android_bootable_recovery/mmcutils/mmcutils.c
Koushik Dutta a465962667 use source built e2fsprogs! thanks cvpcs!
Change-Id: Id3067d4da53643ae1af0b9f15445262afda7b197
2012-01-30 22:51:36 -08:00

651 lines
17 KiB
C

/*
* Copyright (c) 2010, Code Aurora Forum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Code Aurora Forum, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <dirent.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/reboot.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/mount.h> // for _IOW, _IOR, mount()
#include "mmcutils.h"
unsigned ext3_count = 0;
char *ext3_partitions[] = {"system", "userdata", "cache", "NONE"};
unsigned vfat_count = 0;
char *vfat_partitions[] = {"modem", "NONE"};
struct MmcPartition {
char *device_index;
char *filesystem;
char *name;
unsigned dstatus;
unsigned dtype ;
unsigned dfirstsec;
unsigned dsize;
};
typedef struct {
MmcPartition *partitions;
int partitions_allocd;
int partition_count;
} MmcState;
static MmcState g_mmc_state = {
NULL, // partitions
0, // partitions_allocd
-1 // partition_count
};
#define MMC_DEVICENAME "/dev/block/mmcblk0"
static void
mmc_partition_name (MmcPartition *mbr, unsigned int type) {
switch(type)
{
char name[64];
case MMC_BOOT_TYPE:
sprintf(name,"boot");
mbr->name = strdup(name);
break;
case MMC_RECOVERY_TYPE:
sprintf(name,"recovery");
mbr->name = strdup(name);
break;
case MMC_EXT3_TYPE:
if (strcmp("NONE", ext3_partitions[ext3_count])) {
strcpy((char *)name,(const char *)ext3_partitions[ext3_count]);
mbr->name = strdup(name);
ext3_count++;
}
mbr->filesystem = strdup("ext3");
break;
case MMC_VFAT_TYPE:
if (strcmp("NONE", vfat_partitions[vfat_count])) {
strcpy((char *)name,(const char *)vfat_partitions[vfat_count]);
mbr->name = strdup(name);
vfat_count++;
}
mbr->filesystem = strdup("vfat");
break;
};
}
static int
mmc_read_mbr (const char *device, MmcPartition *mbr) {
FILE *fd;
unsigned char buffer[512];
int idx, i;
unsigned mmc_partition_count = 0;
unsigned int dtype;
unsigned int dfirstsec;
unsigned int EBR_first_sec;
unsigned int EBR_current_sec;
int ret = -1;
fd = fopen(device, "r");
if(fd == NULL)
{
printf("Can't open device: \"%s\"\n", device);
goto ERROR2;
}
if ((fread(buffer, 512, 1, fd)) != 1)
{
printf("Can't read device: \"%s\"\n", device);
goto ERROR1;
}
/* Check to see if signature exists */
if ((buffer[TABLE_SIGNATURE] != 0x55) || \
(buffer[TABLE_SIGNATURE + 1] != 0xAA))
{
printf("Incorrect mbr signatures!\n");
goto ERROR1;
}
idx = TABLE_ENTRY_0;
for (i = 0; i < 4; i++)
{
char device_index[128];
mbr[mmc_partition_count].dstatus = \
buffer[idx + i * TABLE_ENTRY_SIZE + OFFSET_STATUS];
mbr[mmc_partition_count].dtype = \
buffer[idx + i * TABLE_ENTRY_SIZE + OFFSET_TYPE];
mbr[mmc_partition_count].dfirstsec = \
GET_LWORD_FROM_BYTE(&buffer[idx + \
i * TABLE_ENTRY_SIZE + \
OFFSET_FIRST_SEC]);
mbr[mmc_partition_count].dsize = \
GET_LWORD_FROM_BYTE(&buffer[idx + \
i * TABLE_ENTRY_SIZE + \
OFFSET_SIZE]);
dtype = mbr[mmc_partition_count].dtype;
dfirstsec = mbr[mmc_partition_count].dfirstsec;
mmc_partition_name(&mbr[mmc_partition_count], \
mbr[mmc_partition_count].dtype);
sprintf(device_index, "%sp%d", device, (mmc_partition_count+1));
mbr[mmc_partition_count].device_index = strdup(device_index);
mmc_partition_count++;
if (mmc_partition_count == MAX_PARTITIONS)
goto SUCCESS;
}
/* See if the last partition is EBR, if not, parsing is done */
if (dtype != 0x05)
{
goto SUCCESS;
}
EBR_first_sec = dfirstsec;
EBR_current_sec = dfirstsec;
fseek (fd, (EBR_first_sec * 512), SEEK_SET);
if ((fread(buffer, 512, 1, fd)) != 1)
goto ERROR1;
/* Loop to parse the EBR */
for (i = 0;; i++)
{
char device_index[128];
if ((buffer[TABLE_SIGNATURE] != 0x55) || (buffer[TABLE_SIGNATURE + 1] != 0xAA))
{
break;
}
mbr[mmc_partition_count].dstatus = \
buffer[TABLE_ENTRY_0 + OFFSET_STATUS];
mbr[mmc_partition_count].dtype = \
buffer[TABLE_ENTRY_0 + OFFSET_TYPE];
mbr[mmc_partition_count].dfirstsec = \
GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_0 + \
OFFSET_FIRST_SEC]) + \
EBR_current_sec;
mbr[mmc_partition_count].dsize = \
GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_0 + \
OFFSET_SIZE]);
mmc_partition_name(&mbr[mmc_partition_count], \
mbr[mmc_partition_count].dtype);
sprintf(device_index, "%sp%d", device, (mmc_partition_count+1));
mbr[mmc_partition_count].device_index = strdup(device_index);
mmc_partition_count++;
if (mmc_partition_count == MAX_PARTITIONS)
goto SUCCESS;
dfirstsec = GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_1 + OFFSET_FIRST_SEC]);
if(dfirstsec == 0)
{
/* Getting to the end of the EBR tables */
break;
}
/* More EBR to follow - read in the next EBR sector */
fseek (fd, ((EBR_first_sec + dfirstsec) * 512), SEEK_SET);
if ((fread(buffer, 512, 1, fd)) != 1)
goto ERROR1;
EBR_current_sec = EBR_first_sec + dfirstsec;
}
SUCCESS:
ret = mmc_partition_count;
ERROR1:
fclose(fd);
ERROR2:
return ret;
}
int
mmc_scan_partitions() {
int i;
ssize_t nbytes;
if (g_mmc_state.partitions == NULL) {
const int nump = MAX_PARTITIONS;
MmcPartition *partitions = malloc(nump * sizeof(*partitions));
if (partitions == NULL) {
errno = ENOMEM;
return -1;
}
g_mmc_state.partitions = partitions;
g_mmc_state.partitions_allocd = nump;
memset(partitions, 0, nump * sizeof(*partitions));
}
g_mmc_state.partition_count = 0;
ext3_count = 0;
vfat_count = 0;
/* Initialize all of the entries to make things easier later.
* (Lets us handle sparsely-numbered partitions, which
* may not even be possible.)
*/
for (i = 0; i < g_mmc_state.partitions_allocd; i++) {
MmcPartition *p = &g_mmc_state.partitions[i];
if (p->device_index != NULL) {
free(p->device_index);
p->device_index = NULL;
}
if (p->name != NULL) {
free(p->name);
p->name = NULL;
}
if (p->filesystem != NULL) {
free(p->filesystem);
p->filesystem = NULL;
}
}
g_mmc_state.partition_count = mmc_read_mbr(MMC_DEVICENAME, g_mmc_state.partitions);
if(g_mmc_state.partition_count == -1)
{
printf("Error in reading mbr!\n");
// keep "partitions" around so we can free the names on a rescan.
g_mmc_state.partition_count = -1;
}
return g_mmc_state.partition_count;
}
static const MmcPartition *
mmc_find_partition_by_device_index(const char *device_index)
{
if (g_mmc_state.partitions != NULL) {
int i;
for (i = 0; i < g_mmc_state.partitions_allocd; i++) {
MmcPartition *p = &g_mmc_state.partitions[i];
if (p->device_index !=NULL && p->name != NULL) {
if (strcmp(p->device_index, device_index) == 0) {
return p;
}
}
}
}
return NULL;
}
const MmcPartition *
mmc_find_partition_by_name(const char *name)
{
if (name[0] == '/') {
return mmc_find_partition_by_device_index(name);
}
if (g_mmc_state.partitions != NULL) {
int i;
for (i = 0; i < g_mmc_state.partitions_allocd; i++) {
MmcPartition *p = &g_mmc_state.partitions[i];
if (p->device_index !=NULL && p->name != NULL) {
if (strcmp(p->name, name) == 0) {
return p;
}
}
}
}
return NULL;
}
#define MKE2FS_BIN "/sbin/mke2fs"
#define TUNE2FS_BIN "/sbin/tune2fs"
#define E2FSCK_BIN "/sbin/e2fsck"
int
run_exec_process ( char **argv) {
pid_t pid;
int status;
pid = fork();
if (pid == 0) {
execv(argv[0], argv);
fprintf(stderr, "E:Can't run (%s)\n",strerror(errno));
_exit(-1);
}
waitpid(pid, &status, 0);
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
return 1;
}
return 0;
}
int
format_ext3_device (const char *device) {
char *const mke2fs[] = {MKE2FS_BIN, "-j", "-q", device, NULL};
char *const tune2fs[] = {TUNE2FS_BIN, "-C", "1", device, NULL};
// Run mke2fs
if(run_exec_process(mke2fs)) {
printf("failure while running mke2fs\n");
return -1;
}
// Run tune2fs
if(run_exec_process(tune2fs)) {
printf("failure while running mke2fs\n");
return -1;
}
// Run e2fsck
char *const e2fsck[] = {E2FSCK_BIN, "-fy", device, NULL};
if(run_exec_process(e2fsck)) {
printf("failure while running e2fsck\n");
return -1;
}
return 0;
}
int
format_ext2_device (const char *device) {
// Run mke2fs
char *const mke2fs[] = {MKE2FS_BIN, device, NULL};
if(run_exec_process(mke2fs))
return -1;
// Run tune2fs
char *const tune2fs[] = {TUNE2FS_BIN, "-C", "1", device, NULL};
if(run_exec_process(tune2fs))
return -1;
// Run e2fsck
char *const e2fsck[] = {E2FSCK_BIN, "-fy", device, NULL};
if(run_exec_process(e2fsck))
return -1;
return 0;
}
int
mmc_format_ext3 (MmcPartition *partition) {
char device[128];
strcpy(device, partition->device_index);
return format_ext3_device(device);
}
int
mmc_mount_partition(const MmcPartition *partition, const char *mount_point,
int read_only)
{
const unsigned long flags = MS_NOATIME | MS_NODEV | MS_NODIRATIME;
char devname[128];
int rv = -1;
strcpy(devname, partition->device_index);
if (partition->filesystem == NULL) {
printf("Null filesystem!\n");
return rv;
}
if (!read_only) {
rv = mount(devname, mount_point, partition->filesystem, flags, NULL);
}
if (read_only || rv < 0) {
rv = mount(devname, mount_point, partition->filesystem, flags | MS_RDONLY, 0);
if (rv < 0) {
printf("Failed to mount %s on %s: %s\n",
devname, mount_point, strerror(errno));
} else {
printf("Mount %s on %s read-only\n", devname, mount_point);
}
}
return rv;
}
int
mmc_raw_copy (const MmcPartition *partition, char *in_file) {
int ch;
FILE *in;
FILE *out;
int val = 0;
char buf[512];
unsigned sz = 0;
unsigned i;
int ret = -1;
char *out_file = partition->device_index;
in = fopen ( in_file, "r" );
if (in == NULL)
goto ERROR3;
out = fopen ( out_file, "w" );
if (out == NULL)
goto ERROR2;
fseek(in, 0L, SEEK_END);
sz = ftell(in);
fseek(in, 0L, SEEK_SET);
if (sz % 512)
{
while ( ( ch = fgetc ( in ) ) != EOF )
fputc ( ch, out );
}
else
{
for (i=0; i< (sz/512); i++)
{
if ((fread(buf, 512, 1, in)) != 1)
goto ERROR1;
if ((fwrite(buf, 512, 1, out)) != 1)
goto ERROR1;
}
}
fsync(out);
ret = 0;
ERROR1:
fclose ( out );
ERROR2:
fclose ( in );
ERROR3:
return ret;
}
int
mmc_raw_dump_internal (const char* in_file, const char *out_file) {
int ch;
FILE *in;
FILE *out;
int val = 0;
char buf[512];
unsigned sz = 0;
unsigned i;
int ret = -1;
in = fopen ( in_file, "r" );
if (in == NULL)
goto ERROR3;
out = fopen ( out_file, "w" );
if (out == NULL)
goto ERROR2;
fseek(in, 0L, SEEK_END);
sz = ftell(in);
fseek(in, 0L, SEEK_SET);
if (sz % 512)
{
while ( ( ch = fgetc ( in ) ) != EOF )
fputc ( ch, out );
}
else
{
for (i=0; i< (sz/512); i++)
{
if ((fread(buf, 512, 1, in)) != 1)
goto ERROR1;
if ((fwrite(buf, 512, 1, out)) != 1)
goto ERROR1;
}
}
fsync(out);
ret = 0;
ERROR1:
fclose ( out );
ERROR2:
fclose ( in );
ERROR3:
return ret;
}
// TODO: refactor this to not be a giant copy paste mess
int
mmc_raw_dump (const MmcPartition *partition, char *out_file) {
return mmc_raw_dump_internal(partition->device_index, out_file);
}
int
mmc_raw_read (const MmcPartition *partition, char *data, int data_size) {
int ch;
FILE *in;
int val = 0;
char buf[512];
unsigned sz = 0;
unsigned i;
int ret = -1;
char *in_file = partition->device_index;
in = fopen ( in_file, "r" );
if (in == NULL)
goto ERROR3;
fseek(in, 0L, SEEK_END);
sz = ftell(in);
fseek(in, 0L, SEEK_SET);
fread(data, data_size, 1, in);
ret = 0;
ERROR1:
ERROR2:
fclose ( in );
ERROR3:
return ret;
}
int
mmc_raw_write (const MmcPartition *partition, char *data, int data_size) {
int ch;
FILE *out;
int val = 0;
char buf[512];
unsigned sz = 0;
unsigned i;
int ret = -1;
char *out_file = partition->device_index;
out = fopen ( out_file, "w" );
if (out == NULL)
goto ERROR3;
fwrite(data, data_size, 1, out);
ret = 0;
ERROR1:
ERROR2:
fclose ( out );
ERROR3:
return ret;
}
int cmd_mmc_restore_raw_partition(const char *partition, const char *filename)
{
if (partition[0] != '/') {
mmc_scan_partitions();
const MmcPartition *p;
p = mmc_find_partition_by_name(partition);
if (p == NULL)
return -1;
return mmc_raw_copy(p, filename);
}
else {
return mmc_raw_dump_internal(filename, partition);
}
}
int cmd_mmc_backup_raw_partition(const char *partition, const char *filename)
{
if (partition[0] != '/') {
mmc_scan_partitions();
const MmcPartition *p;
p = mmc_find_partition_by_name(partition);
if (p == NULL)
return -1;
return mmc_raw_dump(p, filename);
}
else {
return mmc_raw_dump_internal(partition, filename);
}
}
int cmd_mmc_erase_raw_partition(const char *partition)
{
return 0;
}
int cmd_mmc_erase_partition(const char *partition, const char *filesystem)
{
mmc_scan_partitions();
const MmcPartition *p;
p = mmc_find_partition_by_name(partition);
if (p == NULL)
return -1;
return mmc_format_ext3 (p);
}
int cmd_mmc_mount_partition(const char *partition, const char *mount_point, const char *filesystem, int read_only)
{
mmc_scan_partitions();
const MmcPartition *p;
p = mmc_find_partition_by_name(partition);
if (p == NULL)
return -1;
return mmc_mount_partition(p, mount_point, read_only);
}
int cmd_mmc_get_partition_device(const char *partition, char *device)
{
mmc_scan_partitions();
const MmcPartition *p;
p = mmc_find_partition_by_name(partition);
if (p == NULL)
return -1;
strcpy(device, p->device_index);
return 0;
}