android_hardware_qcom_display/libhwcomposer/hwcomposer.cpp
Naomi Luis 42c4db1c6e libhwcomposer: Check the number of open overlay channels
When performing the setup for bypass operations, check the number
of bypass channels that are in open state. If the count does not
match the number of bypass layers, close all the bypass channels.
This is done to prevent the overlay channels from going into an
inconsistent/undefined state.

Change-Id: If471a4b4437e25642586616461c5d745f15b3287
CRs-fixed: 323676
2012-01-01 17:54:54 -05:00

1383 lines
47 KiB
C++
Executable File

/*
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <hardware/hardware.h>
#include <fcntl.h>
#include <errno.h>
#include <cutils/log.h>
#include <cutils/atomic.h>
#include <cutils/properties.h>
#include <hardware/hwcomposer.h>
#include <overlayLib.h>
#include <overlayLibUI.h>
#include <copybit.h>
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <ui/android_native_buffer.h>
#include <gralloc_priv.h>
#include <genlock.h>
#include <qcom_ui.h>
/*****************************************************************************/
#define ALIGN(x, align) (((x) + ((align)-1)) & ~((align)-1))
#define LIKELY( exp ) (__builtin_expect( (exp) != 0, true ))
#define UNLIKELY( exp ) (__builtin_expect( (exp) != 0, false ))
enum HWCLayerType{
HWC_SINGLE_VIDEO = 0x1,
HWC_ORIG_RESOLUTION = 0x2,
HWC_S3D_LAYER = 0x4,
HWC_STOP_UI_MIRRORING_MASK = 0xF
};
#ifdef COMPOSITION_BYPASS
enum BypassState {
BYPASS_ON,
BYPASS_OFF,
BYPASS_OFF_PENDING,
};
enum {
MAX_BYPASS_LAYERS = 2,
ANIM_FRAME_COUNT = 30,
};
enum BypassBufferLockState {
BYPASS_BUFFER_UNLOCKED,
BYPASS_BUFFER_LOCKED,
};
#endif
enum eHWCOverlayStatus {
HWC_OVERLAY_OPEN,
HWC_OVERLAY_PREPARE_TO_CLOSE,
HWC_OVERLAY_CLOSED
};
struct hwc_context_t {
hwc_composer_device_t device;
/* our private state goes below here */
overlay::Overlay* mOverlayLibObject;
native_handle_t *previousOverlayHandle;
#ifdef COMPOSITION_BYPASS
overlay::OverlayUI* mOvUI[MAX_BYPASS_LAYERS];
native_handle_t* previousBypassHandle[MAX_BYPASS_LAYERS];
BypassBufferLockState bypassBufferLockState[MAX_BYPASS_LAYERS];
int animCount;
BypassState bypassState;
#endif
#if defined HDMI_DUAL_DISPLAY
bool mHDMIEnabled;
bool pendingHDMI;
#endif
int previousLayerCount;
eHWCOverlayStatus hwcOverlayStatus;
};
static int hwc_device_open(const struct hw_module_t* module, const char* name,
struct hw_device_t** device);
static struct hw_module_methods_t hwc_module_methods = {
open: hwc_device_open
};
struct private_hwc_module_t {
hwc_module_t base;
copybit_device_t *copybitEngine;
framebuffer_device_t *fbDevice;
int compositionType;
bool isBypassEnabled; //from build.prop ro.sf.compbypass.enable
};
struct private_hwc_module_t HAL_MODULE_INFO_SYM = {
base: {
common: {
tag: HARDWARE_MODULE_TAG,
version_major: 1,
version_minor: 0,
id: HWC_HARDWARE_MODULE_ID,
name: "Hardware Composer Module",
author: "The Android Open Source Project",
methods: &hwc_module_methods,
}
},
copybitEngine: NULL,
fbDevice: NULL,
compositionType: 0,
isBypassEnabled: false,
};
/*****************************************************************************/
static void dump_layer(hwc_layer_t const* l) {
LOGD("\ttype=%d, flags=%08x, handle=%p, tr=%02x, blend=%04x, {%d,%d,%d,%d}, {%d,%d,%d,%d}",
l->compositionType, l->flags, l->handle, l->transform, l->blending,
l->sourceCrop.left,
l->sourceCrop.top,
l->sourceCrop.right,
l->sourceCrop.bottom,
l->displayFrame.left,
l->displayFrame.top,
l->displayFrame.right,
l->displayFrame.bottom);
}
static inline int min(const int& a, const int& b) {
return (a < b) ? a : b;
}
static inline int max(const int& a, const int& b) {
return (a > b) ? a : b;
}
static int setVideoOverlayStatusInGralloc(hwc_context_t* ctx, const bool enable) {
#if defined HDMI_DUAL_DISPLAY
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
ctx->device.common.module);
if(!hwcModule) {
LOGE("%s: invalid params", __FUNCTION__);
return -1;
}
framebuffer_device_t *fbDev = hwcModule->fbDevice;
if (!fbDev) {
LOGE("%s: fbDev is NULL", __FUNCTION__);
return -1;
}
// Inform the gralloc to stop or start UI mirroring
fbDev->videoOverlayStarted(fbDev, enable);
#endif
return 0;
}
static void setHWCOverlayStatus(hwc_context_t *ctx, bool isVideoPresent) {
switch (ctx->hwcOverlayStatus) {
case HWC_OVERLAY_OPEN:
ctx->hwcOverlayStatus =
isVideoPresent ? HWC_OVERLAY_OPEN : HWC_OVERLAY_PREPARE_TO_CLOSE;
break;
case HWC_OVERLAY_PREPARE_TO_CLOSE:
ctx->hwcOverlayStatus =
isVideoPresent ? HWC_OVERLAY_OPEN : HWC_OVERLAY_CLOSED;
break;
case HWC_OVERLAY_CLOSED:
ctx->hwcOverlayStatus =
isVideoPresent ? HWC_OVERLAY_OPEN : HWC_OVERLAY_CLOSED;
break;
default:
LOGE("%s: Invalid hwcOverlayStatus (status =%d)", __FUNCTION__,
ctx->hwcOverlayStatus);
break;
}
}
static int hwc_closeOverlayChannels(hwc_context_t* ctx) {
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
if(!ovLibObject) {
LOGE("%s: invalid params", __FUNCTION__);
return -1;
}
if (HWC_OVERLAY_PREPARE_TO_CLOSE == ctx->hwcOverlayStatus) {
// Video mirroring is going on, and we do not have any layers to
// mirror directly. Close the current video channel and inform the
// gralloc to start UI mirroring
ovLibObject->closeChannel();
// Inform the gralloc that video overlay has stopped.
setVideoOverlayStatusInGralloc(ctx, false);
}
return 0;
}
#ifdef COMPOSITION_BYPASS
// To-do: Merge this with other blocks & move them to a separate file.
void unlockPreviousBypassBuffers(hwc_context_t* ctx) {
// Unlock the previous bypass buffers. We can blindly unlock the buffers here,
// because buffers will be in this list only if the lock was successfully acquired.
for(int i = 0; i < MAX_BYPASS_LAYERS; i++) {
if (ctx->previousBypassHandle[i]) {
private_handle_t *hnd = (private_handle_t*) ctx->previousBypassHandle[i];
// Validate the handle to make sure it hasn't been deallocated.
if (private_handle_t::validate(ctx->previousBypassHandle[i])) {
continue;
}
// Check if the handle was locked previously
if (private_handle_t::PRIV_FLAGS_HWC_LOCK & hnd->flags) {
if (GENLOCK_FAILURE == genlock_unlock_buffer(ctx->previousBypassHandle[i])) {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
} else {
ctx->previousBypassHandle[i] = NULL;
// Reset the lock flag
hnd->flags &= ~private_handle_t::PRIV_FLAGS_HWC_LOCK;
}
}
}
}
}
void closeBypass(hwc_context_t* ctx) {
unlockPreviousBypassBuffers(ctx);
for (int index = 0 ; index < MAX_BYPASS_LAYERS; index++) {
if (overlay::CLOSED != ctx->mOvUI[index]->isChannelUP())
ctx->mOvUI[index]->closeChannel();
}
#ifdef DEBUG
LOGE("%s", __FUNCTION__);
#endif
}
#endif
/*
* Configures mdp pipes
*/
static int prepareOverlay(hwc_context_t *ctx, hwc_layer_t *layer, const bool waitForVsync) {
int ret = 0;
#ifdef COMPOSITION_BYPASS
if(ctx && (ctx->bypassState != BYPASS_OFF)) {
closeBypass(ctx);
ctx->bypassState = BYPASS_OFF;
}
#endif
if (LIKELY(ctx && ctx->mOverlayLibObject)) {
private_hwc_module_t* hwcModule =
reinterpret_cast<private_hwc_module_t*>(ctx->device.common.module);
if (UNLIKELY(!hwcModule)) {
LOGE("prepareOverlay null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
overlay_buffer_info info;
info.width = hnd->width;
info.height = hnd->height;
info.format = hnd->format;
info.size = hnd->size;
ret = ovLibObject->setSource(info, layer->transform,
(ovLibObject->getHDMIStatus()?true:false), waitForVsync);
if (!ret) {
LOGE("prepareOverlay setSource failed");
return -1;
}
ret = ovLibObject->setTransform(layer->transform);
if (!ret) {
LOGE("prepareOverlay setTransform failed transform %x",
layer->transform);
return -1;
}
hwc_rect_t sourceCrop = layer->sourceCrop;
ret = ovLibObject->setCrop(sourceCrop.left, sourceCrop.top,
(sourceCrop.right - sourceCrop.left),
(sourceCrop.bottom - sourceCrop.top));
if (!ret) {
LOGE("prepareOverlay setCrop failed");
return -1;
}
if (layer->flags & HWC_USE_ORIGINAL_RESOLUTION) {
framebuffer_device_t* fbDev = hwcModule->fbDevice;
ret = ovLibObject->setPosition(0, 0,
fbDev->width, fbDev->height);
} else {
hwc_rect_t displayFrame = layer->displayFrame;
ret = ovLibObject->setPosition(displayFrame.left, displayFrame.top,
(displayFrame.right - displayFrame.left),
(displayFrame.bottom - displayFrame.top));
}
if (!ret) {
LOGE("prepareOverlay setPosition failed");
return -1;
}
}
return 0;
}
void unlockPreviousOverlayBuffer(hwc_context_t* ctx)
{
if (ctx->previousOverlayHandle) {
// Validate the handle before attempting to use it.
if (!private_handle_t::validate(ctx->previousOverlayHandle)) {
private_handle_t *hnd = (private_handle_t*)ctx->previousOverlayHandle;
// Unlock any previously locked buffers
if (private_handle_t::PRIV_FLAGS_HWC_LOCK & hnd->flags) {
if (GENLOCK_NO_ERROR == genlock_unlock_buffer(ctx->previousOverlayHandle)) {
ctx->previousOverlayHandle = NULL;
hnd->flags &= ~private_handle_t::PRIV_FLAGS_HWC_LOCK;
} else {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
}
}
}
}
}
bool canSkipComposition(hwc_context_t* ctx, int yuvBufferCount, int currentLayerCount,
int numLayersNotUpdating)
{
if (!ctx) {
LOGE("canSkipComposition invalid context");
return false;
}
bool compCountChanged = false;
if (yuvBufferCount == 1) {
if (currentLayerCount != ctx->previousLayerCount) {
compCountChanged = true;
ctx->previousLayerCount = currentLayerCount;
}
if (!compCountChanged) {
if ((currentLayerCount == 1) ||
((currentLayerCount-1) == numLayersNotUpdating)) {
// We either have only one overlay layer or we have
// all the non-UI layers not updating. In this case
// we can skip the composition of the UI layers.
return true;
}
}
} else {
ctx->previousLayerCount = -1;
}
return false;
}
static bool isFullScreenUpdate(const framebuffer_device_t* fbDev, const hwc_layer_list_t* list) {
if(!fbDev) {
LOGE("ERROR: %s : fb device is invalid",__func__);
return false;
}
int fb_w = fbDev->width;
int fb_h = fbDev->height;
/*
* We have full screen condition when
* 1. We have 1 layer to compose
* a. layers dest rect equals display resolution.
* 2. We have 2 layers to compose
* a. Sum of their dest rects equals display resolution.
*/
if(list->numHwLayers == 1)
{
hwc_rect_t rect = list->hwLayers[0].displayFrame;
int w = rect.right - rect.left;
int h = rect.bottom - rect.top;
int transform = list->hwLayers[0].transform;
if(transform & (HWC_TRANSFORM_ROT_90 | HWC_TRANSFORM_ROT_270))
return ((fb_w == h) && (fb_h == w));
else
return ((fb_h == h) && (fb_w == w));
}
if(list->numHwLayers == 2) {
hwc_rect_t rect_1 = list->hwLayers[0].displayFrame;
hwc_rect_t rect_2 = list->hwLayers[1].displayFrame;
int transform_1 = list->hwLayers[0].transform;
int transform_2 = list->hwLayers[1].transform;
int w1 = rect_1.right - rect_1.left;
int h1 = rect_1.bottom - rect_1.top;
int w2 = rect_2.right - rect_2.left;
int h2 = rect_2.bottom - rect_2.top;
if(transform_1 == transform_2) {
if(transform_1 & (HWC_TRANSFORM_ROT_90 | HWC_TRANSFORM_ROT_270)) {
if((fb_w == (w1 + w2)) && (fb_h == h1) && (fb_h == h2))
return true;
} else {
if((fb_w == w1) && (fb_w == w2) && (fb_h == (h1 + h2)))
return true;
}
}
}
return false;
}
#ifdef COMPOSITION_BYPASS
/*
* Configures pipe(s) for composition bypass
*/
static int prepareBypass(hwc_context_t *ctx, hwc_layer_t *layer, int index,
int lastLayerIndex) {
if (ctx && ctx->mOvUI[index]) {
private_hwc_module_t* hwcModule = reinterpret_cast<
private_hwc_module_t*>(ctx->device.common.module);
if (!hwcModule) {
LOGE("prepareBypass null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
LOGE("prepareBypass handle null");
return -1;
}
hwc_rect_t sourceCrop = layer->sourceCrop;
if((sourceCrop.right - sourceCrop.left) > hwcModule->fbDevice->width ||
(sourceCrop.bottom - sourceCrop.top) > hwcModule->fbDevice->height) {
ctx->animCount = ANIM_FRAME_COUNT;
return -1;
}
overlay::OverlayUI *ovUI = ctx->mOvUI[index];
int ret = 0;
int orientation = layer->transform;
overlay_buffer_info info;
info.width = sourceCrop.right - sourceCrop.left;
info.height = sourceCrop.bottom - sourceCrop.top;
info.format = hnd->format;
info.size = hnd->size;
const bool useVGPipe = true;
//only last layer should wait for vsync
const bool waitForVsync = (index == lastLayerIndex);
const int fbnum = 0;
//Just to differentiate zorders for different layers
const int zorder = index;
ret = ovUI->setSource(info, orientation, useVGPipe, waitForVsync,
fbnum, zorder);
if (ret) {
LOGE("prepareBypass setSource failed");
return -1;
}
hwc_rect_t displayFrame = layer->displayFrame;
ret = ovUI->setPosition(displayFrame.left, displayFrame.top,
(displayFrame.right - displayFrame.left),
(displayFrame.bottom - displayFrame.top));
if (ret) {
LOGE("prepareBypass setPosition failed");
return -1;
}
}
return 0;
}
static int drawLayerUsingBypass(hwc_context_t *ctx, hwc_layer_t *layer,
int index) {
if (ctx && ctx->mOvUI[index]) {
overlay::OverlayUI *ovUI = ctx->mOvUI[index];
int ret = 0;
private_handle_t *hnd = (private_handle_t *)layer->handle;
ctx->bypassBufferLockState[index] = BYPASS_BUFFER_UNLOCKED;
if (GENLOCK_FAILURE == genlock_lock_buffer(hnd, GENLOCK_READ_LOCK,
GENLOCK_MAX_TIMEOUT)) {
LOGE("%s: genlock_lock_buffer(READ) failed", __FUNCTION__);
return -1;
}
ctx->bypassBufferLockState[index] = BYPASS_BUFFER_LOCKED;
ret = ovUI->queueBuffer(hnd);
if (ret) {
LOGE("drawLayerUsingBypass queueBuffer failed");
// Unlock the locked buffer
if (GENLOCK_FAILURE == genlock_unlock_buffer(hnd)) {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
}
ctx->bypassBufferLockState[index] = BYPASS_BUFFER_UNLOCKED;
return -1;
}
}
return 0;
}
/* Checks if 2 layers intersect */
static bool isIntersect(const hwc_rect_t& one, const hwc_rect_t& two) {
hwc_rect_t result;
result.left = max(one.left, two.left);
result.top = max(one.top, two.top);
result.right = min(one.right, two.right);
result.bottom = min(one.bottom, two.bottom);
const int width = result.right - result.left;
const int height = result.bottom - result.top;
const bool isEmpty = width <= 0 || height <= 0;
return !isEmpty;
}
/* Check if layers are disjoint */
static bool isDisjoint(const hwc_layer_list_t* list) {
//Validate supported layer range
if(list->numHwLayers <= 0 || list->numHwLayers > MAX_BYPASS_LAYERS) {
return false;
}
for(int i = 0; i < (list->numHwLayers) - 1; i++) {
for(int j = i + 1; j < list->numHwLayers; j++) {
if(isIntersect(list->hwLayers[i].displayFrame,
list->hwLayers[j].displayFrame)) {
return false;
}
}
}
return true;
}
static bool usesContiguousMemory(const hwc_layer_list_t* list) {
for(int i = 0; i < list->numHwLayers; i++) {
const private_handle_t *hnd =
reinterpret_cast<const private_handle_t *>(list->hwLayers[i].handle);
if(hnd != NULL && (hnd->flags &
private_handle_t::PRIV_FLAGS_NONCONTIGUOUS_MEM
)) {
// Bypass cannot work for non contiguous buffers
return false;
}
}
return true;
}
/*
* Checks if doing comp. bypass is possible.
* It is possible if
* 1. If video is not on
* 2. There are 2 layers
* 3. The memory type is contiguous
*/
inline static bool isBypassDoable(hwc_composer_device_t *dev, const int yuvCount,
const hwc_layer_list_t* list) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
//Check if enabled in build.prop
if(hwcModule->isBypassEnabled == false) {
return false;
}
// Check if memory type is contiguous
if(!usesContiguousMemory(list))
return false;
//Disable bypass during animation
if(UNLIKELY(ctx->animCount)) {
--(ctx->animCount);
return false;
}
#if defined HDMI_DUAL_DISPLAY
//Disable bypass when HDMI is enabled
if(ctx->mHDMIEnabled || ctx->pendingHDMI) {
return false;
}
#endif
return (yuvCount == 0) && (ctx->hwcOverlayStatus == HWC_OVERLAY_CLOSED) && isDisjoint(list);
}
/*
* Bypass is not efficient if area is greater than 1280x720
* AND rotation is necessary, since the rotator consumes
* time greater than 1 Vsync and is sequential.
*/
inline static bool isBypassEfficient(const framebuffer_device_t* fbDev,
const hwc_layer_list_t* list, hwc_context_t* ctx) {
bool rotationNeeded = false;
for(int i = 0; i < list->numHwLayers; ++i) {
if(list->hwLayers[i].transform) {
rotationNeeded = true;
break;
}
}
return !(rotationNeeded);
}
bool setupBypass(hwc_context_t* ctx, hwc_layer_list_t* list) {
int currentBypassLayerCount = list->numHwLayers;
// Check the number of open bypass channels
int openBypassChannels = 0;
for (int index = 0; index < MAX_BYPASS_LAYERS; index++) {
if (overlay::UP == ctx->mOvUI[index]->isChannelUP()) {
openBypassChannels++;
}
}
if (openBypassChannels && (openBypassChannels != currentBypassLayerCount)) {
// Number of overlay channels that are open is not the same as
// the number of bypass channels. We could run into an issue
// where the channels could potentially move into an incorrect/inconsistent
// stste. Return a failure so that the channels can be closed and re-opened
// with the correct states.
return false;
}
for (int index = 0 ; index < list->numHwLayers; index++) {
if(prepareBypass(ctx, &(list->hwLayers[index]), index,
list->numHwLayers - 1) != 0) {
return false;
}
}
return true;
}
void setBypassLayerFlags(hwc_context_t* ctx, hwc_layer_list_t* list) {
for (int index = 0 ; index < list->numHwLayers; index++) {
list->hwLayers[index].flags |= HWC_COMP_BYPASS;
list->hwLayers[index].compositionType = HWC_USE_OVERLAY;
#ifdef DEBUG
LOGE("%s: layer = %d", __FUNCTION__, index);
#endif
}
}
void unsetBypassLayerFlags(hwc_layer_list_t* list) {
for (int index = 0 ; index < list->numHwLayers; index++) {
if(list->hwLayers[index].flags & HWC_COMP_BYPASS) {
list->hwLayers[index].flags = 0;
}
}
}
void unsetBypassBufferLockState(hwc_context_t* ctx) {
for (int i=0; i< MAX_BYPASS_LAYERS; i++) {
ctx->bypassBufferLockState[i] = BYPASS_BUFFER_UNLOCKED;
}
}
void storeLockedBypassHandle(hwc_layer_list_t* list, hwc_context_t* ctx) {
for (int index = 0 ; index < list->numHwLayers; index++) {
// Store the current bypass handle.
if (list->hwLayers[index].flags & HWC_COMP_BYPASS) {
private_handle_t *hnd = (private_handle_t*)list->hwLayers[index].handle;
if (ctx->bypassBufferLockState[index] == BYPASS_BUFFER_LOCKED) {
ctx->previousBypassHandle[index] = (native_handle_t*)list->hwLayers[index].handle;
hnd->flags |= private_handle_t::PRIV_FLAGS_HWC_LOCK;
} else
ctx->previousBypassHandle[index] = NULL;
}
}
}
#endif //COMPOSITION_BYPASS
static void handleHDMIStateChange(hwc_composer_device_t *dev) {
#if defined HDMI_DUAL_DISPLAY
hwc_context_t* ctx = (hwc_context_t*)(dev);
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
framebuffer_device_t *fbDev = hwcModule->fbDevice;
if (fbDev) {
fbDev->enableHDMIOutput(fbDev, ctx->mHDMIEnabled);
}
if(ctx && ctx->mOverlayLibObject) {
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
ovLibObject->setHDMIStatus(ctx->mHDMIEnabled);
if (!(ctx->mHDMIEnabled)) {
// Close the overlay channels if HDMI is disconnected
ovLibObject->closeChannel();
}
}
#endif
}
/* Just mark flags and do stuff after eglSwapBuffers */
static void hwc_enableHDMIOutput(hwc_composer_device_t *dev, bool enable) {
#if defined HDMI_DUAL_DISPLAY
hwc_context_t* ctx = (hwc_context_t*)(dev);
ctx->mHDMIEnabled = enable;
if(enable) { //On connect, allow bypass to draw once to FB
ctx->pendingHDMI = true;
} else { //On disconnect, close immediately (there will be no bypass)
handleHDMIStateChange(dev);
}
#endif
}
static bool isValidDestination(const framebuffer_device_t* fbDev, const hwc_rect_t& rect)
{
if (!fbDev) {
LOGE("%s: fbDev is null", __FUNCTION__);
return false;
}
int dest_width = (rect.right - rect.left);
int dest_height = (rect.bottom - rect.top);
if (rect.left < 0 || rect.right < 0 || rect.top < 0 || rect.bottom < 0
|| dest_width <= 0 || dest_height <= 0) {
LOGE("%s: destination: left=%d right=%d top=%d bottom=%d width=%d"
"height=%d", __FUNCTION__, rect.left, rect.right, rect.top,
rect.bottom, dest_width, dest_height);
return false;
}
if ((rect.left+dest_width) > fbDev->width || (rect.top+dest_height) > fbDev->height) {
LOGE("%s: destination out of bound params", __FUNCTION__);
return false;
}
return true;
}
static int getYUVBufferCount (const hwc_layer_list_t* list) {
int yuvBufferCount = 0;
if (list) {
for (size_t i=0 ; i<list->numHwLayers; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
if (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO) &&
!(list->hwLayers[i].flags & HWC_DO_NOT_USE_OVERLAY)) {
yuvBufferCount++;
if (yuvBufferCount > 1) {
break;
}
}
}
}
return yuvBufferCount;
}
static int getS3DVideoFormat (const hwc_layer_list_t* list) {
int s3dFormat = 0;
if (list) {
for (size_t i=0; i<list->numHwLayers; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
if (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO))
s3dFormat = FORMAT_3D_INPUT(hnd->format);
if (s3dFormat)
break;
}
}
return s3dFormat;
}
static bool isS3DCompositionRequired() {
#ifdef HDMI_AS_PRIMARY
return overlay::is3DTV();
#endif
return false;
}
static void markUILayerForS3DComposition (hwc_layer_t &layer, int s3dVideoFormat) {
#ifdef HDMI_AS_PRIMARY
layer.compositionType = HWC_FRAMEBUFFER;
switch(s3dVideoFormat) {
case HAL_3D_IN_SIDE_BY_SIDE_L_R:
case HAL_3D_IN_SIDE_BY_SIDE_R_L:
layer.hints |= HWC_HINT_DRAW_S3D_SIDE_BY_SIDE;
break;
case HAL_3D_IN_TOP_BOTTOM:
layer.hints |= HWC_HINT_DRAW_S3D_TOP_BOTTOM;
break;
default:
LOGE("%s: Unknown S3D input format 0x%x", __FUNCTION__, s3dVideoFormat);
break;
}
#endif
return;
}
static int getLayersNotUpdatingCount(const hwc_layer_list_t* list) {
int numLayersNotUpdating = 0;
if (list) {
for (size_t i=0 ; i<list->numHwLayers; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
if (hnd && (hnd->bufferType != BUFFER_TYPE_VIDEO) &&
list->hwLayers[i].flags & HWC_LAYER_NOT_UPDATING)
numLayersNotUpdating++;
}
}
return numLayersNotUpdating;
}
static int hwc_prepare(hwc_composer_device_t *dev, hwc_layer_list_t* list) {
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
LOGE("hwc_prepare invalid context");
return -1;
}
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
if (!list || !hwcModule) {
LOGE("hwc_prepare invalid list or module");
#ifdef COMPOSITION_BYPASS
unlockPreviousBypassBuffers(ctx);
unsetBypassBufferLockState(ctx);
#endif
unlockPreviousOverlayBuffer(ctx);
return -1;
}
int yuvBufferCount = 0;
int layerType = 0;
bool isS3DCompositionNeeded = false;
int s3dVideoFormat = 0;
int numLayersNotUpdating = 0;
bool fullscreen = false;
if (list) {
fullscreen = isFullScreenUpdate(hwcModule->fbDevice, list);
yuvBufferCount = getYUVBufferCount(list);
bool skipComposition = false;
if (yuvBufferCount == 1) {
numLayersNotUpdating = getLayersNotUpdatingCount(list);
skipComposition = canSkipComposition(ctx, yuvBufferCount,
list->numHwLayers, numLayersNotUpdating);
s3dVideoFormat = getS3DVideoFormat(list);
if (s3dVideoFormat)
isS3DCompositionNeeded = isS3DCompositionRequired();
} else {
unlockPreviousOverlayBuffer(ctx);
}
if (list->flags & HWC_GEOMETRY_CHANGED) {
if (yuvBufferCount == 1) {
// Inform the gralloc of the current video overlay status
setVideoOverlayStatusInGralloc(ctx, true);
}
}
for (size_t i=0 ; i<list->numHwLayers ; i++) {
private_handle_t *hnd = (private_handle_t *)list->hwLayers[i].handle;
// If there is a single Fullscreen layer, we can bypass it - TBD
// If there is only one video/camera buffer, we can bypass itn
if (list->hwLayers[i].flags & HWC_SKIP_LAYER) {
// During the animaton UI layers are marked as SKIP
// need to still mark the layer for S3D composition
if (isS3DCompositionNeeded)
markUILayerForS3DComposition(list->hwLayers[i], s3dVideoFormat);
if (hwcModule->compositionType
& (COMPOSITION_TYPE_C2D | COMPOSITION_TYPE_MDP)) {
// Ensure that HWC_OVERLAY layers below skip layers do not
// overwrite GPU composed skip layers.
ssize_t layer_countdown = ((ssize_t)i) - 1;
while (layer_countdown >= 0)
{
// Mark every non-mdp overlay layer below the
// skip-layer for GPU composition.
switch(list->hwLayers[layer_countdown].compositionType) {
case HWC_FRAMEBUFFER:
case HWC_USE_OVERLAY:
break;
case HWC_USE_COPYBIT:
default:
list->hwLayers[layer_countdown].compositionType = HWC_FRAMEBUFFER;
break;
}
layer_countdown--;
}
}
continue;
}
if (hnd && (hnd->bufferType == BUFFER_TYPE_VIDEO) && (yuvBufferCount == 1)) {
bool waitForVsync = true;
if (!isValidDestination(hwcModule->fbDevice, list->hwLayers[i].displayFrame)) {
list->hwLayers[i].compositionType = HWC_FRAMEBUFFER;
#ifdef USE_OVERLAY
} else if(prepareOverlay(ctx, &(list->hwLayers[i]), waitForVsync) == 0) {
list->hwLayers[i].compositionType = HWC_USE_OVERLAY;
list->hwLayers[i].hints |= HWC_HINT_CLEAR_FB;
// We've opened the channel. Set the state to open.
ctx->hwcOverlayStatus = HWC_OVERLAY_OPEN;
#endif
}
else if (hwcModule->compositionType & (COMPOSITION_TYPE_C2D|
COMPOSITION_TYPE_MDP)) {
//Fail safe path: If drawing with overlay fails,
//Use C2D if available.
list->hwLayers[i].compositionType = HWC_USE_COPYBIT;
}
else {
//If C2D is not enabled fall back to GPU.
list->hwLayers[i].compositionType = HWC_FRAMEBUFFER;
}
if (HWC_USE_OVERLAY != list->hwLayers[i].compositionType) {
unlockPreviousOverlayBuffer(ctx);
skipComposition = false;
}
} else if (isS3DCompositionNeeded) {
markUILayerForS3DComposition(list->hwLayers[i], s3dVideoFormat);
} else if (list->hwLayers[i].flags & HWC_USE_ORIGINAL_RESOLUTION) {
list->hwLayers[i].compositionType = HWC_USE_OVERLAY;
list->hwLayers[i].hints |= HWC_HINT_CLEAR_FB;
layerType |= HWC_ORIG_RESOLUTION;
}
else if (hnd && (hwcModule->compositionType &
(COMPOSITION_TYPE_C2D|COMPOSITION_TYPE_MDP))) {
list->hwLayers[i].compositionType = HWC_USE_COPYBIT;
} else if ((hwcModule->compositionType == COMPOSITION_TYPE_DYN)
&& fullscreen) {
list->hwLayers[i].compositionType = HWC_USE_COPYBIT;
}
else {
list->hwLayers[i].compositionType = HWC_FRAMEBUFFER;
}
}
if (skipComposition) {
list->flags |= HWC_SKIP_COMPOSITION;
} else {
list->flags &= ~HWC_SKIP_COMPOSITION;
}
#ifdef COMPOSITION_BYPASS
//Check if bypass is feasible
bool unsetBypass = false;
if(isBypassDoable(dev, yuvBufferCount, list) &&
isBypassEfficient(hwcModule->fbDevice, list, ctx)) {
//Setup bypass
if(setupBypass(ctx, list)) {
//Overwrite layer flags only if setup succeeds.
setBypassLayerFlags(ctx, list);
list->flags |= HWC_SKIP_COMPOSITION;
ctx->bypassState = BYPASS_ON;
} else {
unsetBypass = true;
}
} else {
unsetBypass = true;
}
if (unsetBypass) {
unlockPreviousBypassBuffers(ctx);
unsetBypassLayerFlags(list);
unsetBypassBufferLockState(ctx);
if(ctx->bypassState == BYPASS_ON) {
ctx->bypassState = BYPASS_OFF_PENDING;
} else if (BYPASS_OFF == ctx->bypassState) {
// If bypass is off, close any open overlay channels.
closeBypass(ctx);
}
}
#endif
}
return 0;
}
// ---------------------------------------------------------------------------
struct range {
int current;
int end;
};
struct region_iterator : public copybit_region_t {
region_iterator(hwc_region_t region) {
mRegion = region;
r.end = region.numRects;
r.current = 0;
this->next = iterate;
}
private:
static int iterate(copybit_region_t const * self, copybit_rect_t* rect) {
if (!self || !rect) {
LOGE("iterate invalid parameters");
return 0;
}
region_iterator const* me = static_cast<region_iterator const*>(self);
if (me->r.current != me->r.end) {
rect->l = me->mRegion.rects[me->r.current].left;
rect->t = me->mRegion.rects[me->r.current].top;
rect->r = me->mRegion.rects[me->r.current].right;
rect->b = me->mRegion.rects[me->r.current].bottom;
me->r.current++;
return 1;
}
return 0;
}
hwc_region_t mRegion;
mutable range r;
};
static int drawLayerUsingCopybit(hwc_composer_device_t *dev, hwc_layer_t *layer, EGLDisplay dpy,
EGLSurface surface)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
LOGE("drawLayerUsingCopybit null context ");
return -1;
}
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(dev->common.module);
if(!hwcModule) {
LOGE("drawLayerUsingCopybit null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
if(!hnd) {
LOGE("drawLayerUsingCopybit invalid handle");
return -1;
}
// Lock this buffer for read.
genlock_lock_type lockType = GENLOCK_READ_LOCK;
int err = genlock_lock_buffer(hnd, lockType, GENLOCK_MAX_TIMEOUT);
if (GENLOCK_FAILURE == err) {
LOGE("%s: genlock_lock_buffer(READ) failed", __FUNCTION__);
return -1;
}
// Set the copybit source:
copybit_image_t src;
src.w = ALIGN(hnd->width, 32);
src.h = hnd->height;
src.format = hnd->format;
src.base = (void *)hnd->base;
src.handle = (native_handle_t *)layer->handle;
src.horiz_padding = src.w - hnd->width;
// Initialize vertical padding to zero for now,
// this needs to change to accomodate vertical stride
// if needed in the future
src.vert_padding = 0;
// Copybit source rect
hwc_rect_t sourceCrop = layer->sourceCrop;
copybit_rect_t srcRect = {sourceCrop.left, sourceCrop.top,
sourceCrop.right,
sourceCrop.bottom};
// Copybit destination rect
hwc_rect_t displayFrame = layer->displayFrame;
copybit_rect_t dstRect = {displayFrame.left, displayFrame.top,
displayFrame.right,
displayFrame.bottom};
// Copybit dst
copybit_image_t dst;
android_native_buffer_t *renderBuffer = (android_native_buffer_t *)eglGetRenderBufferANDROID(dpy, surface);
if (!renderBuffer) {
LOGE("eglGetRenderBufferANDROID returned NULL buffer");
genlock_unlock_buffer(hnd);
return -1;
}
private_handle_t *fbHandle = (private_handle_t *)renderBuffer->handle;
if(!fbHandle) {
LOGE("Framebuffer handle is NULL");
genlock_unlock_buffer(hnd);
return -1;
}
dst.w = ALIGN(fbHandle->width,32);
dst.h = fbHandle->height;
dst.format = fbHandle->format;
dst.base = (void *)fbHandle->base;
dst.handle = (native_handle_t *)renderBuffer->handle;
// Copybit region
hwc_region_t region = layer->visibleRegionScreen;
region_iterator copybitRegion(region);
copybit_device_t *copybit = hwcModule->copybitEngine;
copybit->set_parameter(copybit, COPYBIT_FRAMEBUFFER_WIDTH, renderBuffer->width);
copybit->set_parameter(copybit, COPYBIT_FRAMEBUFFER_HEIGHT, renderBuffer->height);
copybit->set_parameter(copybit, COPYBIT_TRANSFORM, layer->transform);
copybit->set_parameter(copybit, COPYBIT_PLANE_ALPHA,
(layer->blending == HWC_BLENDING_NONE) ? 0xFF : layer->alpha);
copybit->set_parameter(copybit, COPYBIT_PREMULTIPLIED_ALPHA,
(layer->blending == HWC_BLENDING_PREMULT)? COPYBIT_ENABLE : COPYBIT_DISABLE);
err = copybit->stretch(copybit, &dst, &src, &dstRect, &srcRect, &copybitRegion);
if(err < 0)
LOGE("copybit stretch failed");
// Unlock this buffer since copybit is done with it.
err = genlock_unlock_buffer(hnd);
if (GENLOCK_FAILURE == err) {
LOGE("%s: genlock_unlock_buffer failed", __FUNCTION__);
}
return err;
}
static int drawLayerUsingOverlay(hwc_context_t *ctx, hwc_layer_t *layer)
{
if (ctx && ctx->mOverlayLibObject) {
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(ctx->device.common.module);
if (!hwcModule) {
LOGE("drawLayerUsingLayer null module ");
return -1;
}
private_handle_t *hnd = (private_handle_t *)layer->handle;
overlay::Overlay *ovLibObject = ctx->mOverlayLibObject;
int ret = 0;
// Lock this buffer for read.
if (GENLOCK_NO_ERROR != genlock_lock_buffer(hnd, GENLOCK_READ_LOCK,
GENLOCK_MAX_TIMEOUT)) {
LOGE("%s: genlock_lock_buffer(READ) failed", __FUNCTION__);
return -1;
}
ret = ovLibObject->queueBuffer(hnd);
// Unlock the previously locked buffer, since the overlay has completed reading the buffer
unlockPreviousOverlayBuffer(ctx);
if (!ret) {
LOGE("drawLayerUsingOverlay queueBuffer failed");
// Unlock the buffer handle
genlock_unlock_buffer(hnd);
ctx->previousOverlayHandle = NULL;
} else {
// Store the current buffer handle as the one that is to be unlocked after
// the next overlay play call.
ctx->previousOverlayHandle = hnd;
hnd->flags |= private_handle_t::PRIV_FLAGS_HWC_LOCK;
}
return ret;
}
return -1;
}
static int hwc_set(hwc_composer_device_t *dev,
hwc_display_t dpy,
hwc_surface_t sur,
hwc_layer_list_t* list)
{
hwc_context_t* ctx = (hwc_context_t*)(dev);
if(!ctx) {
LOGE("hwc_set invalid context");
return -1;
}
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
dev->common.module);
framebuffer_device_t *fbDev = hwcModule->fbDevice;
if (!list || !hwcModule) {
LOGE("hwc_set invalid list or module");
#ifdef COMPOSITION_BYPASS
unlockPreviousBypassBuffers(ctx);
unsetBypassBufferLockState(ctx);
#endif
unlockPreviousOverlayBuffer(ctx);
return -1;
}
int ret = 0;
for (size_t i=0; i<list->numHwLayers; i++) {
if (list->hwLayers[i].flags & HWC_SKIP_LAYER) {
continue;
#ifdef COMPOSITION_BYPASS
} else if (list->hwLayers[i].flags & HWC_COMP_BYPASS) {
drawLayerUsingBypass(ctx, &(list->hwLayers[i]), i);
#endif
} else if (list->hwLayers[i].compositionType == HWC_USE_OVERLAY) {
drawLayerUsingOverlay(ctx, &(list->hwLayers[i]));
} else if (list->flags & HWC_SKIP_COMPOSITION) {
break;
}
else if (list->hwLayers[i].compositionType == HWC_USE_COPYBIT) {
drawLayerUsingCopybit(dev, &(list->hwLayers[i]), (EGLDisplay)dpy, (EGLSurface)sur);
}
}
#ifdef COMPOSITION_BYPASS
unlockPreviousBypassBuffers(ctx);
storeLockedBypassHandle(list, ctx);
// We have stored the handles, unset the current lock states in the context.
unsetBypassBufferLockState(ctx);
//Setup for waiting until 1 FB post is done before closing bypass mode.
if (ctx->bypassState == BYPASS_OFF_PENDING) {
fbDev->resetBufferPostStatus(fbDev);
}
#endif
// Do not call eglSwapBuffers if we the skip composition flag is set on the list.
if (!(list->flags & HWC_SKIP_COMPOSITION)) {
EGLBoolean sucess = eglSwapBuffers((EGLDisplay)dpy, (EGLSurface)sur);
if (!sucess) {
ret = HWC_EGL_ERROR;
LOGE("eglSwapBuffers() failed in %s", __FUNCTION__);
}
}
#ifdef COMPOSITION_BYPASS
if(ctx->bypassState == BYPASS_OFF_PENDING) {
//Close channels only after fb content is displayed.
//We have already reset status before eglSwapBuffers.
if (!(list->flags & HWC_SKIP_COMPOSITION)) {
fbDev->waitForBufferPost(fbDev);
}
closeBypass(ctx);
ctx->bypassState = BYPASS_OFF;
}
#endif
#if defined HDMI_DUAL_DISPLAY
if(ctx->pendingHDMI) {
handleHDMIStateChange(dev);
ctx->pendingHDMI = false;
}
#endif
hwc_closeOverlayChannels(ctx);
int yuvBufferCount = getYUVBufferCount(list);
setHWCOverlayStatus(ctx, yuvBufferCount);
return ret;
}
static int hwc_device_close(struct hw_device_t *dev)
{
if(!dev) {
LOGE("hwc_device_close null device pointer");
return -1;
}
struct hwc_context_t* ctx = (struct hwc_context_t*)dev;
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>(
ctx->device.common.module);
// Close the overlay and copybit modules
if(hwcModule->copybitEngine) {
copybit_close(hwcModule->copybitEngine);
hwcModule->copybitEngine = NULL;
}
if(hwcModule->fbDevice) {
framebuffer_close(hwcModule->fbDevice);
hwcModule->fbDevice = NULL;
}
unlockPreviousOverlayBuffer(ctx);
if (ctx) {
delete ctx->mOverlayLibObject;
ctx->mOverlayLibObject = NULL;
#ifdef COMPOSITION_BYPASS
for(int i = 0; i < MAX_BYPASS_LAYERS; i++) {
delete ctx->mOvUI[i];
}
unlockPreviousBypassBuffers(ctx);
unsetBypassBufferLockState(ctx);
#endif
free(ctx);
}
return 0;
}
/*****************************************************************************/
static int hwc_module_initialize(struct private_hwc_module_t* hwcModule)
{
// Open the overlay and copybit modules
hw_module_t const *module;
if (hw_get_module(COPYBIT_HARDWARE_MODULE_ID, &module) == 0) {
copybit_open(module, &(hwcModule->copybitEngine));
}
if (hw_get_module(GRALLOC_HARDWARE_MODULE_ID, &module) == 0) {
framebuffer_open(module, &(hwcModule->fbDevice));
}
// get the current composition type
char property[PROPERTY_VALUE_MAX];
if (property_get("debug.sf.hw", property, NULL) > 0) {
if(atoi(property) == 0) {
//debug.sf.hw = 0
hwcModule->compositionType = COMPOSITION_TYPE_CPU;
} else { //debug.sf.hw = 1
// Get the composition type
property_get("debug.composition.type", property, NULL);
if (property == NULL) {
hwcModule->compositionType = COMPOSITION_TYPE_GPU;
} else if ((strncmp(property, "mdp", 3)) == 0) {
hwcModule->compositionType = COMPOSITION_TYPE_MDP;
} else if ((strncmp(property, "c2d", 3)) == 0) {
hwcModule->compositionType = COMPOSITION_TYPE_C2D;
} else if ((strncmp(property, "dyn", 3)) == 0) {
hwcModule->compositionType = COMPOSITION_TYPE_DYN;
} else {
hwcModule->compositionType = COMPOSITION_TYPE_GPU;
}
if(!hwcModule->copybitEngine)
hwcModule->compositionType = COMPOSITION_TYPE_GPU;
}
} else { //debug.sf.hw is not set. Use cpu composition
hwcModule->compositionType = COMPOSITION_TYPE_CPU;
}
//Check if composition bypass is enabled
if(property_get("ro.sf.compbypass.enable", property, NULL) > 0) {
if(atoi(property) == 1) {
hwcModule->isBypassEnabled = true;
}
}
return 0;
}
static int hwc_device_open(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
int status = -EINVAL;
if (!strcmp(name, HWC_HARDWARE_COMPOSER)) {
private_hwc_module_t* hwcModule = reinterpret_cast<private_hwc_module_t*>
(const_cast<hw_module_t*>(module));
hwc_module_initialize(hwcModule);
struct hwc_context_t *dev;
dev = (hwc_context_t*)malloc(sizeof(*dev));
/* initialize our state here */
memset(dev, 0, sizeof(*dev));
dev->mOverlayLibObject = new overlay::Overlay();
#ifdef COMPOSITION_BYPASS
for(int i = 0; i < MAX_BYPASS_LAYERS; i++) {
dev->mOvUI[i] = new overlay::OverlayUI();
dev->previousBypassHandle[i] = NULL;
}
unsetBypassBufferLockState(dev);
dev->animCount = 0;
dev->bypassState = BYPASS_OFF;
#endif
#if defined HDMI_DUAL_DISPLAY
dev->mHDMIEnabled = false;
dev->pendingHDMI = false;
#endif
dev->previousOverlayHandle = NULL;
dev->hwcOverlayStatus = HWC_OVERLAY_CLOSED;
/* initialize the procs */
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = const_cast<hw_module_t*>(module);
dev->device.common.close = hwc_device_close;
dev->device.prepare = hwc_prepare;
dev->device.set = hwc_set;
dev->device.enableHDMIOutput = hwc_enableHDMIOutput;
*device = &dev->device.common;
status = 0;
}
return status;
}