311 lines
10 KiB
C++
311 lines
10 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <poll.h>
|
|
#include <unistd.h>
|
|
#include <dirent.h>
|
|
#include <sys/select.h>
|
|
#include <dlfcn.h>
|
|
|
|
#include "ak8973b.h"
|
|
|
|
#include <cutils/log.h>
|
|
#include "AkmSensor.h"
|
|
|
|
//#define LOG_NDEBUG 0
|
|
|
|
/*****************************************************************************/
|
|
|
|
int (*akm_is_sensor_enabled)(uint32_t sensor_type);
|
|
int (*akm_enable_sensor)(uint32_t sensor_type);
|
|
int (*akm_disable_sensor)(uint32_t sensor_type);
|
|
int (*akm_set_delay)(uint32_t sensor_type, uint64_t delay);
|
|
|
|
int stub_is_sensor_enabled(uint32_t sensor_type) {
|
|
return 0;
|
|
}
|
|
|
|
int stub_enable_disable_sensor(uint32_t sensor_type) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
int stub_set_delay(uint32_t sensor_type, uint64_t delay) {
|
|
return -ENODEV;
|
|
}
|
|
|
|
AkmSensor::AkmSensor()
|
|
: SensorBase(NULL, NULL),
|
|
mEnabled(0),
|
|
mPendingMask(0),
|
|
mInputReader(32)
|
|
{
|
|
/* Open the library before opening the input device. The library
|
|
* creates a uinput device.
|
|
*/
|
|
if (loadAKMLibrary() == 0) {
|
|
data_name = "compass_sensor";
|
|
data_fd = openInput("compass_sensor");
|
|
}
|
|
|
|
memset(mPendingEvents, 0, sizeof(mPendingEvents));
|
|
|
|
mPendingEvents[Accelerometer].version = sizeof(sensors_event_t);
|
|
mPendingEvents[Accelerometer].sensor = ID_A;
|
|
mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER;
|
|
mPendingEvents[Accelerometer].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
|
|
|
|
mPendingEvents[MagneticField].version = sizeof(sensors_event_t);
|
|
mPendingEvents[MagneticField].sensor = ID_M;
|
|
mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD;
|
|
mPendingEvents[MagneticField].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
|
|
|
|
mPendingEvents[Orientation ].version = sizeof(sensors_event_t);
|
|
mPendingEvents[Orientation ].sensor = ID_O;
|
|
mPendingEvents[Orientation ].type = SENSOR_TYPE_ORIENTATION;
|
|
mPendingEvents[Orientation ].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;
|
|
|
|
// read the actual value of all sensors if they're enabled already
|
|
struct input_absinfo absinfo;
|
|
short flags = 0;
|
|
|
|
if (akm_is_sensor_enabled(SENSOR_TYPE_ACCELEROMETER)) {
|
|
mEnabled |= 1<<Accelerometer;
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X), &absinfo)) {
|
|
mPendingEvents[Accelerometer].acceleration.x = absinfo.value * CONVERT_A_X;
|
|
}
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo)) {
|
|
mPendingEvents[Accelerometer].acceleration.y = absinfo.value * CONVERT_A_Y;
|
|
}
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo)) {
|
|
mPendingEvents[Accelerometer].acceleration.z = absinfo.value * CONVERT_A_Z;
|
|
}
|
|
}
|
|
if (akm_is_sensor_enabled(SENSOR_TYPE_MAGNETIC_FIELD)) {
|
|
mEnabled |= 1<<MagneticField;
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_X), &absinfo)) {
|
|
mPendingEvents[MagneticField].magnetic.x = absinfo.value * CONVERT_M_X;
|
|
}
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Y), &absinfo)) {
|
|
mPendingEvents[MagneticField].magnetic.y = absinfo.value * CONVERT_M_Y;
|
|
}
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Z), &absinfo)) {
|
|
mPendingEvents[MagneticField].magnetic.z = absinfo.value * CONVERT_M_Z;
|
|
}
|
|
}
|
|
if (akm_is_sensor_enabled(SENSOR_TYPE_ORIENTATION)) {
|
|
mEnabled |= 1<<Orientation;
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_YAW), &absinfo)) {
|
|
mPendingEvents[Orientation].orientation.azimuth = absinfo.value;
|
|
}
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_PITCH), &absinfo)) {
|
|
mPendingEvents[Orientation].orientation.pitch = absinfo.value;
|
|
}
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ROLL), &absinfo)) {
|
|
mPendingEvents[Orientation].orientation.roll = -absinfo.value;
|
|
}
|
|
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ORIENT_STATUS), &absinfo)) {
|
|
mPendingEvents[Orientation].orientation.status = uint8_t(absinfo.value & SENSOR_STATE_MASK);
|
|
}
|
|
}
|
|
|
|
// disable temperature sensor, since it is not supported
|
|
akm_disable_sensor(SENSOR_TYPE_TEMPERATURE);
|
|
}
|
|
|
|
AkmSensor::~AkmSensor()
|
|
{
|
|
if (mLibAKM) {
|
|
unsigned ref = ::dlclose(mLibAKM);
|
|
}
|
|
}
|
|
|
|
int AkmSensor::enable(int32_t handle, int en)
|
|
{
|
|
int what = -1;
|
|
|
|
switch (handle) {
|
|
case ID_A: what = Accelerometer; break;
|
|
case ID_M: what = MagneticField; break;
|
|
case ID_O: what = Orientation; break;
|
|
}
|
|
|
|
if (uint32_t(what) >= numSensors)
|
|
return -EINVAL;
|
|
|
|
int newState = en ? 1 : 0;
|
|
int err = 0;
|
|
|
|
if ((uint32_t(newState)<<what) != (mEnabled & (1<<what))) {
|
|
uint32_t sensor_type;
|
|
switch (what) {
|
|
case Accelerometer: sensor_type = SENSOR_TYPE_ACCELEROMETER; break;
|
|
case MagneticField: sensor_type = SENSOR_TYPE_MAGNETIC_FIELD; break;
|
|
case Orientation: sensor_type = SENSOR_TYPE_ORIENTATION; break;
|
|
}
|
|
short flags = newState;
|
|
if (en)
|
|
err = akm_enable_sensor(sensor_type);
|
|
else
|
|
err = akm_disable_sensor(sensor_type);
|
|
|
|
LOGE_IF(err, "Could not change sensor state (%s)", strerror(-err));
|
|
if (!err) {
|
|
mEnabled &= ~(1<<what);
|
|
mEnabled |= (uint32_t(flags)<<what);
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int AkmSensor::setDelay(int32_t handle, int64_t ns)
|
|
{
|
|
uint32_t sensor_type = 0;
|
|
|
|
if (ns < 0)
|
|
return -EINVAL;
|
|
|
|
switch (handle) {
|
|
case ID_A: sensor_type = SENSOR_TYPE_ACCELEROMETER; break;
|
|
case ID_M: sensor_type = SENSOR_TYPE_MAGNETIC_FIELD; break;
|
|
case ID_O: sensor_type = SENSOR_TYPE_ORIENTATION; break;
|
|
}
|
|
|
|
if (sensor_type == 0)
|
|
return -EINVAL;
|
|
|
|
return akm_set_delay(sensor_type, ns);
|
|
}
|
|
|
|
int AkmSensor::loadAKMLibrary()
|
|
{
|
|
mLibAKM = dlopen("libakm.so", RTLD_NOW);
|
|
|
|
if (!mLibAKM) {
|
|
akm_is_sensor_enabled = stub_is_sensor_enabled;
|
|
akm_enable_sensor = stub_enable_disable_sensor;
|
|
akm_disable_sensor = stub_enable_disable_sensor;
|
|
akm_set_delay = stub_set_delay;
|
|
LOGE("AkmSensor: unable to load AKM Library, %s", dlerror());
|
|
return -ENOENT;
|
|
}
|
|
|
|
*(void **)&akm_is_sensor_enabled = dlsym(mLibAKM, "akm_is_sensor_enabled");
|
|
*(void **)&akm_enable_sensor = dlsym(mLibAKM, "akm_enable_sensor");
|
|
*(void **)&akm_disable_sensor = dlsym(mLibAKM, "akm_disable_sensor");
|
|
*(void **)&akm_set_delay = dlsym(mLibAKM, "akm_set_delay");
|
|
|
|
return 0;
|
|
}
|
|
|
|
int AkmSensor::readEvents(sensors_event_t* data, int count)
|
|
{
|
|
if (count < 1)
|
|
return -EINVAL;
|
|
|
|
ssize_t n = mInputReader.fill(data_fd);
|
|
if (n < 0)
|
|
return n;
|
|
|
|
int numEventReceived = 0;
|
|
input_event const* event;
|
|
|
|
while (count && mInputReader.readEvent(&event)) {
|
|
int type = event->type;
|
|
if (type == EV_REL) {
|
|
processEvent(event->code, event->value);
|
|
mInputReader.next();
|
|
} else if (type == EV_SYN) {
|
|
int64_t time = timevalToNano(event->time);
|
|
for (int j=0 ; count && mPendingMask && j<numSensors ; j++) {
|
|
if (mPendingMask & (1<<j)) {
|
|
mPendingMask &= ~(1<<j);
|
|
mPendingEvents[j].timestamp = time;
|
|
if (mEnabled & (1<<j)) {
|
|
*data++ = mPendingEvents[j];
|
|
count--;
|
|
numEventReceived++;
|
|
}
|
|
}
|
|
}
|
|
if (!mPendingMask) {
|
|
mInputReader.next();
|
|
}
|
|
} else {
|
|
LOGE("AkmSensor: unknown event (type=%d, code=%d)",
|
|
type, event->code);
|
|
mInputReader.next();
|
|
}
|
|
}
|
|
return numEventReceived;
|
|
}
|
|
|
|
void AkmSensor::processEvent(int code, int value)
|
|
{
|
|
switch (code) {
|
|
case EVENT_TYPE_ACCEL_X:
|
|
mPendingMask |= 1<<Accelerometer;
|
|
mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A_X;
|
|
break;
|
|
case EVENT_TYPE_ACCEL_Y:
|
|
mPendingMask |= 1<<Accelerometer;
|
|
mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A_Y;
|
|
break;
|
|
case EVENT_TYPE_ACCEL_Z:
|
|
mPendingMask |= 1<<Accelerometer;
|
|
mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A_Z;
|
|
break;
|
|
|
|
case EVENT_TYPE_MAGV_X:
|
|
LOGV("AkmSensor: EVENT_TYPE_MAGV_X value =%d", value);
|
|
mPendingMask |= 1<<MagneticField;
|
|
mPendingEvents[MagneticField].magnetic.x = value * CONVERT_M_X;
|
|
break;
|
|
case EVENT_TYPE_MAGV_Y:
|
|
LOGV("AkmSensor: EVENT_TYPE_MAGV_Y value =%d", value);
|
|
mPendingMask |= 1<<MagneticField;
|
|
mPendingEvents[MagneticField].magnetic.y = value * CONVERT_M_Y;
|
|
break;
|
|
case EVENT_TYPE_MAGV_Z:
|
|
LOGV("AkmSensor: EVENT_TYPE_MAGV_Z value =%d", value);
|
|
mPendingMask |= 1<<MagneticField;
|
|
mPendingEvents[MagneticField].magnetic.z = value * CONVERT_M_Z;
|
|
break;
|
|
|
|
case EVENT_TYPE_YAW:
|
|
mPendingMask |= 1<<Orientation;
|
|
mPendingEvents[Orientation].orientation.azimuth = value * CONVERT_O_A;
|
|
break;
|
|
case EVENT_TYPE_PITCH:
|
|
mPendingMask |= 1<<Orientation;
|
|
mPendingEvents[Orientation].orientation.pitch = value * CONVERT_O_P;
|
|
break;
|
|
case EVENT_TYPE_ROLL:
|
|
mPendingMask |= 1<<Orientation;
|
|
mPendingEvents[Orientation].orientation.roll = value * CONVERT_O_R;
|
|
break;
|
|
case EVENT_TYPE_ORIENT_STATUS:
|
|
uint8_t status = uint8_t(value & SENSOR_STATE_MASK);
|
|
if (status == 4)
|
|
status = 0;
|
|
mPendingMask |= 1<<Orientation;
|
|
mPendingEvents[Orientation].orientation.status = status;
|
|
break;
|
|
}
|
|
}
|