
#endif
|
||
|
|
||
|
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
|
||
|
return 0;
|
||
|
/*
|
||
|
* Intel systems are normally all synchronized.
|
||
|
* Exceptions must mark TSC as unstable:
|
||
|
*/
|
||
|
if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
|
||
|
/* assume multi socket systems are not synchronized: */
|
||
|
if (num_possible_cpus() > 1)
|
||
|
tsc_unstable = 1;
|
||
|
}
|
||
|
|
||
|
return tsc_unstable;
|
||
|
}
|
||
|
|
||
|
static void __init init_tsc_clocksource(void)
|
||
|
{
|
||
|
clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
|
||
|
clocksource_tsc.shift);
|
||
|
if (tsc_clocksource_reliable)
|
||
|
clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
|
||
|
/* lower the rating if we already know its unstable: */
|
||
|
if (check_tsc_unstable()) {
|
||
|
clocksource_tsc.rating = 0;
|
||
|
clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
|
||
|
}
|
||
|
clocksource_register(&clocksource_tsc);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_X86_64
|
||
|
/*
|
||
|
* calibrate_cpu is used on systems with fixed rate TSCs to determine
|
||
|
* processor frequency
|
||
|
*/
|
||
|
#define TICK_COUNT 100000000
|
||
|
static unsigned long __init calibrate_cpu(void)
|
||
|
{
|
||
|
int tsc_start, tsc_now;
|
||
|
int i, no_ctr_free;
|
||
|
unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0;
|
||
|
unsigned long flags;
|
||
|
|
||
|
for (i = 0; i < 4; i++)
|
||
|
if (avail_to_resrv_perfctr_nmi_bit(i))
|
||
|
break;
|
||
|
no_ctr_free = (i == 4);
|
||
|
if (no_ctr_free) {
|
||
|
WARN(1, KERN_WARNING "Warning: AMD perfctrs busy ... "
|
||
|
"cpu_khz value may be incorrect.\n");
|
||
|
i = 3;
|
||
|
rdmsrl(MSR_K7_EVNTSEL3, evntsel3);
|
||
|
wrmsrl(MSR_K7_EVNTSEL3, 0);
|
||
|
rdmsrl(MSR_K7_PERFCTR3, pmc3);
|
||
|
} else {
|
||
|
reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i);
|
||
|
reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
|
||
|
}
|
||
|
local_irq_save(flags);
|
||
|
/* start measuring cycles, incrementing from 0 */
|
||
|
wrmsrl(MSR_K7_PERFCTR0 + i, 0);
|
||
|
wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76);
|
||
|
rdtscl(tsc_start);
|
||
|
do {
|
||
|
rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now);
|
||
|
tsc_now = get_cycles();
|
||
|
} while ((tsc_now - tsc_start) < TICK_COUNT);
|
||
|
|
||
|
local_irq_restore(flags);
|
||
|
if (no_ctr_free) {
|
||
|
wrmsrl(MSR_K7_EVNTSEL3, 0);
|
||
|
wrmsrl(MSR_K7_PERFCTR3, pmc3);
|
||
|
wrmsrl(MSR_K7_EVNTSEL3, evntsel3);
|
||
|
} else {
|
||
|
release_perfctr_nmi(MSR_K7_PERFCTR0 + i);
|
||
|
release_evntsel_nmi(MSR_K7_EVNTSEL0 + i);
|
||
|
}
|
||
|
|
||
|
return pmc_now * tsc_khz / (tsc_now - tsc_start);
|
||
|
}
|
||
|
#else
|
||
|
static inline unsigned long calibrate_cpu(void) { return cpu_khz; }
|
||
|
#endif
|
||
|
|
||
|
void __init tsc_init(void)
|
||
|
{
|
||
|
u64 lpj;
|
||
|
int cpu;
|
||
|
|
||
|
x86_init.timers.tsc_pre_init();
|
||
|
|
||
|
if (!cpu_has_tsc)
|
||
|
return;
|
||
|
|
||
|
tsc_khz = x86_platform.calibrate_tsc();
|
||
|
cpu_khz = tsc_khz;
|
||
|
|
||
|
if (!tsc_khz) {
|
||
|
mark_tsc_unstable("could not calculate TSC khz");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
|
||
|
(boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
|
||
|
cpu_khz = calibrate_cpu();
|
||
|
|
||
|
printk("Detected %lu.%03lu MHz processor.\n",
|
||
|
(unsigned long)cpu_khz / 1000,
|
||
|
(unsigned long)cpu_khz % 1000);
|
||
|
|
||
|
/*
|
||
|
* Secondary CPUs do not run through tsc_init(), so set up
|
||
|
* all the scale factors for all CPUs, assuming the same
|
||
|
* speed as the bootup CPU. (cpufreq notifiers will fix this
|
||
|
* up if their speed diverges)
|
||
|
*/
|
||
|
for_each_possible_cpu(cpu)
|
||
|
set_cyc2ns_scale(cpu_khz, cpu);
|
||
|
|
||
|
if (tsc_disabled > 0)
|
||
|
return;
|
||
|
|
||
|
/* now allow native_sched_clock() to use rdtsc */
|
||
|
tsc_disabled = 0;
|
||
|
|
||
|
lpj = ((u64)tsc_khz * 1000);
|
||
|
do_div(lpj, HZ);
|
||
|
lpj_fine = lpj;
|
||
|
|
||
|
use_tsc_delay();
|
||
|
/* Check and install the TSC clocksource */
|
||
|
dmi_check_system(bad_tsc_dmi_table);
|
||
|
|
||
|
if (unsynchronized_tsc())
|
||
|
mark_tsc_unstable("TSCs unsynchronized");
|
||
|
|
||
|
check_system_tsc_reliable();
|
||
|
init_tsc_clocksource();
|
||
|
}
|
||
|
|