2011-01-22 23:16:05 +05:30

296 lines
9.6 KiB
C++

/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/select.h>
#include <linux/akm8973.h>
#include <cutils/log.h>
#include "AkmSensor.h"
/*****************************************************************************/
AkmSensor::AkmSensor()
: SensorBase(AKM_DEVICE_NAME, "compass"),
mEnabled(0),
mPendingMask(0),
mInputReader(32)
{
memset(mPendingEvents, 0, sizeof(mPendingEvents));
mPendingEvents[Accelerometer].version = sizeof(sensors_event_t);
mPendingEvents[Accelerometer].sensor = ID_A;
mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER;
mPendingEvents[Accelerometer].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
mPendingEvents[MagneticField].version = sizeof(sensors_event_t);
mPendingEvents[MagneticField].sensor = ID_M;
mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD;
mPendingEvents[MagneticField].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
mPendingEvents[Orientation ].version = sizeof(sensors_event_t);
mPendingEvents[Orientation ].sensor = ID_O;
mPendingEvents[Orientation ].type = SENSOR_TYPE_ORIENTATION;
mPendingEvents[Orientation ].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;
for (int i=0 ; i<numSensors ; i++)
mDelays[i] = 200000000; // 200 ms by default
// read the actual value of all sensors if they're enabled already
struct input_absinfo absinfo;
short flags = 0;
open_device();
if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) {
if (flags) {
mEnabled |= 1<<Accelerometer;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.x = absinfo.value * CONVERT_A_X;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.y = absinfo.value * CONVERT_A_Y;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.z = absinfo.value * CONVERT_A_Z;
}
}
}
if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) {
if (flags) {
mEnabled |= 1<<MagneticField;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_X), &absinfo)) {
mPendingEvents[MagneticField].magnetic.x = absinfo.value * CONVERT_M_X;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Y), &absinfo)) {
mPendingEvents[MagneticField].magnetic.y = absinfo.value * CONVERT_M_Y;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Z), &absinfo)) {
mPendingEvents[MagneticField].magnetic.z = absinfo.value * CONVERT_M_Z;
}
}
}
if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) {
if (flags) {
mEnabled |= 1<<Orientation;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_YAW), &absinfo)) {
mPendingEvents[Orientation].orientation.azimuth = absinfo.value;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_PITCH), &absinfo)) {
mPendingEvents[Orientation].orientation.pitch = absinfo.value;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ROLL), &absinfo)) {
mPendingEvents[Orientation].orientation.roll = -absinfo.value;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ORIENT_STATUS), &absinfo)) {
mPendingEvents[Orientation].orientation.status = uint8_t(absinfo.value & SENSOR_STATE_MASK);
}
}
}
// disable temperature sensor, since it is not reported
flags = 0;
ioctl(dev_fd, ECS_IOCTL_APP_SET_TFLAG, &flags);
if (!mEnabled) {
close_device();
}
}
AkmSensor::~AkmSensor() {
}
int AkmSensor::enable(int32_t handle, int en)
{
int what = -1;
switch (handle) {
case ID_A: what = Accelerometer; break;
case ID_M: what = MagneticField; break;
case ID_O: what = Orientation; break;
}
if (uint32_t(what) >= numSensors)
return -EINVAL;
int newState = en ? 1 : 0;
int err = 0;
if ((uint32_t(newState)<<what) != (mEnabled & (1<<what))) {
if (!mEnabled) {
open_device();
}
int cmd;
switch (what) {
case Accelerometer: cmd = ECS_IOCTL_APP_SET_AFLAG; break;
case MagneticField: cmd = ECS_IOCTL_APP_SET_MVFLAG; break;
case Orientation: cmd = ECS_IOCTL_APP_SET_MFLAG; break;
}
short flags = newState;
err = ioctl(dev_fd, cmd, &flags);
err = err<0 ? -errno : 0;
LOGE_IF(err, "ECS_IOCTL_APP_SET_XXX failed (%s)", strerror(-err));
if (!err) {
mEnabled &= ~(1<<what);
mEnabled |= (uint32_t(flags)<<what);
update_delay();
}
if (!mEnabled) {
close_device();
}
}
return err;
}
int AkmSensor::setDelay(int32_t handle, int64_t ns)
{
#ifdef ECS_IOCTL_APP_SET_DELAY
int what = -1;
switch (handle) {
case ID_A: what = Accelerometer; break;
case ID_M: what = MagneticField; break;
case ID_O: what = Orientation; break;
}
if (uint32_t(what) >= numSensors)
return -EINVAL;
if (ns < 0)
return -EINVAL;
mDelays[what] = ns;
return update_delay();
#else
return -1;
#endif
}
int AkmSensor::update_delay()
{
if (mEnabled) {
uint64_t wanted = -1LLU;
for (int i=0 ; i<numSensors ; i++) {
if (mEnabled & (1<<i)) {
uint64_t ns = mDelays[i];
wanted = wanted < ns ? wanted : ns;
}
}
short delay = int64_t(wanted) / 1000000;
if (ioctl(dev_fd, ECS_IOCTL_APP_SET_DELAY, &delay)) {
return -errno;
}
}
return 0;
}
int AkmSensor::readEvents(sensors_event_t* data, int count)
{
if (count < 1)
return -EINVAL;
ssize_t n = mInputReader.fill(data_fd);
if (n < 0)
return n;
int numEventReceived = 0;
input_event const* event;
while (count && mInputReader.readEvent(&event)) {
int type = event->type;
if (type == EV_ABS) {
processEvent(event->code, event->value);
mInputReader.next();
} else if (type == EV_SYN) {
int64_t time = timevalToNano(event->time);
for (int j=0 ; count && mPendingMask && j<numSensors ; j++) {
if (mPendingMask & (1<<j)) {
mPendingMask &= ~(1<<j);
mPendingEvents[j].timestamp = time;
if (mEnabled & (1<<j)) {
*data++ = mPendingEvents[j];
count--;
numEventReceived++;
}
}
}
if (!mPendingMask) {
mInputReader.next();
}
} else {
LOGE("AkmSensor: unknown event (type=%d, code=%d)",
type, event->code);
mInputReader.next();
}
}
return numEventReceived;
}
void AkmSensor::processEvent(int code, int value)
{
switch (code) {
case EVENT_TYPE_ACCEL_X:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A_X;
break;
case EVENT_TYPE_ACCEL_Y:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A_Y;
break;
case EVENT_TYPE_ACCEL_Z:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A_Z;
break;
case EVENT_TYPE_MAGV_X:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.x = value * CONVERT_M_X;
break;
case EVENT_TYPE_MAGV_Y:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.y = value * CONVERT_M_Y;
break;
case EVENT_TYPE_MAGV_Z:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.z = value * CONVERT_M_Z;
break;
case EVENT_TYPE_YAW:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.azimuth = value * CONVERT_O_Y;
break;
case EVENT_TYPE_PITCH:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.pitch = value * CONVERT_O_P;
break;
case EVENT_TYPE_ROLL:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.roll = value * CONVERT_O_R;
break;
case EVENT_TYPE_ORIENT_STATUS:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.status =
uint8_t(value & SENSOR_STATE_MASK);
break;
}
}