android_hardware_qcom_display/libhwcomposer/hwcomposer.cpp
Jeykumar Sankaran a0dc58fce0 libhwcomposer: Fix dynamic composition.
Layer orientation can be ignored since displayFrame always represents the
destination region in framebuffer orientation.

(cherry picked from commit f6ab48d14d32ba805fc25597533de14dae1c4e2b)

Change-Id: I0f9217e81a953a63cf9ea4ef9ddab25a1c67184e
2012-03-16 21:24:16 -05:00

1443 lines
49 KiB
C++

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <hardware/hardware.h>
#include <fcntl.h>
#include <errno.h>
#include <cutils/log.h>
#include <cutils/atomic.h>
#include <cutils/properties.h>
#include <hardware/hwcomposer.h>
#include <overlayLib.h>
#include <overlayLibUI.h>
#include <copybit.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <ui/android_native_buffer.h>
#include <gralloc_priv.h>
#include <genlock.h>
#include <qcom_ui.h>
#include <gr.h>
/*****************************************************************************/
#define ALIGN(x, align) (((x) + ((align)-1)) & ~((align)-1))
#define LIKELY( exp ) (__builtin_expect( (exp) != 0, true ))
#define UNLIKELY( exp ) (__builtin_expect( (exp) != 0, false ))
enum HWCLayerType{
HWC_SINGLE_VIDEO = 0x1,
HWC_ORIG_RESOLUTION = 0x2,
HWC_S3D_LAYER = 0x4,
HWC_STOP_UI_MIRRORING_MASK = 0xF
};
#ifdef COMPOSITION_BYPASS
enum BypassState {
BYPASS_ON,
BYPASS_OFF,
BYPASS_OFF_PENDING,
};
enum {
MAX_BYPASS_LAYERS = 2,
ANIM_FRAME_COUNT = 30,
};
enum BypassBufferLockState {
BYPASS_BUFFER_UNLOCKED,
BYPASS_BUFFER_LOCKED,
};
#endif
enum eHWCOverlayStatus {
HWC_OVERLAY_OPEN,
HWC_OVERLAY_PREPARE_TO_CLOSE,
HWC_OVERLAY_CLOSED
};
struct hwc_context_t {
hwc_composer_device_t device;
/* our private state goes below here */
overlay::Overlay* mOverlayLibObject;
native_handle_t *previousOverlayHandle;
#ifdef COMPOSITION_BYPASS
overlay::OverlayUI* mOvUI[MAX_BYPASS_LAYERS];
native_handle_t* previousBypassHandle[MAX_BYPASS_LAYERS];
BypassBufferLockState bypassBufferLockState[MAX_BYPASS_LAYERS];
int animCount;
BypassState bypassState;
#endif
#if defined HDMI_DUAL_DISPLAY
bool mHDMIEnabled;
bool pendingHDMI;
#endif
int previousLayerCount;
eHWCOverlayStatus hwcOverlayStatus;
};
static int hwc_device_open(const struct hw_module_t* module, const char* name,
struct hw_device_t** device);
static struct hw_module_methods_t hwc_module_methods = {
open: hwc_device_open
};
struct private_hwc_module_t {
hwc_module_t base;
copybit_device_t *copybitEngine;
framebuffer_device_t *fbDevice;
int compositionType;
bool isBypassEnabled; //from build.prop ro.sf.compbypass.enable
};
struct private_hwc_module_t HAL_MODULE_INFO_SYM = {
base: {
common: {
tag: HARDWARE_MODULE_TAG,
version_major: 1,
version_minor: 0,
id: HWC_HARDWARE_MODULE_ID,
name: "Hardware Composer Module",
author: "The Android Open Source Project",
methods: &hwc_module_methods,
}
},
copybitEngine: NULL,
fbDevice: NULL,
compositionType: 0,
isBypassEnabled: false,
};
/*****************************************************************************/
static void dump_layer(hwc_layer_t const* l) {
LOGD("\ttype=%d, flags=%08x, handle=%p, tr=%02x, blend=%04x, {%d,%d,%d,%d}, {%d,%d,%d,%d}",
l->compositionType, l->flags, l->handle, l->transform, l->blending,
l->sourceCrop.left,
l->sourceCrop.top,
l->sourceCrop.right,
l->sourceCrop.bottom,
l->displayFrame.left,
l->displayFrame.top,
l->displayFrame.right,
l->displayFrame.bottom);
}
static inline int min(const int& a, const int& b) {
return (a < b) ? a : b;
}
static inline int max(const int& a, const int& b) {
return (a > b) ? a : b;
}
static int setVideoOverlayStatusInGralloc(hwc_context_t* ctx, const bool enable) {
#if defined HDMI_DUAL_DISPLAY
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
ctx->device.common.module);
if(!hwcModule) {
LOGE("%s: invalid params", __FUNCTION__);
return -1;
}
framebuffer_device_t *fbDev = hwcModule->fbDevice;
if (!fbDev) {
LOGE("%s: fbDev is NULL", __FUNCTION__);
return -1;
}
// Inform the gralloc to stop or start UI mirroring
fbDev->videoOverlayStarted(fbDev, enable);
#endif
return 0;
}
static void setHWCOverlayStatus(hwc_context_t *ctx, bool isVideoPresent) {
switch (ctx->hwcOverlayStatus) {
case HWC_OVERLAY_OPEN:
ctx->hwcOverlayStatus =
isVideoPresent ? HWC_OVERLAY_OPEN : HWC_OVERLAY_PREPARE_TO_CLOSE;
break;
case HWC_OVERLAY_PREPARE_TO_CLOSE:
ctx->hwcOverlayStatus =
isVideoPresent ? HWC_OVERLAY_OPEN : HWC_OVERLAY_CLOSED;
break;
case HWC_OVERLAY_CLOSED:
ctx->hwcOverlayStatus =
isVideoPresent ? HWC_OVERLAY_OPEN : HWC_OVERLAY_CLOSED;
break;
default:
LOGE("%s: Invalid hwcOverlayStatus (status =%d)", __FUNCTION__,
ctx->hwcOverlayStatus);
break;
}
}
static int hwc_closeOverlayChannels(hwc_context_t* ctx) {
#ifdef USE_OVERLAY
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
if(!ovLibObject) {
LOGE("%s: invalid params", __FUNCTION__);
return -1;
}
if (HWC_OVERLAY_PREPARE_TO_CLOSE == ctx->hwcOverlayStatus) {
// Video mirroring is going on, and we do not have any layers to
// mirror directly. Close the current video channel and inform the
// gralloc to start UI mirroring
ovLibObject->closeChannel();
// Inform the gralloc that video overlay has stopped.
setVideoOverlayStatusInGralloc(ctx, false);
}
#endif
return 0;
}
#ifdef COMPOSITION_BYPASS
// To-do: Merge this with other blocks & move them to a separate file.
void unlockPreviousBypassBuffers(hwc_context_t* ctx) {
// Unlock the previous bypass buffers. We can blindly unlock the buffers here,
// because buffers will be in this list only if the lock was successfully acquired.
for(int i = 0; i < MAX_BYPASS_LAYERS; i++) {
if (ctx->previousBypassHandle[i]) {
private_handle_t *hnd = (private_handle_t*) ctx->previousBypassHandle[i];
// Validate the handle to make sure it hasn't been deallocated.
if (private_handle_t::validate(ctx->previousBypassHandle[i])) {
continue;
}
// Check if the handle was locked previously
if (private_handle_t::PRIV_FLAGS_HWC_LOCK & hnd->flags) {
if (GENLOCK_FAILURE == genlock_unlock_buffer(ctx->previousBypassHandle[i])) {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
} else {
ctx->previousBypassHandle[i] = NULL;
// Reset the lock flag
hnd->flags &= ~private_handle_t::PRIV_FLAGS_HWC_LOCK;
}
}
}
}
}
void closeBypass(hwc_context_t* ctx) {
unlockPreviousBypassBuffers(ctx);
for (int index = 0 ; index < MAX_BYPASS_LAYERS; index++) {
ctx->mOvUI[index]->closeChannel();
}
#ifdef DEBUG
LOGE("%s", __FUNCTION__);
#endif
}
#endif
/*
* Configures mdp pipes
*/
static int prepareOverlay(hwc_context_t *ctx, hwc_layer_t *layer, const bool waitForVsync) {
int ret = 0;
#ifdef COMPOSITION_BYPASS
if(ctx && (ctx->bypassState != BYPASS_OFF)) {
closeBypass(ctx);
ctx->bypassState = BYPASS_OFF;
}
#endif
if (LIKELY(ctx && ctx->mOverlayLibObject)) {
private_hwc_module_t* hwcModule =
reinterpret_cast<private_hwc_module_t*>(ctx->device.common.module);
if (UNLIKELY(!hwcModule)) {
LOGE("prepareOverlay null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
overlay_buffer_info info;
info.width = hnd->width;
info.height = hnd->height;
info.format = hnd->format;
info.size = hnd->size;
info.secure = (hnd->flags &
private_handle_t::PRIV_FLAGS_SECURE_BUFFER)? true:false;
ret = ovLibObject->setSource(info, layer->transform,
(ovLibObject->getHDMIStatus()?true:false), waitForVsync);
if (!ret) {
LOGE("prepareOverlay setSource failed");
return -1;
}
ret = ovLibObject->setTransform(layer->transform);
if (!ret) {
LOGE("prepareOverlay setTransform failed transform %x",
layer->transform);
return -1;
}
hwc_rect_t sourceCrop = layer->sourceCrop;
ret = ovLibObject->setCrop(sourceCrop.left, sourceCrop.top,
(sourceCrop.right - sourceCrop.left),
(sourceCrop.bottom - sourceCrop.top));
if (!ret) {
LOGE("prepareOverlay setCrop failed");
return -1;
}
if (layer->flags & HWC_USE_ORIGINAL_RESOLUTION) {
framebuffer_device_t* fbDev = hwcModule->fbDevice;
ret = ovLibObject->setPosition(0, 0,
fbDev->width, fbDev->height);
} else {
hwc_rect_t displayFrame = layer->displayFrame;
ret = ovLibObject->setPosition(displayFrame.left, displayFrame.top,
(displayFrame.right - displayFrame.left),
(displayFrame.bottom - displayFrame.top));
}
if (!ret) {
LOGE("prepareOverlay setPosition failed");
return -1;
}
}
return 0;
}
void unlockPreviousOverlayBuffer(hwc_context_t* ctx)
{
if (ctx->previousOverlayHandle) {
// Validate the handle before attempting to use it.
if (!private_handle_t::validate(ctx->previousOverlayHandle)) {
private_handle_t *hnd = (private_handle_t*)ctx->previousOverlayHandle;
// Unlock any previously locked buffers
if (private_handle_t::PRIV_FLAGS_HWC_LOCK & hnd->flags) {
if (GENLOCK_NO_ERROR == genlock_unlock_buffer(ctx->previousOverlayHandle)) {
ctx->previousOverlayHandle = NULL;
hnd->flags &= ~private_handle_t::PRIV_FLAGS_HWC_LOCK;
} else {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
}
}
}
}
}
bool canSkipComposition(hwc_context_t* ctx, int yuvBufferCount, int currentLayerCount,
int numLayersNotUpdating)
{
if (!ctx) {
LOGE("canSkipComposition invalid context");
return false;
}
bool compCountChanged = false;
if (yuvBufferCount == 1) {
if (currentLayerCount != ctx->previousLayerCount) {
compCountChanged = true;
ctx->previousLayerCount = currentLayerCount;
}
if (!compCountChanged) {
if ((currentLayerCount == 1) ||
((currentLayerCount-1) == numLayersNotUpdating)) {
// We either have only one overlay layer or we have
// all the non-UI layers not updating. In this case
// we can skip the composition of the UI layers.
return true;
}
}
} else {
ctx->previousLayerCount = -1;
}
return false;
}
inline void getLayerResolution(const hwc_layer_t* layer, int& width, int& height)
{
hwc_rect_t displayFrame = layer->displayFrame;
width = displayFrame.right - displayFrame.left;
height = displayFrame.bottom - displayFrame.top;
}
static bool canUseCopybit(const framebuffer_device_t* fbDev, const hwc_layer_list_t* list) {
if(!fbDev) {
LOGE("ERROR: %s : fb device is invalid",__func__);
return false;
}
int fb_w = fbDev->width;
int fb_h = fbDev->height;
/*
* We can use copybit when
* 1. We have 1 layer to compose
* 2. We have 2 layers to compose
* a. Sum of both layers covers full screen
* b. One of the layers is full screen and the
* other is less than full screen (includes
* pop ups, volume bar etc.)
* TODO: Need to revisit this logic to use copybit
* based on the total blitting region instead of total
* layers count
*/
bool use_copybit = (list->numHwLayers == 1);
if(list->numHwLayers == 2) {
int w1, h1;
int w2, h2;
getLayerResolution(&list->hwLayers[0], w1, h1);
getLayerResolution(&list->hwLayers[1], w2, h2);
use_copybit = ((fb_w >= w1) && (fb_w >= w2) && ((fb_h * 2) > (h1 + h2)));
}
return use_copybit;
}
#ifdef COMPOSITION_BYPASS
/*
* Configures pipe(s) for composition bypass
*/
static int prepareBypass(hwc_context_t *ctx, hwc_layer_t *layer, int index,
int lastLayerIndex) {
if (ctx && ctx->mOvUI[index]) {
private_hwc_module_t* hwcModule = reinterpret_cast<
private_hwc_module_t*>(ctx->device.common.module);
if (!hwcModule) {
LOGE("prepareBypass null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
LOGE("prepareBypass handle null");
return -1;
}
hwc_rect_t sourceCrop = layer->sourceCrop;
if((sourceCrop.right - sourceCrop.left) > hwcModule->fbDevice->width ||
(sourceCrop.bottom - sourceCrop.top) > hwcModule->fbDevice->height) {
ctx->animCount = ANIM_FRAME_COUNT;
return -1;
}
overlay::OverlayUI *ovUI = ctx->mOvUI[index];
int ret = 0;
int orientation = layer->transform;
overlay_buffer_info info;
info.width = sourceCrop.right - sourceCrop.left;
info.height = sourceCrop.bottom - sourceCrop.top;
info.format = hnd->format;
info.size = hnd->size;
info.secure = (hnd->flags &
private_handle_t::PRIV_FLAGS_SECURE_BUFFER)? true:false;
const bool useVGPipe = true;
//only last layer should wait for vsync
const bool waitForVsync = (index == lastLayerIndex);
const int fbnum = 0;
const bool isFg = (index == 0);
//Just to differentiate zorders for different layers
const int zorder = index;
const bool isVGPipe = true;
ovUI->setSource(info, orientation);
ovUI->setDisplayParams(fbnum, waitForVsync, isFg, zorder, isVGPipe);
hwc_rect_t displayFrame = layer->displayFrame;
ovUI->setPosition(displayFrame.left, displayFrame.top,
(displayFrame.right - displayFrame.left),
(displayFrame.bottom - displayFrame.top));
if(ovUI->commit() != overlay::NO_ERROR) {
LOGE("%s: Bypass Overlay Commit failed", __FUNCTION__);
return -1;
}
}
return 0;
}
static int drawLayerUsingBypass(hwc_context_t *ctx, hwc_layer_t *layer,
int index) {
if (ctx && ctx->mOvUI[index]) {
overlay::OverlayUI *ovUI = ctx->mOvUI[index];
int ret = 0;
private_handle_t *hnd = (private_handle_t *)layer->handle;
ctx->bypassBufferLockState[index] = BYPASS_BUFFER_UNLOCKED;
if (GENLOCK_FAILURE == genlock_lock_buffer(hnd, GENLOCK_READ_LOCK,
GENLOCK_MAX_TIMEOUT)) {
LOGE("%s: genlock_lock_buffer(READ) failed", __FUNCTION__);
return -1;
}
ctx->bypassBufferLockState[index] = BYPASS_BUFFER_LOCKED;
ret = ovUI->queueBuffer(hnd);
if (ret) {
LOGE("drawLayerUsingBypass queueBuffer failed");
// Unlock the locked buffer
if (GENLOCK_FAILURE == genlock_unlock_buffer(hnd)) {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
}
ctx->bypassBufferLockState[index] = BYPASS_BUFFER_UNLOCKED;
return -1;
}
}
return 0;
}
/* Checks if 2 layers intersect */
static bool isIntersect(const hwc_rect_t& one, const hwc_rect_t& two) {
hwc_rect_t result;
result.left = max(one.left, two.left);
result.top = max(one.top, two.top);
result.right = min(one.right, two.right);
result.bottom = min(one.bottom, two.bottom);
const int width = result.right - result.left;
const int height = result.bottom - result.top;
const bool isEmpty = width <= 0 || height <= 0;
return !isEmpty;
}
/* Check if layers are disjoint */
static bool isDisjoint(const hwc_layer_list_t* list) {
//Validate supported layer range
if(list->numHwLayers <= 0 || list->numHwLayers > MAX_BYPASS_LAYERS) {
return false;
}
for(int i = 0; i < (list->numHwLayers) - 1; i++) {
for(int j = i + 1; j < list->numHwLayers; j++) {
if(isIntersect(list->hwLayers[i].displayFrame,
list->hwLayers[j].displayFrame)) {
return false;
}
}
}
return true;
}
static bool usesContiguousMemory(const hwc_layer_list_t* list) {
for(int i = 0; i < list->numHwLayers; i++) {
const private_handle_t *hnd =
reinterpret_cast<const private_handle_t *>(list->hwLayers[i].handle);
if(hnd != NULL && (hnd->flags &
private_handle_t::PRIV_FLAGS_NONCONTIGUOUS_MEM
)) {
// Bypass cannot work for non contiguous buffers
return false;
}
}
return true;
}
/*
* Checks if doing comp. bypass is possible.
* It is possible if
* 1. If video is not on
* 2. There are 2 layers
* 3. The memory type is contiguous
*/
inline static bool isBypassDoable(hwc_composer_device_t *dev, const int yuvCount,
const hwc_layer_list_t* list) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
//Check if enabled in build.prop
if(hwcModule->isBypassEnabled == false) {
return false;
}
// Check if memory type is contiguous
if(!usesContiguousMemory(list))
return false;
//Disable bypass during animation
if(UNLIKELY(ctx->animCount)) {
--(ctx->animCount);
return false;
}
#if defined HDMI_DUAL_DISPLAY
//Disable bypass when HDMI is enabled
if(ctx->mHDMIEnabled || ctx->pendingHDMI) {
return false;
}
#endif
return (yuvCount == 0) && (ctx->hwcOverlayStatus == HWC_OVERLAY_CLOSED) && isDisjoint(list);
}
/*
* Bypass is not efficient if area is greater than 1280x720
* AND rotation is necessary, since the rotator consumes
* time greater than 1 Vsync and is sequential.
*/
inline static bool isBypassEfficient(const framebuffer_device_t* fbDev,
const hwc_layer_list_t* list, hwc_context_t* ctx) {
bool rotationNeeded = false;
for(int i = 0; i < list->numHwLayers; ++i) {
if(list->hwLayers[i].transform) {
rotationNeeded = true;
break;
}
}
return !(rotationNeeded);
}
bool setupBypass(hwc_context_t* ctx, hwc_layer_list_t* list) {
for (int index = 0 ; index < list->numHwLayers; index++) {
if(prepareBypass(ctx, &(list->hwLayers[index]), index,
list->numHwLayers - 1) != 0) {
return false;
}
}
return true;
}
void setBypassLayerFlags(hwc_context_t* ctx, hwc_layer_list_t* list) {
for (int index = 0 ; index < list->numHwLayers; index++) {
list->hwLayers[index].flags |= HWC_COMP_BYPASS;
list->hwLayers[index].compositionType = HWC_USE_OVERLAY;
#ifdef DEBUG
LOGE("%s: layer = %d", __FUNCTION__, index);
#endif
}
}
void unsetBypassLayerFlags(hwc_layer_list_t* list) {
for (int index = 0 ; index < list->numHwLayers; index++) {
if(list->hwLayers[index].flags & HWC_COMP_BYPASS) {
list->hwLayers[index].flags = 0;
}
}
}
void unsetBypassBufferLockState(hwc_context_t* ctx) {
for (int i=0; i< MAX_BYPASS_LAYERS; i++) {
ctx->bypassBufferLockState[i] = BYPASS_BUFFER_UNLOCKED;
}
}
void storeLockedBypassHandle(hwc_layer_list_t* list, hwc_context_t* ctx) {
for (int index = 0 ; index < list->numHwLayers; index++) {
// Store the current bypass handle.
if (list->hwLayers[index].flags & HWC_COMP_BYPASS) {
private_handle_t *hnd = (private_handle_t*)list->hwLayers[index].handle;
if (ctx->bypassBufferLockState[index] == BYPASS_BUFFER_LOCKED) {
ctx->previousBypassHandle[index] = (native_handle_t*)list->hwLayers[index].handle;
hnd->flags |= private_handle_t::PRIV_FLAGS_HWC_LOCK;
} else
ctx->previousBypassHandle[index] = NULL;
}
}
}
#endif //COMPOSITION_BYPASS
static void handleHDMIStateChange(hwc_composer_device_t *dev) {
#if defined HDMI_DUAL_DISPLAY
hwc_context_t* ctx = (hwc_context_t*)(dev);
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
framebuffer_device_t *fbDev = hwcModule->fbDevice;
if (fbDev) {
fbDev->enableHDMIOutput(fbDev, ctx->mHDMIEnabled);
}
if(ctx && ctx->mOverlayLibObject) {
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
ovLibObject->setHDMIStatus(ctx->mHDMIEnabled);
if (!(ctx->mHDMIEnabled)) {
// Close the overlay channels if HDMI is disconnected
ovLibObject->closeChannel();
}
}
#endif
}
/* Just mark flags and do stuff after eglSwapBuffers */
static void hwc_enableHDMIOutput(hwc_composer_device_t *dev, bool enable) {
#if defined HDMI_DUAL_DISPLAY
hwc_context_t* ctx = (hwc_context_t*)(dev);
ctx->mHDMIEnabled = enable;
if(enable) { //On connect, allow bypass to draw once to FB
ctx->pendingHDMI = true;
} else { //On disconnect, close immediately (there will be no bypass)
handleHDMIStateChange(dev);
}
#endif
}
static bool isValidDestination(const framebuffer_device_t* fbDev, const hwc_rect_t& rect)
{
if (!fbDev) {
LOGE("%s: fbDev is null", __FUNCTION__);
return false;
}
int dest_width = (rect.right - rect.left);
int dest_height = (rect.bottom - rect.top);
if (rect.left < 0 || rect.right < 0 || rect.top < 0 || rect.bottom < 0
|| dest_width <= 0 || dest_height <= 0) {
LOGE("%s: destination: left=%d right=%d top=%d bottom=%d width=%d"
"height=%d", __FUNCTION__, rect.left, rect.right, rect.top,
rect.bottom, dest_width, dest_height);
return false;
}
if ((rect.left+dest_width) > fbDev->width || (rect.top+dest_height) > fbDev->height) {
LOGE("%s: destination out of bound params", __FUNCTION__);
return false;
}
return true;
}
static int getYUVBufferCount (const hwc_layer_list_t* list) {
int yuvBufferCount = 0;
if (list) {
for (size_t i=0 ; i<list->numHwLayers; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
if (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO) &&
!(list->hwLayers[i].flags & HWC_DO_NOT_USE_OVERLAY)) {
yuvBufferCount++;
if (yuvBufferCount > 1) {
break;
}
}
}
}
return yuvBufferCount;
}
static int getS3DVideoFormat (const hwc_layer_list_t* list) {
int s3dFormat = 0;
if (list) {
for (size_t i=0; i<list->numHwLayers; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
if (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO))
s3dFormat = FORMAT_3D_INPUT(hnd->format);
if (s3dFormat)
break;
}
}
return s3dFormat;
}
static bool isS3DCompositionRequired() {
#ifdef HDMI_AS_PRIMARY
return overlay::is3DTV();
#endif
return false;
}
static void markUILayerForS3DComposition (hwc_layer_t &layer, int s3dVideoFormat) {
#ifdef HDMI_AS_PRIMARY
layer.compositionType = HWC_FRAMEBUFFER;
switch(s3dVideoFormat) {
case HAL_3D_IN_SIDE_BY_SIDE_L_R:
case HAL_3D_IN_SIDE_BY_SIDE_R_L:
layer.hints |= HWC_HINT_DRAW_S3D_SIDE_BY_SIDE;
break;
case HAL_3D_IN_TOP_BOTTOM:
layer.hints |= HWC_HINT_DRAW_S3D_TOP_BOTTOM;
break;
default:
LOGE("%s: Unknown S3D input format 0x%x", __FUNCTION__, s3dVideoFormat);
break;
}
#endif
return;
}
static int getLayersNotUpdatingCount(const hwc_layer_list_t* list) {
int numLayersNotUpdating = 0;
if (list) {
for (size_t i=0 ; i<list->numHwLayers; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
if (hnd && (hnd->bufferType != BUFFER_TYPE_VIDEO) &&
list->hwLayers[i].flags & HWC_LAYER_NOT_UPDATING)
numLayersNotUpdating++;
}
}
return numLayersNotUpdating;
}
static int hwc_prepare(hwc_composer_device_t *dev, hwc_layer_list_t* list) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
LOGE("hwc_prepare invalid context");
return -1;
}
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
if (!list || !hwcModule) {
LOGE("hwc_prepare invalid list or module");
#ifdef COMPOSITION_BYPASS
unlockPreviousBypassBuffers(ctx);
unsetBypassBufferLockState(ctx);
#endif
unlockPreviousOverlayBuffer(ctx);
return -1;
}
int yuvBufferCount = 0;
int layerType = 0;
bool isS3DCompositionNeeded = false;
int s3dVideoFormat = 0;
int numLayersNotUpdating = 0;
bool useCopybit = false;
if (list) {
useCopybit = canUseCopybit(hwcModule->fbDevice, list);
yuvBufferCount = getYUVBufferCount(list);
bool skipComposition = false;
if (yuvBufferCount == 1) {
numLayersNotUpdating = getLayersNotUpdatingCount(list);
skipComposition = canSkipComposition(ctx, yuvBufferCount,
list->numHwLayers, numLayersNotUpdating);
s3dVideoFormat = getS3DVideoFormat(list);
if (s3dVideoFormat)
isS3DCompositionNeeded = isS3DCompositionRequired();
} else {
unlockPreviousOverlayBuffer(ctx);
}
if (list->flags & HWC_GEOMETRY_CHANGED) {
if (yuvBufferCount == 1) {
// Inform the gralloc of the current video overlay status
setVideoOverlayStatusInGralloc(ctx, true);
}
}
for (size_t i=0 ; i<list->numHwLayers ; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
// If there is a single Fullscreen layer, we can bypass it - TBD
// If there is only one video/camera buffer, we can bypass itn
if (list->hwLayers[i].flags & HWC_SKIP_LAYER) {
// During the animaton UI layers are marked as SKIP
// need to still mark the layer for S3D composition
if (isS3DCompositionNeeded)
markUILayerForS3DComposition(list->hwLayers[i], s3dVideoFormat);
ssize_t layer_countdown = ((ssize_t)i) - 1;
// Mark every layer below the SKIP layer to be composed by the GPU
while (layer_countdown >= 0)
{
private_handle_t *countdown_handle =
(private_handle_t *)list->hwLayers[layer_countdown].handle;
if (countdown_handle && (countdown_handle->bufferType == BUFFER_TYPE_VIDEO)
&& (yuvBufferCount == 1)) {
unlockPreviousOverlayBuffer(ctx);
skipComposition = false;
}
list->hwLayers[layer_countdown].compositionType = HWC_FRAMEBUFFER;
list->hwLayers[layer_countdown].hints &= ~HWC_HINT_CLEAR_FB;
layer_countdown--;
}
continue;
}
if (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO) && (yuvBufferCount == 1)) {
bool waitForVsync = true;
if (!isValidDestination(hwcModule->fbDevice, list->hwLayers[i].displayFrame)) {
list->hwLayers[i].compositionType = HWC_FRAMEBUFFER;
#ifdef USE_OVERLAY
} else if(prepareOverlay(ctx, &(list->hwLayers[i]), waitForVsync) == 0) {
list->hwLayers[i].compositionType = HWC_USE_OVERLAY;
list->hwLayers[i].hints |= HWC_HINT_CLEAR_FB;
// We've opened the channel. Set the state to open.
ctx->hwcOverlayStatus = HWC_OVERLAY_OPEN;
#endif
}
else if (hwcModule->compositionType & (COMPOSITION_TYPE_C2D|
COMPOSITION_TYPE_MDP)) {
//Fail safe path: If drawing with overlay fails,
//Use C2D if available.
list->hwLayers[i].compositionType = HWC_USE_COPYBIT;
}
else {
//If C2D is not enabled fall back to GPU.
list->hwLayers[i].compositionType = HWC_FRAMEBUFFER;
}
if (HWC_USE_OVERLAY != list->hwLayers[i].compositionType) {
unlockPreviousOverlayBuffer(ctx);
skipComposition = false;
}
} else if (isS3DCompositionNeeded) {
markUILayerForS3DComposition(list->hwLayers[i], s3dVideoFormat);
} else if (list->hwLayers[i].flags & HWC_USE_ORIGINAL_RESOLUTION) {
list->hwLayers[i].compositionType = HWC_USE_OVERLAY;
list->hwLayers[i].hints |= HWC_HINT_CLEAR_FB;
layerType |= HWC_ORIG_RESOLUTION;
}
else if (hnd && (hwcModule->compositionType &
(COMPOSITION_TYPE_C2D|COMPOSITION_TYPE_MDP))) {
list->hwLayers[i].compositionType = HWC_USE_COPYBIT;
} else if ((hwcModule->compositionType == COMPOSITION_TYPE_DYN)
&& useCopybit) {
list->hwLayers[i].compositionType = HWC_USE_COPYBIT;
}
else {
list->hwLayers[i].compositionType = HWC_FRAMEBUFFER;
}
}
if (skipComposition) {
list->flags |= HWC_SKIP_COMPOSITION;
} else {
list->flags &= ~HWC_SKIP_COMPOSITION;
}
#ifdef COMPOSITION_BYPASS
//Check if bypass is feasible
if(isBypassDoable(dev, yuvBufferCount, list) &&
isBypassEfficient(hwcModule->fbDevice, list, ctx)) {
//Setup bypass
if(setupBypass(ctx, list)) {
//Overwrite layer flags only if setup succeeds.
setBypassLayerFlags(ctx, list);
list->flags |= HWC_SKIP_COMPOSITION;
ctx->bypassState = BYPASS_ON;
}
} else {
unlockPreviousBypassBuffers(ctx);
unsetBypassLayerFlags(list);
unsetBypassBufferLockState(ctx);
if(ctx->bypassState == BYPASS_ON) {
ctx->bypassState = BYPASS_OFF_PENDING;
}
}
#endif
}
return 0;
}
// ---------------------------------------------------------------------------
struct range {
int current;
int end;
};
struct region_iterator : public copybit_region_t {
region_iterator(hwc_region_t region) {
mRegion = region;
r.end = region.numRects;
r.current = 0;
this->next = iterate;
}
private:
static int iterate(copybit_region_t const * self, copybit_rect_t* rect) {
if (!self || !rect) {
LOGE("iterate invalid parameters");
return 0;
}
region_iterator const* me = static_cast<region_iterator const*>(self);
if (me->r.current != me->r.end) {
rect->l = me->mRegion.rects[me->r.current].left;
rect->t = me->mRegion.rects[me->r.current].top;
rect->r = me->mRegion.rects[me->r.current].right;
rect->b = me->mRegion.rects[me->r.current].bottom;
me->r.current++;
return 1;
}
return 0;
}
hwc_region_t mRegion;
mutable range r;
};
static int drawLayerUsingCopybit(hwc_composer_device_t *dev, hwc_layer_t *layer, EGLDisplay dpy,
EGLSurface surface)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
LOGE("drawLayerUsingCopybit null context ");
return -1;
}
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(dev->common.module);
if(!hwcModule) {
LOGE("drawLayerUsingCopybit null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
LOGE("drawLayerUsingCopybit invalid handle");
return -1;
}
// Lock this buffer for read.
genlock_lock_type lockType = GENLOCK_READ_LOCK;
int err = genlock_lock_buffer(hnd, lockType, GENLOCK_MAX_TIMEOUT);
if (GENLOCK_FAILURE == err) {
LOGE("%s: genlock_lock_buffer(READ) failed", __FUNCTION__);
return -1;
}
//render buffer
android_native_buffer_t *renderBuffer = (android_native_buffer_t *)eglGetRenderBufferANDROID(dpy, surface);
if (!renderBuffer) {
LOGE("eglGetRenderBufferANDROID returned NULL buffer");
genlock_unlock_buffer(hnd);
return -1;
}
private_handle_t *fbHandle = (private_handle_t *)renderBuffer->handle;
if(!fbHandle) {
LOGE("Framebuffer handle is NULL");
genlock_unlock_buffer(hnd);
return -1;
}
int alignment = 32;
if( HAL_PIXEL_FORMAT_RGB_565 == fbHandle->format )
alignment = 16;
// Set the copybit source:
copybit_image_t src;
src.w = ALIGN(hnd->width, alignment);
src.h = hnd->height;
src.format = hnd->format;
src.base = (void *)hnd->base;
src.handle = (native_handle_t *)layer->handle;
src.horiz_padding = src.w - hnd->width;
// Initialize vertical padding to zero for now,
// this needs to change to accomodate vertical stride
// if needed in the future
src.vert_padding = 0;
// Copybit source rect
hwc_rect_t sourceCrop = layer->sourceCrop;
copybit_rect_t srcRect = {sourceCrop.left, sourceCrop.top,
sourceCrop.right,
sourceCrop.bottom};
// Copybit destination rect
hwc_rect_t displayFrame = layer->displayFrame;
copybit_rect_t dstRect = {displayFrame.left, displayFrame.top,
displayFrame.right,
displayFrame.bottom};
// Copybit dst
copybit_image_t dst;
dst.w = ALIGN(fbHandle->width,alignment);
dst.h = fbHandle->height;
dst.format = fbHandle->format;
dst.base = (void *)fbHandle->base;
dst.handle = (native_handle_t *)renderBuffer->handle;
copybit_device_t *copybit = hwcModule->copybitEngine;
int32_t screen_w = displayFrame.right - displayFrame.left;
int32_t screen_h = displayFrame.bottom - displayFrame.top;
int32_t src_crop_width = sourceCrop.right - sourceCrop.left;
int32_t src_crop_height = sourceCrop.bottom -sourceCrop.top;
float copybitsMaxScale = (float)copybit->get(copybit,COPYBIT_MAGNIFICATION_LIMIT);
if((layer->transform == HWC_TRANSFORM_ROT_90) ||
(layer->transform == HWC_TRANSFORM_ROT_270)) {
//swap screen width and height
int tmp = screen_w;
screen_w = screen_h;
screen_h = tmp;
}
private_handle_t *tmpHnd = NULL;
if(screen_w <=0 || screen_h<=0 ||src_crop_width<=0 || src_crop_height<=0 ) {
LOGE("%s: wrong params for display screen_w=%d src_crop_width=%d screen_w=%d \
src_crop_width=%d", __FUNCTION__, screen_w,
src_crop_width,screen_w,src_crop_width);
genlock_unlock_buffer(hnd);
return -1;
}
float dsdx = (float)screen_w/src_crop_width;
float dtdy = (float)screen_h/src_crop_height;
int scaleLimit = copybitsMaxScale * copybitsMaxScale;
if(dsdx > scaleLimit || dtdy > scaleLimit) {
LOGE("%s: greater than max supported size ", __FUNCTION__ );
genlock_unlock_buffer(hnd);
return -1;
}
if(dsdx > copybitsMaxScale || dtdy > copybitsMaxScale){
// The requested scale is out of the range the hardware
// can support.
LOGD("%s:%d::Need to scale twice dsdx=%f, dtdy=%f,maxScaleInv=%f,screen_w=%d,screen_h=%d \
src_crop_width=%d src_crop_height=%d",__FUNCTION__,__LINE__,
dsdx,dtdy,copybitsMaxScale,screen_w,screen_h,src_crop_width,src_crop_height);
//Driver makes width and height as even
//that may cause wrong calculation of the ratio
//in display and crop.Hence we make
//crop width and height as even.
src_crop_width = (src_crop_width/2)*2;
src_crop_height = (src_crop_height/2)*2;
int tmp_w = src_crop_width*copybitsMaxScale;
int tmp_h = src_crop_height*copybitsMaxScale;
LOGD("%s:%d::tmp_w = %d,tmp_h = %d",__FUNCTION__,__LINE__,tmp_w,tmp_h);
int usage = GRALLOC_USAGE_PRIVATE_ADSP_HEAP |
GRALLOC_USAGE_PRIVATE_MM_HEAP;
if (0 == alloc_buffer(&tmpHnd, tmp_w, tmp_h, fbHandle->format, usage)){
copybit_image_t tmp_dst;
copybit_rect_t tmp_rect;
tmp_dst.w = tmp_w;
tmp_dst.h = tmp_h;
tmp_dst.format = tmpHnd->format;
tmp_dst.handle = tmpHnd;
tmp_dst.horiz_padding = src.horiz_padding;
tmp_dst.vert_padding = src.vert_padding;
tmp_rect.l = 0;
tmp_rect.t = 0;
tmp_rect.r = tmp_dst.w;
tmp_rect.b = tmp_dst.h;
//create one clip region
hwc_rect tmp_hwc_rect = {0,0,tmp_rect.r,tmp_rect.b};
hwc_region_t tmp_hwc_reg = {1,(hwc_rect_t const*)&tmp_hwc_rect};
region_iterator tmp_it(tmp_hwc_reg);
copybit->set_parameter(copybit,COPYBIT_TRANSFORM,0);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA,
(layer->blending == HWC_BLENDING_NONE) ? -1 : layer->alpha);
err = copybit->stretch(copybit,&tmp_dst, &src, &tmp_rect, &srcRect, &tmp_it);
if(err < 0){
LOGE("%s:%d::tmp copybit stretch failed",__FUNCTION__,__LINE__);
if(tmpHnd)
free_buffer(tmpHnd);
genlock_unlock_buffer(hnd);
return err;
}
// copy new src and src rect crop
src = tmp_dst;
srcRect = tmp_rect;
}
}
// Copybit region
hwc_region_t region = layer->visibleRegionScreen;
region_iterator copybitRegion(region);
copybit->set_parameter(copybit, COPYBIT_FRAMEBUFFER_WIDTH, renderBuffer->width);
copybit->set_parameter(copybit, COPYBIT_FRAMEBUFFER_HEIGHT, renderBuffer->height);
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, layer->transform);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA,
(layer->blending == HWC_BLENDING_NONE) ? -1 : layer->alpha);
copybit->set_parameter(copybit, COPYBIT_PREMULTIPLIED_ALPHA,
(layer->blending == HWC_BLENDING_PREMULT)? COPYBIT_ENABLE : COPYBIT_DISABLE);
copybit->set_parameter(copybit, COPYBIT_DITHER,
(dst.format == HAL_PIXEL_FORMAT_RGB_565)? COPYBIT_ENABLE : COPYBIT_DISABLE);
err = copybit->stretch(copybit, &dst, &src, &dstRect, &srcRect, &copybitRegion);
if(tmpHnd)
free_buffer(tmpHnd);
if(err < 0)
LOGE("copybit stretch failed");
// Unlock this buffer since copybit is done with it.
err = genlock_unlock_buffer(hnd);
if (GENLOCK_FAILURE == err) {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
}
return err;
}
static int drawLayerUsingOverlay(hwc_context_t *ctx, hwc_layer_t *layer)
{
if (ctx && ctx->mOverlayLibObject) {
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(ctx->device.common.module);
if (!hwcModule) {
LOGE("drawLayerUsingLayer null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
int ret = 0;
// Lock this buffer for read.
if (GENLOCK_NO_ERROR != genlock_lock_buffer(hnd, GENLOCK_READ_LOCK,
GENLOCK_MAX_TIMEOUT)) {
LOGE("%s: genlock_lock_buffer(READ) failed", __FUNCTION__);
return -1;
}
ret = ovLibObject->queueBuffer(hnd);
// Unlock the previously locked buffer, since the overlay has completed reading the buffer
unlockPreviousOverlayBuffer(ctx);
if (!ret) {
LOGE("drawLayerUsingOverlay queueBuffer failed");
// Unlock the buffer handle
genlock_unlock_buffer(hnd);
ctx->previousOverlayHandle = NULL;
} else {
// Store the current buffer handle as the one that is to be unlocked after
// the next overlay play call.
ctx->previousOverlayHandle = hnd;
hnd->flags |= private_handle_t::PRIV_FLAGS_HWC_LOCK;
}
return ret;
}
return -1;
}
static int hwc_set(hwc_composer_device_t *dev,
hwc_display_t dpy,
hwc_surface_t sur,
hwc_layer_list_t* list)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
LOGE("hwc_set invalid context");
return -1;
}
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
framebuffer_device_t *fbDev = hwcModule->fbDevice;
if (!list || !hwcModule) {
LOGE("hwc_set invalid list or module");
#ifdef COMPOSITION_BYPASS
unlockPreviousBypassBuffers(ctx);
unsetBypassBufferLockState(ctx);
#endif
unlockPreviousOverlayBuffer(ctx);
return -1;
}
int ret = 0;
for (size_t i=0; i<list->numHwLayers; i++) {
if (list->hwLayers[i].flags & HWC_SKIP_LAYER) {
continue;
#ifdef COMPOSITION_BYPASS
} else if (list->hwLayers[i].flags & HWC_COMP_BYPASS) {
drawLayerUsingBypass(ctx, &(list->hwLayers[i]), i);
#endif
} else if (list->hwLayers[i].compositionType == HWC_USE_OVERLAY) {
drawLayerUsingOverlay(ctx, &(list->hwLayers[i]));
} else if (list->flags & HWC_SKIP_COMPOSITION) {
continue;
}
else if (list->hwLayers[i].compositionType == HWC_USE_COPYBIT) {
drawLayerUsingCopybit(dev, &(list->hwLayers[i]), (EGLDisplay)dpy, (EGLSurface)sur);
}
}
#ifdef COMPOSITION_BYPASS
unlockPreviousBypassBuffers(ctx);
storeLockedBypassHandle(list, ctx);
// We have stored the handles, unset the current lock states in the context.
unsetBypassBufferLockState(ctx);
//Setup for waiting until 1 FB post is done before closing bypass mode.
if (ctx->bypassState == BYPASS_OFF_PENDING) {
fbDev->resetBufferPostStatus(fbDev);
}
#endif
// Do not call eglSwapBuffers if we the skip composition flag is set on the list.
if (!(list->flags & HWC_SKIP_COMPOSITION)) {
EGLBoolean sucess = eglSwapBuffers((EGLDisplay)dpy, (EGLSurface)sur);
if (!sucess) {
ret = HWC_EGL_ERROR;
LOGE("eglSwapBuffers() failed in %s", __FUNCTION__);
}
}
else {
CALC_FPS();
}
#ifdef COMPOSITION_BYPASS
if(ctx->bypassState == BYPASS_OFF_PENDING) {
//Close channels only after fb content is displayed.
//We have already reset status before eglSwapBuffers.
if (!(list->flags & HWC_SKIP_COMPOSITION)) {
fbDev->waitForBufferPost(fbDev);
}
closeBypass(ctx);
ctx->bypassState = BYPASS_OFF;
}
#endif
#if defined HDMI_DUAL_DISPLAY
if(ctx->pendingHDMI) {
handleHDMIStateChange(dev);
ctx->pendingHDMI = false;
}
#endif
hwc_closeOverlayChannels(ctx);
int yuvBufferCount = getYUVBufferCount(list);
setHWCOverlayStatus(ctx, yuvBufferCount);
return ret;
}
static int hwc_device_close(struct hw_device_t *dev)
{
if(!dev) {
LOGE("hwc_device_close null device pointer");
return -1;
}
struct hwc_context_t* ctx = (struct hwc_context_t*)dev;
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
ctx->device.common.module);
// Close the overlay and copybit modules
if(hwcModule->copybitEngine) {
copybit_close(hwcModule->copybitEngine);
hwcModule->copybitEngine = NULL;
}
if(hwcModule->fbDevice) {
framebuffer_close(hwcModule->fbDevice);
hwcModule->fbDevice = NULL;
}
unlockPreviousOverlayBuffer(ctx);
if (ctx) {
delete ctx->mOverlayLibObject;
ctx->mOverlayLibObject = NULL;
#ifdef COMPOSITION_BYPASS
for(int i = 0; i < MAX_BYPASS_LAYERS; i++) {
delete ctx->mOvUI[i];
}
unlockPreviousBypassBuffers(ctx);
unsetBypassBufferLockState(ctx);
#endif
free(ctx);
}
return 0;
}
/*****************************************************************************/
static int hwc_module_initialize(struct private_hwc_module_t* hwcModule)
{
// Open the overlay and copybit modules
hw_module_t const *module;
if (hw_get_module(COPYBIT_HARDWARE_MODULE_ID, &module) == 0) {
copybit_open(module, &(hwcModule->copybitEngine));
}
if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module) == 0) {
framebuffer_open(module, &(hwcModule->fbDevice));
}
// get the current composition type
char property[PROPERTY_VALUE_MAX];
if (property_get("debug.sf.hw", property, NULL) > 0) {
if(atoi(property) == 0) {
//debug.sf.hw = 0
hwcModule->compositionType = COMPOSITION_TYPE_CPU;
} else { //debug.sf.hw = 1
// Get the composition type
property_get("debug.composition.type", property, NULL);
if (property == NULL) {
hwcModule->compositionType = COMPOSITION_TYPE_GPU;
} else if ((strncmp(property, "mdp", 3)) == 0) {
hwcModule->compositionType = COMPOSITION_TYPE_MDP;
} else if ((strncmp(property, "c2d", 3)) == 0) {
hwcModule->compositionType = COMPOSITION_TYPE_C2D;
} else if ((strncmp(property, "dyn", 3)) == 0) {
hwcModule->compositionType = COMPOSITION_TYPE_DYN;
} else {
hwcModule->compositionType = COMPOSITION_TYPE_GPU;
}
if(!hwcModule->copybitEngine)
hwcModule->compositionType = COMPOSITION_TYPE_GPU;
}
} else { //debug.sf.hw is not set. Use cpu composition
hwcModule->compositionType = COMPOSITION_TYPE_CPU;
}
//Check if composition bypass is enabled
if(property_get("ro.sf.compbypass.enable", property, NULL) > 0) {
if(atoi(property) == 1) {
hwcModule->isBypassEnabled = true;
}
}
CALC_INIT();
return 0;
}
static int hwc_device_open(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
int status = -EINVAL;
if (!strcmp(name, HWC_HARDWARE_COMPOSER)) {
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>
(const_cast<hw_module_t*>(module));
hwc_module_initialize(hwcModule);
struct hwc_context_t *dev;
dev = (hwc_context_t*)malloc(sizeof(*dev));
/* initialize our state here */
memset(dev, 0, sizeof(*dev));
dev->mOverlayLibObject = new overlay::Overlay();
#ifdef COMPOSITION_BYPASS
for(int i = 0; i < MAX_BYPASS_LAYERS; i++) {
dev->mOvUI[i] = new overlay::OverlayUI();
dev->previousBypassHandle[i] = NULL;
}
unsetBypassBufferLockState(dev);
dev->animCount = 0;
dev->bypassState = BYPASS_OFF;
#endif
#if defined HDMI_DUAL_DISPLAY
dev->mHDMIEnabled = false;
dev->pendingHDMI = false;
#endif
dev->previousOverlayHandle = NULL;
dev->hwcOverlayStatus = HWC_OVERLAY_CLOSED;
/* initialize the procs */
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = const_cast<hw_module_t*>(module);
dev->device.common.close = hwc_device_close;
dev->device.prepare = hwc_prepare;
dev->device.set = hwc_set;
dev->device.enableHDMIOutput = hwc_enableHDMIOutput;
*device = &dev->device.common;
status = 0;
}
return status;
}