android_device_htc_leo/libgps/leo-gps.c

1198 lines
34 KiB
C
Raw Normal View History

/******************************************************************************
* GPS HAL (hardware abstraction layer) for HD2/Leo
*
* leo-gps.c
*
* Copyright (C) 2006-2009 The Android Open Source Project
* Copyright (C) 2009-2010 The XDAndroid Project
* Copyright (C) 2010 dan1j3l @ xda-developers
* Copyright (C) 2011 tytung @ xda-developers
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
#include <errno.h>
#include <pthread.h>
#include <fcntl.h>
#include <sys/epoll.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>
#include <cutils/log.h>
#include <cutils/sockets.h>
#include <gps.h>
#define LOG_TAG "gps_leo"
#define XTRA_BLOCK_SIZE 400
#define DISABLE_XTRA_DATA 1 // AGPS data injection not works yet
#define DISABLE_CLEANUP 1 // fully shutting down the GPS is temporarily disabled
#define MEASUREMENT_PRECISION 5.0f // in meters
#define DUMP_DATA 0
#define GPS_DEBUG 1
#if GPS_DEBUG
# define D(...) LOGD(__VA_ARGS__)
#else
# define D(...) ((void)0)
#endif
void update_gps_location(GpsLocation *location);
void update_gps_status(GpsStatusValue value);
void update_gps_svstatus(GpsSvStatus *svstatus);
void update_gps_nmea(GpsUtcTime timestamp, const char* nmea, int length);
/*****************************************************************/
/*****************************************************************/
/***** *****/
/***** N M E A T O K E N I Z E R *****/
/***** *****/
/*****************************************************************/
/*****************************************************************/
/* this is the state of our connection */
typedef struct {
const char* p;
const char* end;
} Token;
#define MAX_NMEA_TOKENS 32
typedef struct {
int count;
Token tokens[ MAX_NMEA_TOKENS ];
} NmeaTokenizer;
static int
nmea_tokenizer_init( NmeaTokenizer* t, const char* p, const char* end )
{
int count = 0;
char* q;
// the initial '$' is optional
if (p < end && p[0] == '$')
p += 1;
// remove trailing newline
if (end > p && end[-1] == '\n') {
end -= 1;
if (end > p && end[-1] == '\r')
end -= 1;
}
// get rid of checksum at the end of the sentecne
if (end >= p+3 && end[-3] == '*') {
end -= 3;
}
while (p < end) {
const char* q = p;
q = memchr(p, ',', end-p);
if (q == NULL)
q = end;
if (count < MAX_NMEA_TOKENS) {
t->tokens[count].p = p;
t->tokens[count].end = q;
count += 1;
}
if (q < end)
q += 1;
p = q;
}
t->count = count;
return count;
}
static Token
nmea_tokenizer_get( NmeaTokenizer* t, int index )
{
Token tok;
static const char* dummy = "";
if (index < 0 || index >= t->count) {
tok.p = tok.end = dummy;
} else
tok = t->tokens[index];
return tok;
}
static int
str2int( const char* p, const char* end )
{
int result = 0;
int len = end - p;
if (len == 0) {
return -1;
}
for ( ; len > 0; len--, p++ )
{
int c;
if (p >= end)
goto Fail;
c = *p - '0';
if ((unsigned)c >= 10)
goto Fail;
result = result*10 + c;
}
return result;
Fail:
return -1;
}
static double
str2float( const char* p, const char* end )
{
int result = 0;
int len = end - p;
char temp[16];
if (len == 0) {
return -1.0;
}
if (len >= (int)sizeof(temp))
return 0.;
memcpy( temp, p, len );
temp[len] = 0;
return strtod( temp, NULL );
}
/*****************************************************************/
/*****************************************************************/
/***** *****/
/***** N M E A P A R S E R *****/
/***** *****/
/*****************************************************************/
/*****************************************************************/
#define NMEA_MAX_SIZE 255
typedef struct {
int pos;
int overflow;
int utc_year;
int utc_mon;
int utc_day;
int utc_diff;
GpsLocation fix;
GpsSvStatus sv_status;
int sv_status_changed;
uint16_t fix_flags_cached;
char in[ NMEA_MAX_SIZE+1 ];
} NmeaReader;
typedef struct {
int init;
int fd;
GpsCallbacks callbacks;
GpsXtraCallbacks xtra_callbacks;
AGpsCallbacks agps_callbacks;
GpsStatus status;
pthread_t thread;
int control[2];
} GpsState;
static GpsState _gps_state[1];
static void
nmea_reader_update_utc_diff( NmeaReader* r )
{
time_t now = time(NULL);
struct tm tm_local;
struct tm tm_utc;
long time_local, time_utc;
gmtime_r( &now, &tm_utc );
localtime_r( &now, &tm_local );
time_local = mktime(&tm_local);
time_utc = mktime(&tm_utc);
r->utc_diff = time_local - time_utc;
D("%s() is called. utc_diff = %d", __FUNCTION__, r->utc_diff);
}
static void
nmea_reader_init( NmeaReader* r )
{
D("%s() is called", __FUNCTION__);
memset( r, 0, sizeof(*r) );
r->fix_flags_cached = 0;
r->pos = 0;
r->overflow = 0;
r->utc_year = -1;
r->utc_mon = -1;
r->utc_day = -1;
nmea_reader_update_utc_diff( r );
}
static int
nmea_reader_update_time( NmeaReader* r, Token tok )
{
int hour, minute;
double seconds;
struct tm tm;
time_t fix_time;
if (tok.p + 6 > tok.end)
return -1;
if (r->utc_year < 0) {
// no date yet, get current one
time_t now = time(NULL);
gmtime_r( &now, &tm );
r->utc_year = tm.tm_year + 1900;
r->utc_mon = tm.tm_mon + 1;
r->utc_day = tm.tm_mday;
}
hour = str2int(tok.p, tok.p+2);
minute = str2int(tok.p+2, tok.p+4);
seconds = str2float(tok.p+4, tok.end);
tm.tm_hour = hour;
tm.tm_min = minute;
tm.tm_sec = (int) seconds;
tm.tm_year = r->utc_year - 1900;
tm.tm_mon = r->utc_mon - 1;
tm.tm_mday = r->utc_day;
tm.tm_isdst = 0;
fix_time = mktime( &tm ) + r->utc_diff;
#if DUMP_DATA
D("fix_time=%d", fix_time); // UTC time + utc_diff
#endif
r->fix.timestamp = (long long)fix_time * 1000 + (int)(seconds*1000)%1000;;
return 0;
}
static int
nmea_reader_update_date( NmeaReader* r, Token date, Token time )
{
Token tok = date;
int day, mon, year;
if (tok.p + 6 != tok.end) {
D("date not properly formatted: '%.*s'", tok.end-tok.p, tok.p);
return -1;
}
day = str2int(tok.p, tok.p+2);
mon = str2int(tok.p+2, tok.p+4);
year = str2int(tok.p+4, tok.p+6) + 2000;
if ((day|mon|year) < 0) {
D("date not properly formatted: '%.*s'", tok.end-tok.p, tok.p);
return -1;
}
r->utc_year = year;
r->utc_mon = mon;
r->utc_day = day;
return nmea_reader_update_time( r, time );
}
static double
convert_from_hhmm( Token tok )
{
double val = str2float(tok.p, tok.end);
int degrees = (int)(floor(val) / 100);
double minutes = val - degrees*100.;
double dcoord = degrees + minutes / 60.0;
return dcoord;
}
static int
nmea_reader_update_latlong( NmeaReader* r,
Token latitude,
char latitudeHemi,
Token longitude,
char longitudeHemi )
{
double lat, lon;
Token tok;
tok = latitude;
if (tok.p + 6 > tok.end) {
D("latitude is too short: '%.*s'", tok.end-tok.p, tok.p);
return -1;
}
lat = convert_from_hhmm(tok);
if (latitudeHemi == 'S')
lat = -lat;
tok = longitude;
if (tok.p + 6 > tok.end) {
D("longitude is too short: '%.*s'", tok.end-tok.p, tok.p);
return -1;
}
lon = convert_from_hhmm(tok);
if (longitudeHemi == 'W')
lon = -lon;
r->fix.flags |= GPS_LOCATION_HAS_LAT_LONG;
r->fix.latitude = lat;
r->fix.longitude = lon;
return 0;
}
static int
nmea_reader_update_altitude( NmeaReader* r,
Token altitude,
Token units,
Token geoid_height )
{
/*
* Height can be measured in two ways.
* The altitude we get from NMEA is H.
* The altitude in gps.h is defined as h.
* So the required output must be h = H + N.
*
* h: Height (h) above the WGS84 reference ellipsoid.
* H: Height (H) above Geoid (mean sea level).
* N: Height of Geoid (mean sea level) above the WGS84 ellipsoid.
*/
if (altitude.p >= altitude.end)
return -1;
if (geoid_height.p >= geoid_height.end)
return -1;
r->fix.flags |= GPS_LOCATION_HAS_ALTITUDE;
r->fix.altitude = str2float(altitude.p, altitude.end) + str2float(geoid_height.p, geoid_height.end);
return 0;
}
static int
nmea_reader_update_accuracy( NmeaReader* r,
Token accuracy )
{
Token tok = accuracy;
if (tok.p >= tok.end)
return -1;
r->fix.flags |= GPS_LOCATION_HAS_ACCURACY;
r->fix.accuracy = (float)str2float(tok.p, tok.end) * MEASUREMENT_PRECISION;
return 0;
}
static int
nmea_reader_update_bearing( NmeaReader* r,
Token bearing )
{
Token tok = bearing;
if (tok.p >= tok.end)
return -1;
r->fix.flags |= GPS_LOCATION_HAS_BEARING;
r->fix.bearing = (float)str2float(tok.p, tok.end);
return 0;
}
static int
nmea_reader_update_speed( NmeaReader* r,
Token speed )
{
Token tok = speed;
if (tok.p >= tok.end)
return -1;
r->fix.flags |= GPS_LOCATION_HAS_SPEED;
// convert knots into m/sec (1 knot equals 1.852 km/h, 1 km/h equals 3.6 m/s)
// since 1.852 / 3.6 is an odd value (periodic), we're calculating the quotient on the fly
// to obtain maximum precision (we don't want 1.9999 instead of 2)
r->fix.speed = (float)str2float(tok.p, tok.end) * 1.852 / 3.6;
return 0;
}
static void
nmea_reader_parse( NmeaReader* r )
{
/* we received a complete sentence, now parse it to generate
* a new GPS fix...
*/
NmeaTokenizer tzer[1];
Token tok;
int report_nmea = 0;
#if DUMP_DATA & 0
D("Received: %.*s", r->pos, r->in);
#endif
if (r->pos < 9) {
#if DUMP_DATA & 0
D("Too short. discarded.");
#endif
return;
}
nmea_tokenizer_init(tzer, r->in, r->in + r->pos);
/*
#if GPS_DEBUG
{
int n;
D("Found %d tokens", tzer->count);
for (n = 0; n < tzer->count; n++) {
Token tok = nmea_tokenizer_get(tzer,n);
D("size of %2d: '%d', ptr=%x", n, tok.end-tok.p, tok.p);
D("%2d: '%.*s'", n, tok.end-tok.p, tok.p);
}
}
#endif
*/
tok = nmea_tokenizer_get(tzer, 0);
if (tok.p + 5 > tok.end) {
D("sentence id '%.*s' too short, ignored.", tok.end-tok.p, tok.p);
return;
}
// ignore first two characters.
tok.p += 2;
if ( !memcmp(tok.p, "GSV", 3) ) {
// Satellites in View
Token tok_num_svs = nmea_tokenizer_get(tzer, 3);
int num_svs = str2int(tok_num_svs.p, tok_num_svs.end);
report_nmea = 1;
if (num_svs > 0) {
Token tok_total_sentences= nmea_tokenizer_get(tzer, 1);
Token tok_sentence_no = nmea_tokenizer_get(tzer, 2);
int sentence_no = str2int(tok_sentence_no.p, tok_sentence_no.end);
int total_sentences = str2int(tok_total_sentences.p, tok_total_sentences.end);
int curr;
int i;
if (sentence_no == 1) {
r->sv_status_changed = 0;
r->sv_status.num_svs = 0;
memset( r->sv_status.sv_list, 0, sizeof(r->sv_status.sv_list) );
}
curr = (sentence_no - 1) * 4;
i = 0;
while (i < 4 && r->sv_status.num_svs < num_svs) {
Token tok_prn = nmea_tokenizer_get(tzer, i*4 + 4);
Token tok_elevation = nmea_tokenizer_get(tzer, i*4 + 5);
Token tok_azimuth = nmea_tokenizer_get(tzer, i*4 + 6);
Token tok_snr = nmea_tokenizer_get(tzer, i*4 + 7);
float snr = str2float(tok_snr.p, tok_snr.end);
if (snr > 0) {
r->sv_status.sv_list[curr].prn = str2int(tok_prn.p, tok_prn.end);
r->sv_status.sv_list[curr].elevation = str2float(tok_elevation.p, tok_elevation.end);
r->sv_status.sv_list[curr].azimuth = str2float(tok_azimuth.p, tok_azimuth.end);
r->sv_status.sv_list[curr].snr = snr;
r->sv_status.num_svs += 1;
}
#if DUMP_DATA
D("GSV sentence %2d of %d: prn=%2d", curr+1, num_svs, r->sv_status.sv_list[curr].prn);
#endif
curr += 1;
i += 1;
}
if (sentence_no == total_sentences) {
r->sv_status_changed = 1;
}
}
} else if ( !memcmp(tok.p, "GGA", 3) ) {
// GPS fix
Token tok_fix_status = nmea_tokenizer_get(tzer,6);
report_nmea = 1;
// Fix quality: {0 = invalid}, {1 = GPS fix}, ...
if (tok_fix_status.p[0] > '0') {
Token tok_time = nmea_tokenizer_get(tzer,1);
Token tok_latitude = nmea_tokenizer_get(tzer,2);
Token tok_latitudeHemi = nmea_tokenizer_get(tzer,3);
Token tok_longitude = nmea_tokenizer_get(tzer,4);
Token tok_longitudeHemi = nmea_tokenizer_get(tzer,5);
Token tok_accuracy = nmea_tokenizer_get(tzer,8);
Token tok_altitude = nmea_tokenizer_get(tzer,9);
Token tok_altitudeUnits = nmea_tokenizer_get(tzer,10);
Token tok_geoidHeight = nmea_tokenizer_get(tzer,11);
nmea_reader_update_time(r, tok_time);
nmea_reader_update_latlong(r, tok_latitude,
tok_latitudeHemi.p[0],
tok_longitude,
tok_longitudeHemi.p[0]);
nmea_reader_update_accuracy(r, tok_accuracy);
nmea_reader_update_altitude(r, tok_altitude, tok_altitudeUnits, tok_geoidHeight);
}
} else if ( !memcmp(tok.p, "RMC", 3) ) {
// Recommended minimum specific GPS/Transit data
Token tok_fix_status = nmea_tokenizer_get(tzer, 2);
report_nmea = 1;
// Status: {A = active} or {V = void}
if (tok_fix_status.p[0] == 'A') {
Token tok_time = nmea_tokenizer_get(tzer,1);
Token tok_latitude = nmea_tokenizer_get(tzer,3);
Token tok_latitudeHemi = nmea_tokenizer_get(tzer,4);
Token tok_longitude = nmea_tokenizer_get(tzer,5);
Token tok_longitudeHemi = nmea_tokenizer_get(tzer,6);
Token tok_speed = nmea_tokenizer_get(tzer,7);
Token tok_bearing = nmea_tokenizer_get(tzer,8);
Token tok_date = nmea_tokenizer_get(tzer,9);
nmea_reader_update_date( r, tok_date, tok_time );
nmea_reader_update_latlong( r, tok_latitude,
tok_latitudeHemi.p[0],
tok_longitude,
tok_longitudeHemi.p[0] );
nmea_reader_update_bearing( r, tok_bearing );
nmea_reader_update_speed ( r, tok_speed );
}
} else if ( !memcmp(tok.p, "GSA", 3) ) {
// GPS DOP and active satellites.
Token tok_fix_status = nmea_tokenizer_get(tzer, 2);
report_nmea = 1;
r->sv_status.used_in_fix_mask = 0ul;
// {3 = 3D fix}, {2 = 2D fix}, {1 = no fix}
if (tok_fix_status.p[0] == '3' || tok_fix_status.p[0] == '2') {
// We have accuracy in GGA
//Token tok_accuracy = nmea_tokenizer_get(tzer, 16);
//nmea_reader_update_accuracy(r, tok_accuracy);
int i;
for (i = 3; i <= 14; ++i) {
Token tok_prn = nmea_tokenizer_get(tzer, i);
int prn = str2int(tok_prn.p, tok_prn.end);
if (prn > 0)
r->sv_status.used_in_fix_mask |= (1ul << (prn-1));
}
}
#if DUMP_DATA
D("%s: used_in_fix_mask is 0x%x", __FUNCTION__, r->sv_status.used_in_fix_mask);
#endif
r->sv_status_changed = 1;
} else {
tok.p -= 2;
#if DUMP_DATA & 0
D("unknown sentence '%.*s", tok.end-tok.p, tok.p);
#endif
}
#if DUMP_DATA
if (r->fix.flags) {
char temp[256];
char* p = temp;
char* end = p + sizeof(temp);
struct tm utc;
p += snprintf( p, end-p, "fix" );
if (r->fix.flags & GPS_LOCATION_HAS_LAT_LONG) {
p += snprintf(p, end-p, " lat=%g lon=%g", r->fix.latitude, r->fix.longitude);
}
if (r->fix.flags & GPS_LOCATION_HAS_ALTITUDE) {
p += snprintf(p, end-p, " altitude=%g", r->fix.altitude);
}
if (r->fix.flags & GPS_LOCATION_HAS_SPEED) {
p += snprintf(p, end-p, " speed=%g", r->fix.speed);
}
if (r->fix.flags & GPS_LOCATION_HAS_BEARING) {
p += snprintf(p, end-p, " bearing=%g", r->fix.bearing);
}
if (r->fix.flags & GPS_LOCATION_HAS_ACCURACY) {
p += snprintf(p, end-p, " accuracy=%g", r->fix.accuracy);
}
if (r->fix.flags & GPS_LOCATION_HAS_LAT_LONG) {
time_t time = r->fix.timestamp / 1000;
p += snprintf(p, end-p, " time=%s", ctime(&time) );
}
D("%s", temp);
}
#endif
if (report_nmea) {
struct timeval tv;
gettimeofday(&tv, NULL);
update_gps_nmea(tv.tv_sec*1000+tv.tv_usec/1000, r->in, r->pos);
report_nmea = 0;
}
#if DUMP_DATA
D("r->fix.flags = 0x%x", r->fix.flags);
#endif
if (r->fix.flags & GPS_LOCATION_HAS_LAT_LONG) {
if (r->fix_flags_cached > 0)
r->fix.flags |= r->fix_flags_cached;
r->fix_flags_cached = r->fix.flags;
update_gps_location( &r->fix );
#if DUMP_DATA
D("r->fix.flags = 0x%x", r->fix.flags);
#endif
r->fix.flags = 0;
}
if (r->sv_status_changed) {
update_gps_svstatus( &r->sv_status );
r->sv_status_changed = 0;
}
}
static void
nmea_reader_addc( NmeaReader* r, int c )
{
if (r->overflow) {
r->overflow = (c != '\n');
return;
}
if (r->pos >= (int) sizeof(r->in)-1 ) {
r->overflow = 1;
r->pos = 0;
return;
}
r->in[r->pos] = (char)c;
r->pos += 1;
if (c == '\n') {
nmea_reader_parse( r );
r->pos = 0;
}
}
/*****************************************************************/
/*****************************************************************/
/***** *****/
/***** C O N N E C T I O N S T A T E *****/
/***** *****/
/*****************************************************************/
/*****************************************************************/
/* commands sent to the gps thread */
enum {
CMD_QUIT = 0,
CMD_START = 1,
CMD_STOP = 2
};
static void gps_state_done( GpsState* s ) {
update_gps_status(GPS_STATUS_ENGINE_OFF);
// tell the thread to quit, and wait for it
char cmd = CMD_QUIT;
int ret;
void* dummy;
do { ret=write( s->control[0], &cmd, 1 ); }
while (ret < 0 && errno == EINTR);
pthread_join(s->thread, &dummy);
// close the control socket pair
close( s->control[0] ); s->control[0] = -1;
close( s->control[1] ); s->control[1] = -1;
// close connection to the GPS daemon
close( s->fd ); s->fd = -1;
s->init = 0;
}
static void gps_state_start( GpsState* s ) {
// Navigation started.
update_gps_status(GPS_STATUS_SESSION_BEGIN);
char cmd = CMD_START;
int ret;
do { ret=write( s->control[0], &cmd, 1 ); }
while (ret < 0 && errno == EINTR);
if (ret != 1)
D("%s: could not send CMD_START command: ret=%d: %s",
__FUNCTION__, ret, strerror(errno));
}
static void gps_state_stop( GpsState* s ) {
// Navigation ended.
update_gps_status(GPS_STATUS_SESSION_END);
char cmd = CMD_STOP;
int ret;
do { ret=write( s->control[0], &cmd, 1 ); }
while (ret < 0 && errno == EINTR);
if (ret != 1)
D("%s: could not send CMD_STOP command: ret=%d: %s",
__FUNCTION__, ret, strerror(errno));
}
static int epoll_register( int epoll_fd, int fd ) {
struct epoll_event ev;
int ret, flags;
/* important: make the fd non-blocking */
flags = fcntl(fd, F_GETFL);
fcntl(fd, F_SETFL, flags | O_NONBLOCK);
ev.events = EPOLLIN;
ev.data.fd = fd;
do {
ret = epoll_ctl( epoll_fd, EPOLL_CTL_ADD, fd, &ev );
} while (ret < 0 && errno == EINTR);
return ret;
}
static int epoll_deregister( int epoll_fd, int fd ) {
int ret;
do {
ret = epoll_ctl( epoll_fd, EPOLL_CTL_DEL, fd, NULL );
} while (ret < 0 && errno == EINTR);
return ret;
}
void update_gps_location(GpsLocation *location) {
#if DUMP_DATA
D("%s(): GpsLocation=%f, %f", __FUNCTION__, location->latitude, location->longitude);
#endif
GpsState* state = _gps_state;
//Should be made thread safe...
if(state->callbacks.location_cb)
state->callbacks.location_cb(location);
}
void update_gps_status(GpsStatusValue value) {
D("%s(): GpsStatusValue=%d", __FUNCTION__, value);
GpsState* state = _gps_state;
//Should be made thread safe...
state->status.status=value;
if(state->callbacks.status_cb)
state->callbacks.status_cb(&state->status);
}
void update_gps_svstatus(GpsSvStatus *svstatus) {
D("%s(): GpsSvStatus.num_svs=%d", __FUNCTION__, svstatus->num_svs);
GpsState* state = _gps_state;
//Should be made thread safe...
if(state->callbacks.sv_status_cb)
state->callbacks.sv_status_cb(svstatus);
}
void update_gps_nmea(GpsUtcTime timestamp, const char* nmea, int length) {
#if DUMP_DATA
D("%s(): length=%d, NMEA=%.*s", __FUNCTION__, length, length, nmea);
#endif
GpsState* state = _gps_state;
//Should be made thread safe...
if(state->callbacks.nmea_cb)
state->callbacks.nmea_cb(timestamp, nmea, length);
}
/* this is the main thread, it waits for commands from gps_state_start/stop and,
* when started, messages from the NMEA SMD. these are simple NMEA sentences
* that must be parsed to be converted into GPS fixes sent to the framework
*/
int32_t _fix_frequency;//Which is a period not a frequency, but nvm.
static void* gps_state_thread( void* arg ) {
GpsState* state = (GpsState*) arg;
NmeaReader reader[1];
int epoll_fd = epoll_create(2);
int started = 0;
int gps_fd = state->fd;
int control_fd = state->control[1];
nmea_reader_init( reader );
// register control file descriptors for polling
epoll_register( epoll_fd, control_fd );
if (gps_fd > -1) {
epoll_register( epoll_fd, gps_fd );
}
D("gps thread running");
// now loop
for (;;) {
struct epoll_event events[2];
int ne, nevents;
nevents = epoll_wait( epoll_fd, events, gps_fd>-1 ? 2 : 1, started ? _fix_frequency*900 : -1);
if (nevents < 0) {
if (errno != EINTR)
LOGE("epoll_wait() unexpected error: %s", strerror(errno));
continue;
}
//D("gps thread received %d events", nevents);
if(nevents==0) {
//We should call pdsm_get_position more often than that... but it's not easy to code.
//Anyway the 2second timeout is already stupid,
if(started)
gps_get_position();
}
for (ne = 0; ne < nevents; ne++) {
if ((events[ne].events & (EPOLLERR|EPOLLHUP)) != 0) {
LOGE("EPOLLERR or EPOLLHUP after epoll_wait() !?");
goto Exit;
}
if ((events[ne].events & EPOLLIN) != 0) {
int fd = events[ne].data.fd;
if (fd == control_fd) {
char cmd = 255;
int ret;
//D("gps control fd event");
do {
ret = read( fd, &cmd, 1 );
} while (ret < 0 && errno == EINTR);
if (cmd == CMD_QUIT) {
D("gps thread quitting on demand");
goto Exit;
} else if (cmd == CMD_START) {
if (!started) {
D("gps thread starting location_cb=%p", state->callbacks.location_cb);
started = 1;
}
} else if (cmd == CMD_STOP) {
if (started) {
D("gps thread stopping");
started = 0;
exit_gps_rpc();
}
}
} else if (fd == gps_fd) {
char buf[512];
int nn, ret;
//D("gps fd event");
do {
ret = read( fd, buf, sizeof(buf) );
} while (ret < 0 && errno == EINTR);
if (ret > 0) {
for (nn = 0; nn < ret; nn++)
nmea_reader_addc( reader, buf[nn] );
}
//D("gps fd event end");
} else {
LOGE("epoll_wait() returned unkown fd %d ?", fd);
}
}
}
}
Exit:
return NULL;
}
static void gps_state_init( GpsState* state ) {
update_gps_status(GPS_STATUS_ENGINE_ON);
state->init = 1;
state->control[0] = -1;
state->control[1] = -1;
state->fd = open("/dev/smd27", O_RDONLY);
if ( socketpair( AF_LOCAL, SOCK_STREAM, 0, state->control ) < 0 ) {
LOGE("could not create thread control socket pair: %s", strerror(errno));
goto Fail;
}
if ( pthread_create( &state->thread, NULL, gps_state_thread, state ) != 0 ) {
LOGE("could not create gps thread: %s", strerror(errno));
goto Fail;
}
if(init_gps_rpc())
goto Fail;
D("gps state initialized");
return;
Fail:
gps_state_done( state );
}
/*****************************************************************/
/*****************************************************************/
/***** *****/
/***** I N T E R F A C E *****/
/***** *****/
/*****************************************************************/
/*****************************************************************/
/***** GpsXtraInterface *****/
static int gps_xtra_init(GpsXtraCallbacks* callbacks) {
D("%s() is called", __FUNCTION__);
GpsState* s = _gps_state;
s->xtra_callbacks = *callbacks;
return 0;
}
static int gps_xtra_inject_xtra_data(char* data, int length) {
D("%s() is called", __FUNCTION__);
D("gps_xtra_inject_xtra_data: xtra size = %d, data ptr = 0x%x\n", length, (int) data);
#if DISABLE_XTRA_DATA
return 0;
#else
GpsState* s = _gps_state;
if (!s->init)
return 0;
int rpc_ret_val = -1;
int ret_val = -1;
unsigned char *xtra_data_ptr;
uint32_t part_len;
uint8_t part;
uint8_t total_parts;
uint16_t len_injected;
total_parts = (length / XTRA_BLOCK_SIZE);
if ((total_parts % XTRA_BLOCK_SIZE) != 0)
{
total_parts += 1;
}
len_injected = 0; // O bytes injected
// XTRA injection starts with part 1
for (part = 1; part <= total_parts; part++)
{
part_len = XTRA_BLOCK_SIZE;
if (XTRA_BLOCK_SIZE > (length - len_injected))
{
part_len = length - len_injected;
}
xtra_data_ptr = data + len_injected;
D("gps_xtra_inject_xtra_data: inject part = %d/%d, len = %d\n", part, total_parts, part_len);
if (part < total_parts)
{
rpc_ret_val = gps_xtra_set_data(xtra_data_ptr, part_len, part, total_parts);
if (rpc_ret_val == -1)
{
D("gps_xtra_set_data() for xtra returned %d \n", rpc_ret_val);
ret_val = EINVAL; // return error
break;
}
}
else // part == total_parts
{
ret_val = gps_xtra_set_data(xtra_data_ptr, part_len, part, total_parts);
break; // done with injection
}
len_injected += part_len;
}
return ret_val;
#endif
}
static const GpsXtraInterface sGpsXtraInterface = {
gps_xtra_init,
gps_xtra_inject_xtra_data,
};
/***** AGpsInterface *****/
static void agps_init(AGpsCallbacks* callbacks) {
D("%s() is called", __FUNCTION__);
GpsState* s = _gps_state;
s->agps_callbacks = *callbacks;
}
static int agps_data_conn_open(const char* apn) {
D("%s() is called", __FUNCTION__);
D("apn=%s", apn);
/* not yet implemented */
return 0;
}
static int agps_data_conn_closed() {
D("%s() is called", __FUNCTION__);
/* not yet implemented */
return 0;
}
static int agps_data_conn_failed() {
D("%s() is called", __FUNCTION__);
/* not yet implemented */
return 0;
}
static int agps_set_server(AGpsType type, const char* hostname, int port) {
D("%s() is called", __FUNCTION__);
D("type=%d, hostname=%s, port=%d", type, hostname, port);
/* not yet implemented */
return 0;
}
static const AGpsInterface sAGpsInterface = {
agps_init,
agps_data_conn_open,
agps_data_conn_closed,
agps_data_conn_failed,
agps_set_server,
};
/***** GpsInterface *****/
static int gps_init(GpsCallbacks* callbacks) {
D("%s() is called", __FUNCTION__);
GpsState* s = _gps_state;
if (!s->init)
gps_state_init(s);
s->callbacks = *callbacks;
return 0;
}
static void gps_cleanup() {
D("%s() is called", __FUNCTION__);
#if DISABLE_CLEANUP
return;
#else
GpsState* s = _gps_state;
if (s->init)
gps_state_done(s);
#endif
}
static int gps_start() {
D("%s: called", __FUNCTION__);
GpsState* s = _gps_state;
if (!s->init) {
D("%s: called with uninitialized state !!", __FUNCTION__);
return -1;
}
gps_state_start(s);
return 0;
}
static int gps_stop() {
D("%s: called", __FUNCTION__);
GpsState* s = _gps_state;
if (!s->init) {
D("%s: called with uninitialized state !!", __FUNCTION__);
return -1;
}
gps_state_stop(s);
return 0;
}
static int gps_inject_time(GpsUtcTime time, int64_t timeReference, int uncertainty) {
D("%s() is called", __FUNCTION__);
D("time=%lld, timeReference=%lld, uncertainty=%d", time, timeReference, uncertainty);
GpsState* s = _gps_state;
if (!s->init)
return 0;
int ret_val = -1;
ret_val = gps_xtra_inject_time_info(time, timeReference, uncertainty);
return ret_val;
}
static int gps_inject_location(double latitude, double longitude, float accuracy) {
D("%s() is called", __FUNCTION__);
D("latitude=%f, longitude=%f, accuracy=%f", latitude, longitude, accuracy);
/* not yet implemented */
return 0;
}
static void gps_delete_aiding_data(GpsAidingData flags) {
D("%s() is called", __FUNCTION__);
D("flags=%d", flags);
/* not yet implemented */
}
static int gps_set_position_mode(GpsPositionMode mode, int fix_frequency) {
D("%s() is called", __FUNCTION__);
D("fix_frequency=%d", fix_frequency);
_fix_frequency=fix_frequency;
if(_fix_frequency==0) {
//We don't handle single shot requests atm...
//So one every 1 seconds will it be.
_fix_frequency=1;
}
if(_fix_frequency>8) {
//Ok, A9 will timeout with so high value.
//Set it to 8.
_fix_frequency=8;
}
return 0;
}
static const void* gps_get_extension(const char* name) {
D("%s('%s') is called", __FUNCTION__, name);
if (!strcmp(name, GPS_XTRA_INTERFACE)) {
return &sGpsXtraInterface;
} else if (!strcmp(name, AGPS_INTERFACE)) {
return &sAGpsInterface;
}
return NULL;
}
static const GpsInterface hardwareGpsInterface = {
gps_init,
gps_start,
gps_stop,
gps_cleanup,
gps_inject_time,
gps_inject_location,
gps_delete_aiding_data,
gps_set_position_mode,
gps_get_extension,
};
const GpsInterface* gps_get_hardware_interface()
{
D("%s() is called", __FUNCTION__);
return &hardwareGpsInterface;
}
// END OF FILE