android_hardware_qcom_display/libgralloc/framebuffer.cpp
Naomi Luis 31e5714e87 libgralloc: Store the correct fd when mapping the framebuffer.
Store the actual and not the dup'd fd when mapping the framebuffer.

Change-Id: Ibca65a8f4c4db374dc23e8fee216ec5c36a9c01c
2012-02-27 00:05:43 -06:00

1171 lines
40 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
* Copyright (c) 2010-2011 Code Aurora Forum. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/mman.h>
#include <dlfcn.h>
#include <cutils/ashmem.h>
#include <cutils/log.h>
#include <cutils/properties.h>
#include <utils/Timers.h>
#include <hardware/hardware.h>
#include <hardware/gralloc.h>
#include <fcntl.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <string.h>
#include <stdlib.h>
#include <pthread.h>
#include <utils/Timers.h>
#include <cutils/log.h>
#include <cutils/atomic.h>
#include <linux/fb.h>
#include <linux/msm_mdp.h>
#include <GLES/gl.h>
#include "gralloc_priv.h"
#include "gr.h"
#ifdef NO_SURFACEFLINGER_SWAPINTERVAL
#include <cutils/properties.h>
#endif
#define FB_DEBUG 0
#if defined(HDMI_DUAL_DISPLAY)
#define AS_1080_RATIO_H (4.25/100) // Default Action Safe vertical limit for 1080p
#define AS_1080_RATIO_W (4.25/100) // Default Action Safe horizontal limit for 1080p
#define AS_720_RATIO_H (6.0/100) // Default Action Safe vertical limit for 720p
#define AS_720_RATIO_W (4.25/100) // Default Action Safe horizontal limit for 720p
#define AS_480_RATIO_H (8.0/100) // Default Action Safe vertical limit for 480p
#define AS_480_RATIO_W (5.0/100) // Default Action Safe horizontal limit for 480p
#define HEIGHT_1080P 1080
#define HEIGHT_720P 720
#define HEIGHT_480P 480
#define EVEN_OUT(x) if (x & 0x0001) {x--;}
using overlay::Overlay;
/** min of int a, b */
static inline int min(int a, int b) {
return (a<b) ? a : b;
}
/** max of int a, b */
static inline int max(int a, int b) {
return (a>b) ? a : b;
}
/** align */
static inline size_t ALIGN(size_t x, size_t align) {
return (x + align-1) & ~(align-1);
}
#endif
char framebufferStateName[] = {'S', 'R', 'A'};
#ifdef DEBUG_CALC_FPS
#define MAX_FPS_CALC_PERIOD_IN_FRAMES 128
#define MAX_FRAMARRIVAL_STEPS 50
#define MAX_DEBUG_FPS_LEVEL 2
struct debug_fps_metadata_t {
/*fps calculation based on time or number of frames*/
enum DfmType {
DFM_FRAMES = 0,
DFM_TIME = 1,
};
DfmType type;
/* indicates how much time do we wait till we calculate FPS */
unsigned long time_period;
/*indicates how much time elapsed since we report fps*/
float time_elapsed;
/* indicates how many frames do we wait till we calculate FPS */
unsigned int period;
/* current frame, will go upto period, and then reset */
unsigned int curr_frame;
/* frame will arrive at a multiple of 16666 us at the display.
This indicates how many steps to consider for our calculations.
For example, if framearrival_steps = 10, then the frame that arrived
after 166660 us or more will be ignored.
*/
unsigned int framearrival_steps;
/* ignorethresh_us = framearrival_steps * 16666 */
nsecs_t ignorethresh_us;
/* used to calculate the actual frame arrival step, the times might not be
accurate
*/
unsigned int margin_us;
/* actual data storage */
nsecs_t framearrivals[MAX_FPS_CALC_PERIOD_IN_FRAMES];
nsecs_t accum_framearrivals[MAX_FRAMARRIVAL_STEPS];
};
#endif
/*****************************************************************************/
enum {
MDDI_PANEL = '1',
EBI2_PANEL = '2',
LCDC_PANEL = '3',
EXT_MDDI_PANEL = '4',
TV_PANEL = '5'
};
enum {
PAGE_FLIP = 0x00000001,
LOCKED = 0x00000002
};
struct fb_context_t {
framebuffer_device_t device;
};
static int neworientation;
#ifdef DEBUG_CALC_FPS
static debug_fps_metadata_t debug_fps_metadata;
static unsigned int debug_fps_level = 0;
#endif
/*****************************************************************************/
static void
msm_copy_buffer(buffer_handle_t handle, int fd,
int width, int height, int format,
int x, int y, int w, int h);
static int fb_setSwapInterval(struct framebuffer_device_t* dev,
int interval)
{
fb_context_t* ctx = (fb_context_t*)dev;
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
if (interval < dev->minSwapInterval || interval > dev->maxSwapInterval)
return -EINVAL;
m->swapInterval = interval;
return 0;
}
static int fb_setUpdateRect(struct framebuffer_device_t* dev,
int l, int t, int w, int h)
{
if (((w|h) <= 0) || ((l|t)<0))
return -EINVAL;
fb_context_t* ctx = (fb_context_t*)dev;
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
m->info.reserved[0] = 0x54445055; // "UPDT";
m->info.reserved[1] = (uint16_t)l | ((uint32_t)t << 16);
m->info.reserved[2] = (uint16_t)(l+w) | ((uint32_t)(t+h) << 16);
return 0;
}
#ifdef DEBUG_CALC_FPS
static void populate_debug_fps_metadata(void)
{
char prop[PROPERTY_VALUE_MAX];
/*defaults calculation of fps to based on number of frames*/
property_get("debug.gr.calcfps.type", prop, "0");
debug_fps_metadata.type = (debug_fps_metadata_t::DfmType) atoi(prop);
/*defaults to 1000ms*/
property_get("debug.gr.calcfps.timeperiod", prop, "1000");
debug_fps_metadata.time_period = atoi(prop);
property_get("debug.gr.calcfps.period", prop, "10");
debug_fps_metadata.period = atoi(prop);
if (debug_fps_metadata.period > MAX_FPS_CALC_PERIOD_IN_FRAMES) {
debug_fps_metadata.period = MAX_FPS_CALC_PERIOD_IN_FRAMES;
}
/* default ignorethresh_us: 500 milli seconds */
property_get("debug.gr.calcfps.ignorethresh_us", prop, "500000");
debug_fps_metadata.ignorethresh_us = atoi(prop);
debug_fps_metadata.framearrival_steps =
(debug_fps_metadata.ignorethresh_us / 16666);
if (debug_fps_metadata.framearrival_steps > MAX_FRAMARRIVAL_STEPS) {
debug_fps_metadata.framearrival_steps = MAX_FRAMARRIVAL_STEPS;
debug_fps_metadata.ignorethresh_us =
debug_fps_metadata.framearrival_steps * 16666;
}
/* 2ms margin of error for the gettimeofday */
debug_fps_metadata.margin_us = 2000;
for (int i = 0; i < MAX_FRAMARRIVAL_STEPS; i++)
debug_fps_metadata.accum_framearrivals[i] = 0;
LOGE("period: %d", debug_fps_metadata.period);
LOGE("ignorethresh_us: %lld", debug_fps_metadata.ignorethresh_us);
}
static void print_fps(float fps)
{
if (debug_fps_metadata_t::DFM_FRAMES == debug_fps_metadata.type)
LOGE("FPS for last %d frames: %3.2f", debug_fps_metadata.period, fps);
else
LOGE("FPS for last (%f ms, %d frames): %3.2f",
debug_fps_metadata.time_elapsed,
debug_fps_metadata.curr_frame, fps);
debug_fps_metadata.curr_frame = 0;
debug_fps_metadata.time_elapsed = 0.0;
if (debug_fps_level > 1) {
LOGE("Frame Arrival Distribution:");
for (unsigned int i = 0;
i < ((debug_fps_metadata.framearrival_steps / 6) + 1);
i++) {
LOGE("%lld %lld %lld %lld %lld %lld",
debug_fps_metadata.accum_framearrivals[i*6],
debug_fps_metadata.accum_framearrivals[i*6+1],
debug_fps_metadata.accum_framearrivals[i*6+2],
debug_fps_metadata.accum_framearrivals[i*6+3],
debug_fps_metadata.accum_framearrivals[i*6+4],
debug_fps_metadata.accum_framearrivals[i*6+5]);
}
/* We are done with displaying, now clear the stats */
for (unsigned int i = 0;
i < debug_fps_metadata.framearrival_steps;
i++)
debug_fps_metadata.accum_framearrivals[i] = 0;
}
return;
}
static void calc_fps(nsecs_t currtime_us)
{
static nsecs_t oldtime_us = 0;
nsecs_t diff = currtime_us - oldtime_us;
oldtime_us = currtime_us;
if (debug_fps_metadata_t::DFM_FRAMES == debug_fps_metadata.type &&
diff > debug_fps_metadata.ignorethresh_us) {
return;
}
if (debug_fps_metadata.curr_frame < MAX_FPS_CALC_PERIOD_IN_FRAMES) {
debug_fps_metadata.framearrivals[debug_fps_metadata.curr_frame++] = diff;
}
if (debug_fps_level > 1) {
unsigned int currstep = (diff + debug_fps_metadata.margin_us) / 16666;
if (currstep < debug_fps_metadata.framearrival_steps) {
debug_fps_metadata.accum_framearrivals[currstep-1]++;
}
}
if (debug_fps_metadata_t::DFM_FRAMES == debug_fps_metadata.type) {
if (debug_fps_metadata.curr_frame == debug_fps_metadata.period) {
/* time to calculate and display FPS */
nsecs_t sum = 0;
for (unsigned int i = 0; i < debug_fps_metadata.period; i++)
sum += debug_fps_metadata.framearrivals[i];
print_fps((debug_fps_metadata.period * float(1000000))/float(sum));
}
}
else if (debug_fps_metadata_t::DFM_TIME == debug_fps_metadata.type) {
debug_fps_metadata.time_elapsed += ((float)diff/1000.0);
if (debug_fps_metadata.time_elapsed >= debug_fps_metadata.time_period) {
float fps = (1000.0 * debug_fps_metadata.curr_frame)/
(float)debug_fps_metadata.time_elapsed;
print_fps(fps);
}
}
return;
}
#endif // DEBUG_CALC_FPS
static void *disp_loop(void *ptr)
{
struct qbuf_t nxtBuf;
static int cur_buf=-1;
private_module_t *m = reinterpret_cast<private_module_t*>(ptr);
while (1) {
pthread_mutex_lock(&(m->qlock));
// wait (sleep) while display queue is empty;
while (m->disp.isEmpty()) {
pthread_cond_wait(&(m->qpost),&(m->qlock));
}
// dequeue next buff to display and lock it
nxtBuf = m->disp.getHeadValue();
m->disp.pop();
pthread_mutex_unlock(&(m->qlock));
// post buf out to display synchronously
private_handle_t const* hnd = reinterpret_cast<private_handle_t const*>
(nxtBuf.buf);
const size_t offset = hnd->base - m->framebuffer->base;
m->info.activate = FB_ACTIVATE_VBL;
m->info.yoffset = offset / m->finfo.line_length;
#if defined(HDMI_DUAL_DISPLAY)
pthread_mutex_lock(&m->overlayLock);
m->orientation = neworientation;
m->currentOffset = offset;
m->hdmiStateChanged = true;
pthread_cond_signal(&(m->overlayPost));
pthread_mutex_unlock(&m->overlayLock);
#endif
if (ioctl(m->framebuffer->fd, FBIOPUT_VSCREENINFO, &m->info) == -1) {
LOGE("ERROR FBIOPUT_VSCREENINFO failed; frame not displayed");
}
#if defined COMPOSITION_BYPASS
//Signal so that we can close channels if we need to
pthread_mutex_lock(&m->bufferPostLock);
m->bufferPostDone = true;
pthread_cond_signal(&m->bufferPostCond);
pthread_mutex_unlock(&m->bufferPostLock);
#endif
#ifdef DEBUG_CALC_FPS
if (debug_fps_level > 0) calc_fps(ns2us(systemTime()));
#endif
if (cur_buf == -1) {
int nxtAvail = ((nxtBuf.idx + 1) % m->numBuffers);
pthread_mutex_lock(&(m->avail[nxtBuf.idx].lock));
m->avail[nxtBuf.idx].is_avail = true;
m->avail[nxtBuf.idx].state = REF;
pthread_cond_broadcast(&(m->avail[nxtBuf.idx].cond));
pthread_mutex_unlock(&(m->avail[nxtBuf.idx].lock));
} else {
pthread_mutex_lock(&(m->avail[nxtBuf.idx].lock));
if (m->avail[nxtBuf.idx].state != SUB) {
LOGE_IF(m->swapInterval != 0, "[%d] state %c, expected %c", nxtBuf.idx,
framebufferStateName[m->avail[nxtBuf.idx].state],
framebufferStateName[SUB]);
}
m->avail[nxtBuf.idx].state = REF;
pthread_mutex_unlock(&(m->avail[nxtBuf.idx].lock));
pthread_mutex_lock(&(m->avail[cur_buf].lock));
m->avail[cur_buf].is_avail = true;
if (m->avail[cur_buf].state != REF) {
LOGE_IF(m->swapInterval != 0, "[%d] state %c, expected %c", cur_buf,
framebufferStateName[m->avail[cur_buf].state],
framebufferStateName[REF]);
}
m->avail[cur_buf].state = AVL;
pthread_cond_broadcast(&(m->avail[cur_buf].cond));
pthread_mutex_unlock(&(m->avail[cur_buf].lock));
}
cur_buf = nxtBuf.idx;
}
return NULL;
}
#if defined(HDMI_DUAL_DISPLAY)
static void *hdmi_ui_loop(void *ptr)
{
private_module_t* m = reinterpret_cast<private_module_t*>(
ptr);
while (1) {
pthread_mutex_lock(&m->overlayLock);
while(!(m->hdmiStateChanged))
pthread_cond_wait(&(m->overlayPost), &(m->overlayLock));
m->hdmiStateChanged = false;
if (m->exitHDMIUILoop) {
pthread_mutex_unlock(&m->overlayLock);
return NULL;
}
float asWidthRatio = m->actionsafeWidthRatio/100.0f;
float asHeightRatio = m->actionsafeHeightRatio/100.0f;
if (m->pobjOverlay) {
Overlay* pTemp = m->pobjOverlay;
if (!m->enableHDMIOutput)
pTemp->closeChannel();
else if (m->enableHDMIOutput && !m->videoOverlay) {
if (!pTemp->isChannelUP()) {
int alignedW = ALIGN(m->info.xres, 32);
private_handle_t const* hnd =
reinterpret_cast<private_handle_t const*>(m->framebuffer);
overlay_buffer_info info;
info.width = alignedW;
info.height = hnd->height;
info.format = hnd->format;
info.size = hnd->size;
if (pTemp->startChannel(info, 1,
false, true, 0, VG0_PIPE, true)) {
pTemp->setFd(m->framebuffer->fd);
pTemp->setCrop(0, 0, m->info.xres, m->info.yres);
} else
pTemp->closeChannel();
}
if (pTemp->isChannelUP()) {
int width = pTemp->getFBWidth();
int height = pTemp->getFBHeight();
int aswidth = width, asheight = height;
int asX = 0, asY = 0; // Action safe x, y co-ordinates
int fbwidth = m->info.xres, fbheight = m->info.yres;
float defaultASWidthRatio = 0.0f, defaultASHeightRatio = 0.0f;
if(HEIGHT_1080P == height) {
defaultASHeightRatio = AS_1080_RATIO_H;
defaultASWidthRatio = AS_1080_RATIO_W;
} else if(HEIGHT_720P == height) {
defaultASHeightRatio = AS_720_RATIO_H;
defaultASWidthRatio = AS_720_RATIO_W;
} else if(HEIGHT_480P == height) {
defaultASHeightRatio = AS_480_RATIO_H;
defaultASWidthRatio = AS_480_RATIO_W;
}
if(asWidthRatio <= 0.0f)
asWidthRatio = defaultASWidthRatio;
if(asHeightRatio <= 0.0f)
asHeightRatio = defaultASHeightRatio;
aswidth = (int)((float)width - (float)(width * asWidthRatio));
asheight = (int)((float)height - (float)(height * asHeightRatio));
asX = (width - aswidth) / 2;
asY = (height - asheight) / 2;
int rot = m->orientation;
if (fbwidth < fbheight) {
switch(rot) {
// ROT_0
case 0:
// ROT_180
case HAL_TRANSFORM_ROT_180: {
aswidth = (asheight * fbwidth) / fbheight;
asX = (width - aswidth) / 2;
if(rot == HAL_TRANSFORM_ROT_180)
rot = OVERLAY_TRANSFORM_ROT_180;
else
rot = 0;
}
break;
// ROT_90
case HAL_TRANSFORM_ROT_90:
rot = OVERLAY_TRANSFORM_ROT_270;
break;
// ROT_270
case HAL_TRANSFORM_ROT_270:
rot = OVERLAY_TRANSFORM_ROT_90;
break;
}
}
else if (fbwidth > fbheight) {
switch(rot) {
// ROT_0
case 0:
rot = 0;
break;
// ROT_180
case HAL_TRANSFORM_ROT_180:
rot = OVERLAY_TRANSFORM_ROT_180;
break;
// ROT_90
case HAL_TRANSFORM_ROT_90:
// ROT_270
case HAL_TRANSFORM_ROT_270: {
//Swap width and height
int t = fbwidth;
fbwidth = fbheight;
fbheight = t;
aswidth = (asheight * fbwidth) / fbheight;
asX = (width - aswidth) / 2;
if(rot == HAL_TRANSFORM_ROT_90)
rot = OVERLAY_TRANSFORM_ROT_270;
else
rot = OVERLAY_TRANSFORM_ROT_90;
}
break;
}
}
int currOrientation = 0;
pTemp->getOrientation(currOrientation);
if(rot != currOrientation) {
pTemp->setTransform(rot);
}
EVEN_OUT(asX);
EVEN_OUT(asY);
EVEN_OUT(aswidth);
EVEN_OUT(asheight);
int currentX = 0, currentY = 0;
uint32_t currentW = width, currentH = height;
if (pTemp->getPosition(currentX, currentY, currentW, currentH)) {
if ((currentX != asX) || (currentY != asY) || (currentW != aswidth)
|| (currentH != asheight)) {
pTemp->setPosition(asX, asY, aswidth, asheight);
}
}
pTemp->queueBuffer(m->currentOffset);
}
}
else
pTemp->closeChannel();
}
pthread_mutex_unlock(&m->overlayLock);
}
return NULL;
}
static int fb_videoOverlayStarted(struct framebuffer_device_t* dev, int started)
{
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
pthread_mutex_lock(&m->overlayLock);
Overlay* pTemp = m->pobjOverlay;
if(started != m->videoOverlay) {
m->hdmiStateChanged = true;
if (started && pTemp) {
pTemp->closeChannel();
m->videoOverlay = true;
pthread_cond_signal(&(m->overlayPost));
}
else {
m->videoOverlay = false;
pthread_cond_signal(&(m->overlayPost));
}
}
pthread_mutex_unlock(&m->overlayLock);
return 0;
}
static int fb_enableHDMIOutput(struct framebuffer_device_t* dev, int enable)
{
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
pthread_mutex_lock(&m->overlayLock);
Overlay* pTemp = m->pobjOverlay;
if (!enable && pTemp)
pTemp->closeChannel();
m->enableHDMIOutput = enable;
m->hdmiStateChanged = true;
pthread_cond_signal(&(m->overlayPost));
pthread_mutex_unlock(&m->overlayLock);
return 0;
}
static int fb_setActionSafeWidthRatio(struct framebuffer_device_t* dev, float asWidthRatio)
{
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
pthread_mutex_lock(&m->overlayLock);
m->actionsafeWidthRatio = asWidthRatio;
pthread_mutex_unlock(&m->overlayLock);
return 0;
}
static int fb_setActionSafeHeightRatio(struct framebuffer_device_t* dev, float asHeightRatio)
{
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
pthread_mutex_lock(&m->overlayLock);
m->actionsafeHeightRatio = asHeightRatio;
pthread_mutex_unlock(&m->overlayLock);
return 0;
}
static int fb_orientationChanged(struct framebuffer_device_t* dev, int orientation)
{
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
pthread_mutex_lock(&m->overlayLock);
neworientation = orientation;
pthread_mutex_unlock(&m->overlayLock);
return 0;
}
#endif
//Wait until framebuffer content is displayed.
//This is called in the context of threadLoop.
//Display loop wakes this up after display.
static int fb_waitForBufferPost(struct framebuffer_device_t* dev)
{
#if defined COMPOSITION_BYPASS
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
pthread_mutex_lock(&m->bufferPostLock);
while(m->bufferPostDone == false) {
pthread_cond_wait(&(m->bufferPostCond), &(m->bufferPostLock));
}
pthread_mutex_unlock(&m->bufferPostLock);
#endif
return 0;
}
static int fb_resetBufferPostStatus(struct framebuffer_device_t* dev)
{
#if defined COMPOSITION_BYPASS
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
pthread_mutex_lock(&m->bufferPostLock);
m->bufferPostDone = false;
pthread_mutex_unlock(&m->bufferPostLock);
#endif
return 0;
}
static int fb_post(struct framebuffer_device_t* dev, buffer_handle_t buffer)
{
if (private_handle_t::validate(buffer) < 0)
return -EINVAL;
int nxtIdx, futureIdx = -1;
bool reuse;
struct qbuf_t qb;
fb_context_t* ctx = (fb_context_t*)dev;
private_handle_t const* hnd = reinterpret_cast<private_handle_t const*>(buffer);
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
if (hnd->flags & private_handle_t::PRIV_FLAGS_FRAMEBUFFER) {
reuse = false;
nxtIdx = (m->currentIdx + 1) % m->numBuffers;
futureIdx = (nxtIdx + 1) % m->numBuffers;
if (m->swapInterval == 0) {
// if SwapInterval = 0 and no buffers available then reuse
// current buf for next rendering so don't post new buffer
if (pthread_mutex_trylock(&(m->avail[nxtIdx].lock))) {
reuse = true;
} else {
if (! m->avail[nxtIdx].is_avail)
reuse = true;
pthread_mutex_unlock(&(m->avail[nxtIdx].lock));
}
}
if(!reuse){
// unlock previous ("current") Buffer and lock the new buffer
m->base.lock(&m->base, buffer,
private_module_t::PRIV_USAGE_LOCKED_FOR_POST,
0,0, m->info.xres, m->info.yres, NULL);
// post/queue the new buffer
pthread_mutex_lock(&(m->avail[nxtIdx].lock));
if (m->avail[nxtIdx].is_avail != true) {
LOGE_IF(m->swapInterval != 0, "Found %d buf to be not avail", nxtIdx);
}
m->avail[nxtIdx].is_avail = false;
if (m->avail[nxtIdx].state != AVL) {
LOGD("[%d] state %c, expected %c", nxtIdx,
framebufferStateName[m->avail[nxtIdx].state],
framebufferStateName[AVL]);
}
m->avail[nxtIdx].state = SUB;
pthread_mutex_unlock(&(m->avail[nxtIdx].lock));
qb.idx = nxtIdx;
qb.buf = buffer;
pthread_mutex_lock(&(m->qlock));
m->disp.push(qb);
pthread_cond_signal(&(m->qpost));
pthread_mutex_unlock(&(m->qlock));
if (m->currentBuffer)
m->base.unlock(&m->base, m->currentBuffer);
m->currentBuffer = buffer;
m->currentIdx = nxtIdx;
} else {
if (m->currentBuffer)
m->base.unlock(&m->base, m->currentBuffer);
m->base.lock(&m->base, buffer,
private_module_t::PRIV_USAGE_LOCKED_FOR_POST,
0,0, m->info.xres, m->info.yres, NULL);
m->currentBuffer = buffer;
}
} else {
void* fb_vaddr;
void* buffer_vaddr;
m->base.lock(&m->base, m->framebuffer,
GRALLOC_USAGE_SW_WRITE_RARELY,
0, 0, m->info.xres, m->info.yres,
&fb_vaddr);
m->base.lock(&m->base, buffer,
GRALLOC_USAGE_SW_READ_RARELY,
0, 0, m->info.xres, m->info.yres,
&buffer_vaddr);
//memcpy(fb_vaddr, buffer_vaddr, m->finfo.line_length * m->info.yres);
msm_copy_buffer(
m->framebuffer, m->framebuffer->fd,
m->info.xres, m->info.yres, m->fbFormat,
m->info.xoffset, m->info.yoffset,
m->info.width, m->info.height);
m->base.unlock(&m->base, buffer);
m->base.unlock(&m->base, m->framebuffer);
}
LOGD_IF(FB_DEBUG, "Framebuffer state: [0] = %c [1] = %c [2] = %c",
framebufferStateName[m->avail[0].state],
framebufferStateName[m->avail[1].state],
framebufferStateName[m->avail[2].state]);
return 0;
}
static int fb_compositionComplete(struct framebuffer_device_t* dev)
{
// TODO: Properly implement composition complete callback
glFinish();
return 0;
}
static int fb_lockBuffer(struct framebuffer_device_t* dev, int index)
{
private_module_t* m = reinterpret_cast<private_module_t*>(
dev->common.module);
// Return immediately if the buffer is available
if ((m->avail[index].state == AVL) || (m->swapInterval == 0))
return 0;
pthread_mutex_lock(&(m->avail[index].lock));
while (m->avail[index].state != AVL) {
pthread_cond_wait(&(m->avail[index].cond),
&(m->avail[index].lock));
}
pthread_mutex_unlock(&(m->avail[index].lock));
return 0;
}
/*****************************************************************************/
int mapFrameBufferLocked(struct private_module_t* module)
{
// already initialized...
if (module->framebuffer) {
return 0;
}
char const * const device_template[] = {
"/dev/graphics/fb%u",
"/dev/fb%u",
0 };
int fd = -1;
int i=0;
char name[64];
char property[PROPERTY_VALUE_MAX];
while ((fd==-1) && device_template[i]) {
snprintf(name, 64, device_template[i], 0);
fd = open(name, O_RDWR, 0);
i++;
}
if (fd < 0)
return -errno;
struct fb_fix_screeninfo finfo;
if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)
return -errno;
struct fb_var_screeninfo info;
if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)
return -errno;
info.reserved[0] = 0;
info.reserved[1] = 0;
info.reserved[2] = 0;
info.xoffset = 0;
info.yoffset = 0;
info.activate = FB_ACTIVATE_NOW;
/* Interpretation of offset for color fields: All offsets are from the right,
* inside a "pixel" value, which is exactly 'bits_per_pixel' wide (means: you
* can use the offset as right argument to <<). A pixel afterwards is a bit
* stream and is written to video memory as that unmodified. This implies
* big-endian byte order if bits_per_pixel is greater than 8.
*/
if(info.bits_per_pixel == 32) {
/*
* Explicitly request RGBA_8888
*/
info.bits_per_pixel = 32;
info.red.offset = 24;
info.red.length = 8;
info.green.offset = 16;
info.green.length = 8;
info.blue.offset = 8;
info.blue.length = 8;
info.transp.offset = 0;
info.transp.length = 8;
/* Note: the GL driver does not have a r=8 g=8 b=8 a=0 config, so if we do
* not use the MDP for composition (i.e. hw composition == 0), ask for
* RGBA instead of RGBX. */
if (property_get("debug.sf.hw", property, NULL) > 0 && atoi(property) == 0)
module->fbFormat = HAL_PIXEL_FORMAT_RGBX_8888;
else if(property_get("debug.composition.type", property, NULL) > 0 && (strncmp(property, "mdp", 3) == 0))
module->fbFormat = HAL_PIXEL_FORMAT_RGBX_8888;
else
module->fbFormat = HAL_PIXEL_FORMAT_RGBA_8888;
} else {
/*
* Explicitly request 5/6/5
*/
info.bits_per_pixel = 16;
info.red.offset = 11;
info.red.length = 5;
info.green.offset = 5;
info.green.length = 6;
info.blue.offset = 0;
info.blue.length = 5;
info.transp.offset = 0;
info.transp.length = 0;
module->fbFormat = HAL_PIXEL_FORMAT_RGB_565;
}
/*
* Request NUM_BUFFERS screens (at lest 2 for page flipping)
*/
int numberOfBuffers = (int)(finfo.smem_len/(info.yres * info.xres * (info.bits_per_pixel/8)));
LOGV("num supported framebuffers in kernel = %d", numberOfBuffers);
if (property_get("debug.gr.numframebuffers", property, NULL) > 0) {
int num = atoi(property);
if ((num >= NUM_FRAMEBUFFERS_MIN) && (num <= NUM_FRAMEBUFFERS_MAX)) {
numberOfBuffers = num;
}
}
if (numberOfBuffers > NUM_FRAMEBUFFERS_MAX)
numberOfBuffers = NUM_FRAMEBUFFERS_MAX;
LOGE("We support %d buffers", numberOfBuffers);
info.yres_virtual = info.yres * numberOfBuffers;
uint32_t flags = PAGE_FLIP;
if (ioctl(fd, FBIOPUT_VSCREENINFO, &info) == -1) {
info.yres_virtual = info.yres;
flags &= ~PAGE_FLIP;
LOGW("FBIOPUT_VSCREENINFO failed, page flipping not supported");
}
if (info.yres_virtual < info.yres * 2) {
// we need at least 2 for page-flipping
info.yres_virtual = info.yres;
flags &= ~PAGE_FLIP;
LOGW("page flipping not supported (yres_virtual=%d, requested=%d)",
info.yres_virtual, info.yres*2);
}
if (ioctl(fd, FBIOGET_VSCREENINFO, &info) == -1)
return -errno;
if (int(info.width) <= 0 || int(info.height) <= 0) {
// the driver doesn't return that information
// default to 160 dpi
info.width = ((info.xres * 25.4f)/160.0f + 0.5f);
info.height = ((info.yres * 25.4f)/160.0f + 0.5f);
}
float xdpi = (info.xres * 25.4f) / info.width;
float ydpi = (info.yres * 25.4f) / info.height;
//The reserved[4] field is used to store FPS by the driver.
float fps = info.reserved[4];
LOGI( "using (fd=%d)\n"
"id = %s\n"
"xres = %d px\n"
"yres = %d px\n"
"xres_virtual = %d px\n"
"yres_virtual = %d px\n"
"bpp = %d\n"
"r = %2u:%u\n"
"g = %2u:%u\n"
"b = %2u:%u\n",
fd,
finfo.id,
info.xres,
info.yres,
info.xres_virtual,
info.yres_virtual,
info.bits_per_pixel,
info.red.offset, info.red.length,
info.green.offset, info.green.length,
info.blue.offset, info.blue.length
);
LOGI( "width = %d mm (%f dpi)\n"
"height = %d mm (%f dpi)\n"
"refresh rate = %.2f Hz\n",
info.width, xdpi,
info.height, ydpi,
fps
);
if (ioctl(fd, FBIOGET_FSCREENINFO, &finfo) == -1)
return -errno;
if (finfo.smem_len <= 0)
return -errno;
module->flags = flags;
module->info = info;
module->finfo = finfo;
module->xdpi = xdpi;
module->ydpi = ydpi;
module->fps = fps;
#ifdef NO_SURFACEFLINGER_SWAPINTERVAL
char pval[PROPERTY_VALUE_MAX];
property_get("debug.gr.swapinterval", pval, "1");
module->swapInterval = atoi(pval);
if (module->swapInterval < private_module_t::PRIV_MIN_SWAP_INTERVAL ||
module->swapInterval > private_module_t::PRIV_MAX_SWAP_INTERVAL) {
module->swapInterval = 1;
LOGW("Out of range (%d to %d) value for debug.gr.swapinterval, using 1",
private_module_t::PRIV_MIN_SWAP_INTERVAL,
private_module_t::PRIV_MAX_SWAP_INTERVAL);
}
#else
/* when surfaceflinger supports swapInterval then can just do this */
module->swapInterval = 1;
#endif
#ifdef DEBUG_CALC_FPS
char prop[PROPERTY_VALUE_MAX];
property_get("debug.gr.calcfps", prop, "0");
debug_fps_level = atoi(prop);
if (debug_fps_level > MAX_DEBUG_FPS_LEVEL) {
LOGW("out of range value for debug.gr.calcfps, using 0");
debug_fps_level = 0;
}
LOGE("DEBUG_CALC_FPS: %d", debug_fps_level);
populate_debug_fps_metadata();
#endif
module->currentIdx = -1;
pthread_cond_init(&(module->qpost), NULL);
pthread_mutex_init(&(module->qlock), NULL);
for (i = 0; i < NUM_FRAMEBUFFERS_MAX; i++) {
pthread_mutex_init(&(module->avail[i].lock), NULL);
pthread_cond_init(&(module->avail[i].cond), NULL);
module->avail[i].is_avail = true;
module->avail[i].state = AVL;
}
/* create display update thread */
pthread_t thread1;
if (pthread_create(&thread1, NULL, &disp_loop, (void *) module)) {
return -errno;
}
/*
* map the framebuffer
*/
int err;
size_t fbSize = roundUpToPageSize(finfo.line_length * info.yres_virtual);
module->framebuffer = new private_handle_t(fd, fbSize,
private_handle_t::PRIV_FLAGS_USES_PMEM, BUFFER_TYPE_UI, module->fbFormat, info.xres, info.yres);
module->numBuffers = info.yres_virtual / info.yres;
module->bufferMask = 0;
void* vaddr = mmap(0, fbSize, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
if (vaddr == MAP_FAILED) {
LOGE("Error mapping the framebuffer (%s)", strerror(errno));
return -errno;
}
module->framebuffer->base = intptr_t(vaddr);
memset(vaddr, 0, fbSize);
#if defined(HDMI_DUAL_DISPLAY)
/* Overlay for HDMI*/
pthread_mutex_init(&(module->overlayLock), NULL);
pthread_cond_init(&(module->overlayPost), NULL);
module->pobjOverlay = new Overlay();
module->currentOffset = 0;
module->exitHDMIUILoop = false;
module->hdmiStateChanged = false;
pthread_t hdmiUIThread;
pthread_create(&hdmiUIThread, NULL, &hdmi_ui_loop, (void *) module);
#endif
#if defined COMPOSITION_BYPASS
pthread_mutex_init(&(module->bufferPostLock), NULL);
pthread_cond_init(&(module->bufferPostCond), NULL);
module->bufferPostDone = false;
#endif
return 0;
}
static int mapFrameBuffer(struct private_module_t* module)
{
pthread_mutex_lock(&module->lock);
int err = mapFrameBufferLocked(module);
pthread_mutex_unlock(&module->lock);
return err;
}
/*****************************************************************************/
static int fb_close(struct hw_device_t *dev)
{
fb_context_t* ctx = (fb_context_t*)dev;
#if defined(HDMI_DUAL_DISPLAY)
private_module_t* m = reinterpret_cast<private_module_t*>(
ctx->device.common.module);
pthread_mutex_lock(&m->overlayLock);
m->exitHDMIUILoop = true;
pthread_cond_signal(&(m->overlayPost));
pthread_mutex_unlock(&m->overlayLock);
#endif
if (ctx) {
free(ctx);
}
return 0;
}
int fb_device_open(hw_module_t const* module, const char* name,
hw_device_t** device)
{
int status = -EINVAL;
if (!strcmp(name, GRALLOC_HARDWARE_FB0)) {
alloc_device_t* gralloc_device;
status = gralloc_open(module, &gralloc_device);
if (status < 0)
return status;
/* initialize our state here */
fb_context_t *dev = (fb_context_t*)malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
/* initialize the procs */
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = const_cast<hw_module_t*>(module);
dev->device.common.close = fb_close;
dev->device.setSwapInterval = fb_setSwapInterval;
dev->device.post = fb_post;
dev->device.setUpdateRect = 0;
dev->device.compositionComplete = fb_compositionComplete;
dev->device.lockBuffer = fb_lockBuffer;
#if defined(HDMI_DUAL_DISPLAY)
dev->device.orientationChanged = fb_orientationChanged;
dev->device.videoOverlayStarted = fb_videoOverlayStarted;
dev->device.enableHDMIOutput = fb_enableHDMIOutput;
dev->device.setActionSafeWidthRatio = fb_setActionSafeWidthRatio;
dev->device.setActionSafeHeightRatio = fb_setActionSafeHeightRatio;
#endif
#if defined COMPOSITION_BYPASS
dev->device.waitForBufferPost = fb_waitForBufferPost;
dev->device.resetBufferPostStatus = fb_resetBufferPostStatus;
#endif
private_module_t* m = (private_module_t*)module;
status = mapFrameBuffer(m);
if (status >= 0) {
int stride = m->finfo.line_length / (m->info.bits_per_pixel >> 3);
const_cast<uint32_t&>(dev->device.flags) = 0;
const_cast<uint32_t&>(dev->device.width) = m->info.xres;
const_cast<uint32_t&>(dev->device.height) = m->info.yres;
const_cast<int&>(dev->device.stride) = stride;
const_cast<int&>(dev->device.format) = m->fbFormat;
const_cast<float&>(dev->device.xdpi) = m->xdpi;
const_cast<float&>(dev->device.ydpi) = m->ydpi;
const_cast<float&>(dev->device.fps) = m->fps;
const_cast<int&>(dev->device.minSwapInterval) = private_module_t::PRIV_MIN_SWAP_INTERVAL;
const_cast<int&>(dev->device.maxSwapInterval) = private_module_t::PRIV_MAX_SWAP_INTERVAL;
const_cast<int&>(dev->device.numFramebuffers) = m->numBuffers;
if (m->finfo.reserved[0] == 0x5444 &&
m->finfo.reserved[1] == 0x5055) {
dev->device.setUpdateRect = fb_setUpdateRect;
LOGD("UPDATE_ON_DEMAND supported");
}
*device = &dev->device.common;
}
// Close the gralloc module
gralloc_close(gralloc_device);
}
return status;
}
/* Copy a pmem buffer to the framebuffer */
static void
msm_copy_buffer(buffer_handle_t handle, int fd,
int width, int height, int format,
int x, int y, int w, int h)
{
struct {
unsigned int count;
mdp_blit_req req;
} blit;
private_handle_t *priv = (private_handle_t*) handle;
memset(&blit, 0, sizeof(blit));
blit.count = 1;
blit.req.flags = 0;
blit.req.alpha = 0xff;
blit.req.transp_mask = 0xffffffff;
blit.req.src.width = width;
blit.req.src.height = height;
blit.req.src.offset = 0;
blit.req.src.memory_id = priv->fd;
blit.req.dst.width = width;
blit.req.dst.height = height;
blit.req.dst.offset = 0;
blit.req.dst.memory_id = fd;
blit.req.dst.format = format;
blit.req.src_rect.x = blit.req.dst_rect.x = x;
blit.req.src_rect.y = blit.req.dst_rect.y = y;
blit.req.src_rect.w = blit.req.dst_rect.w = w;
blit.req.src_rect.h = blit.req.dst_rect.h = h;
if (ioctl(fd, MSMFB_BLIT, &blit))
LOGE("MSMFB_BLIT failed = %d", -errno);
}