android_bootable_recovery/applypatch/imgdiff.c
Doug Zongker 512536a54a relocate applypatch; add type system and new functions to edify
- Move applypatch to this package (from build).

- Add a rudimentary type system to edify:  instead of just returning a
  char*, functions now return a Value*, which is a struct that can
  carry different types of value (currently just STRING and BLOB).
  Convert all functions to this new scheme.

- Change the one-argument form of package_extract_file to return a
  Value of the new BLOB type.

- Add read_file() to load a local file and return a blob, and
  sha1_check() to test a blob (or string) against a set of possible
  sha1s.  read_file() uses the file-loading code from applypatch so it
  can read MTD partitions as well.

This is the start of better integration between applypatch and the
rest of edify.

b/2361316 - VZW Issue PP628: Continuous reset to Droid logo:
            framework-res.apk update failed (CR LIBtt59130)

Change-Id: Ibd038074749a4d515de1f115c498c6c589ee91e5
2010-02-18 14:22:12 -08:00

1011 lines
31 KiB
C

/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This program constructs binary patches for images -- such as boot.img
* and recovery.img -- that consist primarily of large chunks of gzipped
* data interspersed with uncompressed data. Doing a naive bsdiff of
* these files is not useful because small changes in the data lead to
* large changes in the compressed bitstream; bsdiff patches of gzipped
* data are typically as large as the data itself.
*
* To patch these usefully, we break the source and target images up into
* chunks of two types: "normal" and "gzip". Normal chunks are simply
* patched using a plain bsdiff. Gzip chunks are first expanded, then a
* bsdiff is applied to the uncompressed data, then the patched data is
* gzipped using the same encoder parameters. Patched chunks are
* concatenated together to create the output file; the output image
* should be *exactly* the same series of bytes as the target image used
* originally to generate the patch.
*
* To work well with this tool, the gzipped sections of the target
* image must have been generated using the same deflate encoder that
* is available in applypatch, namely, the one in the zlib library.
* In practice this means that images should be compressed using the
* "minigzip" tool included in the zlib distribution, not the GNU gzip
* program.
*
* An "imgdiff" patch consists of a header describing the chunk structure
* of the file and any encoding parameters needed for the gzipped
* chunks, followed by N bsdiff patches, one per chunk.
*
* For a diff to be generated, the source and target images must have the
* same "chunk" structure: that is, the same number of gzipped and normal
* chunks in the same order. Android boot and recovery images currently
* consist of five chunks: a small normal header, a gzipped kernel, a
* small normal section, a gzipped ramdisk, and finally a small normal
* footer.
*
* Caveats: we locate gzipped sections within the source and target
* images by searching for the byte sequence 1f8b0800: 1f8b is the gzip
* magic number; 08 specifies the "deflate" encoding [the only encoding
* supported by the gzip standard]; and 00 is the flags byte. We do not
* currently support any extra header fields (which would be indicated by
* a nonzero flags byte). We also don't handle the case when that byte
* sequence appears spuriously in the file. (Note that it would have to
* occur spuriously within a normal chunk to be a problem.)
*
*
* The imgdiff patch header looks like this:
*
* "IMGDIFF1" (8) [magic number and version]
* chunk count (4)
* for each chunk:
* chunk type (4) [CHUNK_{NORMAL, GZIP, DEFLATE, RAW}]
* if chunk type == CHUNK_NORMAL:
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* if chunk type == CHUNK_GZIP: (version 1 only)
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* gzip header len (4)
* gzip header (gzip header len)
* gzip footer (8)
* if chunk type == CHUNK_DEFLATE: (version 2 only)
* source start (8)
* source len (8)
* bsdiff patch offset (8) [from start of patch file]
* source expanded len (8) [size of uncompressed source]
* target expected len (8) [size of uncompressed target]
* gzip level (4)
* method (4)
* windowBits (4)
* memLevel (4)
* strategy (4)
* if chunk type == RAW: (version 2 only)
* target len (4)
* data (target len)
*
* All integers are little-endian. "source start" and "source len"
* specify the section of the input image that comprises this chunk,
* including the gzip header and footer for gzip chunks. "source
* expanded len" is the size of the uncompressed source data. "target
* expected len" is the size of the uncompressed data after applying
* the bsdiff patch. The next five parameters specify the zlib
* parameters to be used when compressing the patched data, and the
* next three specify the header and footer to be wrapped around the
* compressed data to create the output chunk (so that header contents
* like the timestamp are recreated exactly).
*
* After the header there are 'chunk count' bsdiff patches; the offset
* of each from the beginning of the file is specified in the header.
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <sys/types.h>
#include "zlib.h"
#include "imgdiff.h"
#include "utils.h"
typedef struct {
int type; // CHUNK_NORMAL, CHUNK_DEFLATE
size_t start; // offset of chunk in original image file
size_t len;
unsigned char* data; // data to be patched (uncompressed, for deflate chunks)
size_t source_start;
size_t source_len;
off_t* I; // used by bsdiff
// --- for CHUNK_DEFLATE chunks only: ---
// original (compressed) deflate data
size_t deflate_len;
unsigned char* deflate_data;
char* filename; // used for zip entries
// deflate encoder parameters
int level, method, windowBits, memLevel, strategy;
size_t source_uncompressed_len;
} ImageChunk;
typedef struct {
int data_offset;
int deflate_len;
int uncomp_len;
char* filename;
} ZipFileEntry;
static int fileentry_compare(const void* a, const void* b) {
int ao = ((ZipFileEntry*)a)->data_offset;
int bo = ((ZipFileEntry*)b)->data_offset;
if (ao < bo) {
return -1;
} else if (ao > bo) {
return 1;
} else {
return 0;
}
}
// from bsdiff.c
int bsdiff(u_char* old, off_t oldsize, off_t** IP, u_char* new, off_t newsize,
const char* patch_filename);
unsigned char* ReadZip(const char* filename,
int* num_chunks, ImageChunk** chunks,
int include_pseudo_chunk) {
struct stat st;
if (stat(filename, &st) != 0) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
return NULL;
}
unsigned char* img = malloc(st.st_size);
FILE* f = fopen(filename, "rb");
if (fread(img, 1, st.st_size, f) != st.st_size) {
printf("failed to read \"%s\" %s\n", filename, strerror(errno));
fclose(f);
return NULL;
}
fclose(f);
// look for the end-of-central-directory record.
int i;
for (i = st.st_size-20; i >= 0 && i > st.st_size - 65600; --i) {
if (img[i] == 0x50 && img[i+1] == 0x4b &&
img[i+2] == 0x05 && img[i+3] == 0x06) {
break;
}
}
// double-check: this archive consists of a single "disk"
if (!(img[i+4] == 0 && img[i+5] == 0 && img[i+6] == 0 && img[i+7] == 0)) {
printf("can't process multi-disk archive\n");
return NULL;
}
int cdcount = Read2(img+i+8);
int cdoffset = Read4(img+i+16);
ZipFileEntry* temp_entries = malloc(cdcount * sizeof(ZipFileEntry));
int entrycount = 0;
unsigned char* cd = img+cdoffset;
for (i = 0; i < cdcount; ++i) {
if (!(cd[0] == 0x50 && cd[1] == 0x4b && cd[2] == 0x01 && cd[3] == 0x02)) {
printf("bad central directory entry %d\n", i);
return NULL;
}
int clen = Read4(cd+20); // compressed len
int ulen = Read4(cd+24); // uncompressed len
int nlen = Read2(cd+28); // filename len
int xlen = Read2(cd+30); // extra field len
int mlen = Read2(cd+32); // file comment len
int hoffset = Read4(cd+42); // local header offset
char* filename = malloc(nlen+1);
memcpy(filename, cd+46, nlen);
filename[nlen] = '\0';
int method = Read2(cd+10);
cd += 46 + nlen + xlen + mlen;
if (method != 8) { // 8 == deflate
free(filename);
continue;
}
unsigned char* lh = img + hoffset;
if (!(lh[0] == 0x50 && lh[1] == 0x4b && lh[2] == 0x03 && lh[3] == 0x04)) {
printf("bad local file header entry %d\n", i);
return NULL;
}
if (Read2(lh+26) != nlen || memcmp(lh+30, filename, nlen) != 0) {
printf("central dir filename doesn't match local header\n");
return NULL;
}
xlen = Read2(lh+28); // extra field len; might be different from CD entry?
temp_entries[entrycount].data_offset = hoffset+30+nlen+xlen;
temp_entries[entrycount].deflate_len = clen;
temp_entries[entrycount].uncomp_len = ulen;
temp_entries[entrycount].filename = filename;
++entrycount;
}
qsort(temp_entries, entrycount, sizeof(ZipFileEntry), fileentry_compare);
#if 0
printf("found %d deflated entries\n", entrycount);
for (i = 0; i < entrycount; ++i) {
printf("off %10d len %10d unlen %10d %p %s\n",
temp_entries[i].data_offset,
temp_entries[i].deflate_len,
temp_entries[i].uncomp_len,
temp_entries[i].filename,
temp_entries[i].filename);
}
#endif
*num_chunks = 0;
*chunks = malloc((entrycount*2+2) * sizeof(ImageChunk));
ImageChunk* curr = *chunks;
if (include_pseudo_chunk) {
curr->type = CHUNK_NORMAL;
curr->start = 0;
curr->len = st.st_size;
curr->data = img;
curr->filename = NULL;
curr->I = NULL;
++curr;
++*num_chunks;
}
int pos = 0;
int nextentry = 0;
while (pos < st.st_size) {
if (nextentry < entrycount && pos == temp_entries[nextentry].data_offset) {
curr->type = CHUNK_DEFLATE;
curr->start = pos;
curr->deflate_len = temp_entries[nextentry].deflate_len;
curr->deflate_data = img + pos;
curr->filename = temp_entries[nextentry].filename;
curr->I = NULL;
curr->len = temp_entries[nextentry].uncomp_len;
curr->data = malloc(curr->len);
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = curr->deflate_len;
strm.next_in = curr->deflate_data;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
strm.avail_out = curr->len;
strm.next_out = curr->data;
ret = inflate(&strm, Z_NO_FLUSH);
if (ret != Z_STREAM_END) {
printf("failed to inflate \"%s\"; %d\n", curr->filename, ret);
return NULL;
}
inflateEnd(&strm);
pos += curr->deflate_len;
++nextentry;
++*num_chunks;
++curr;
continue;
}
// use a normal chunk to take all the data up to the start of the
// next deflate section.
curr->type = CHUNK_NORMAL;
curr->start = pos;
if (nextentry < entrycount) {
curr->len = temp_entries[nextentry].data_offset - pos;
} else {
curr->len = st.st_size - pos;
}
curr->data = img + pos;
curr->filename = NULL;
curr->I = NULL;
pos += curr->len;
++*num_chunks;
++curr;
}
free(temp_entries);
return img;
}
/*
* Read the given file and break it up into chunks, putting the number
* of chunks and their info in *num_chunks and **chunks,
* respectively. Returns a malloc'd block of memory containing the
* contents of the file; various pointers in the output chunk array
* will point into this block of memory. The caller should free the
* return value when done with all the chunks. Returns NULL on
* failure.
*/
unsigned char* ReadImage(const char* filename,
int* num_chunks, ImageChunk** chunks) {
struct stat st;
if (stat(filename, &st) != 0) {
printf("failed to stat \"%s\": %s\n", filename, strerror(errno));
return NULL;
}
unsigned char* img = malloc(st.st_size + 4);
FILE* f = fopen(filename, "rb");
if (fread(img, 1, st.st_size, f) != st.st_size) {
printf("failed to read \"%s\" %s\n", filename, strerror(errno));
fclose(f);
return NULL;
}
fclose(f);
// append 4 zero bytes to the data so we can always search for the
// four-byte string 1f8b0800 starting at any point in the actual
// file data, without special-casing the end of the data.
memset(img+st.st_size, 0, 4);
size_t pos = 0;
*num_chunks = 0;
*chunks = NULL;
while (pos < st.st_size) {
unsigned char* p = img+pos;
if (st.st_size - pos >= 4 &&
p[0] == 0x1f && p[1] == 0x8b &&
p[2] == 0x08 && // deflate compression
p[3] == 0x00) { // no header flags
// 'pos' is the offset of the start of a gzip chunk.
*num_chunks += 3;
*chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk));
ImageChunk* curr = *chunks + (*num_chunks-3);
// create a normal chunk for the header.
curr->start = pos;
curr->type = CHUNK_NORMAL;
curr->len = GZIP_HEADER_LEN;
curr->data = p;
curr->I = NULL;
pos += curr->len;
p += curr->len;
++curr;
curr->type = CHUNK_DEFLATE;
curr->filename = NULL;
curr->I = NULL;
// We must decompress this chunk in order to discover where it
// ends, and so we can put the uncompressed data and its length
// into curr->data and curr->len.
size_t allocated = 32768;
curr->len = 0;
curr->data = malloc(allocated);
curr->start = pos;
curr->deflate_data = p;
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = st.st_size - pos;
strm.next_in = p;
// -15 means we are decoding a 'raw' deflate stream; zlib will
// not expect zlib headers.
int ret = inflateInit2(&strm, -15);
do {
strm.avail_out = allocated - curr->len;
strm.next_out = curr->data + curr->len;
ret = inflate(&strm, Z_NO_FLUSH);
curr->len = allocated - strm.avail_out;
if (strm.avail_out == 0) {
allocated *= 2;
curr->data = realloc(curr->data, allocated);
}
} while (ret != Z_STREAM_END);
curr->deflate_len = st.st_size - strm.avail_in - pos;
inflateEnd(&strm);
pos += curr->deflate_len;
p += curr->deflate_len;
++curr;
// create a normal chunk for the footer
curr->type = CHUNK_NORMAL;
curr->start = pos;
curr->len = GZIP_FOOTER_LEN;
curr->data = img+pos;
curr->I = NULL;
pos += curr->len;
p += curr->len;
++curr;
// The footer (that we just skipped over) contains the size of
// the uncompressed data. Double-check to make sure that it
// matches the size of the data we got when we actually did
// the decompression.
size_t footer_size = Read4(p-4);
if (footer_size != curr[-2].len) {
printf("Error: footer size %d != decompressed size %d\n",
footer_size, curr[-2].len);
free(img);
return NULL;
}
} else {
// Reallocate the list for every chunk; we expect the number of
// chunks to be small (5 for typical boot and recovery images).
++*num_chunks;
*chunks = realloc(*chunks, *num_chunks * sizeof(ImageChunk));
ImageChunk* curr = *chunks + (*num_chunks-1);
curr->start = pos;
curr->I = NULL;
// 'pos' is not the offset of the start of a gzip chunk, so scan
// forward until we find a gzip header.
curr->type = CHUNK_NORMAL;
curr->data = p;
for (curr->len = 0; curr->len < (st.st_size - pos); ++curr->len) {
if (p[curr->len] == 0x1f &&
p[curr->len+1] == 0x8b &&
p[curr->len+2] == 0x08 &&
p[curr->len+3] == 0x00) {
break;
}
}
pos += curr->len;
}
}
return img;
}
#define BUFFER_SIZE 32768
/*
* Takes the uncompressed data stored in the chunk, compresses it
* using the zlib parameters stored in the chunk, and checks that it
* matches exactly the compressed data we started with (also stored in
* the chunk). Return 0 on success.
*/
int TryReconstruction(ImageChunk* chunk, unsigned char* out) {
size_t p = 0;
#if 0
printf("trying %d %d %d %d %d\n",
chunk->level, chunk->method, chunk->windowBits,
chunk->memLevel, chunk->strategy);
#endif
z_stream strm;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
strm.avail_in = chunk->len;
strm.next_in = chunk->data;
int ret;
ret = deflateInit2(&strm, chunk->level, chunk->method, chunk->windowBits,
chunk->memLevel, chunk->strategy);
do {
strm.avail_out = BUFFER_SIZE;
strm.next_out = out;
ret = deflate(&strm, Z_FINISH);
size_t have = BUFFER_SIZE - strm.avail_out;
if (memcmp(out, chunk->deflate_data+p, have) != 0) {
// mismatch; data isn't the same.
deflateEnd(&strm);
return -1;
}
p += have;
} while (ret != Z_STREAM_END);
deflateEnd(&strm);
if (p != chunk->deflate_len) {
// mismatch; ran out of data before we should have.
return -1;
}
return 0;
}
/*
* Verify that we can reproduce exactly the same compressed data that
* we started with. Sets the level, method, windowBits, memLevel, and
* strategy fields in the chunk to the encoding parameters needed to
* produce the right output. Returns 0 on success.
*/
int ReconstructDeflateChunk(ImageChunk* chunk) {
if (chunk->type != CHUNK_DEFLATE) {
printf("attempt to reconstruct non-deflate chunk\n");
return -1;
}
size_t p = 0;
unsigned char* out = malloc(BUFFER_SIZE);
// We only check two combinations of encoder parameters: level 6
// (the default) and level 9 (the maximum).
for (chunk->level = 6; chunk->level <= 9; chunk->level += 3) {
chunk->windowBits = -15; // 32kb window; negative to indicate a raw stream.
chunk->memLevel = 8; // the default value.
chunk->method = Z_DEFLATED;
chunk->strategy = Z_DEFAULT_STRATEGY;
if (TryReconstruction(chunk, out) == 0) {
free(out);
return 0;
}
}
free(out);
return -1;
}
/*
* Given source and target chunks, compute a bsdiff patch between them
* by running bsdiff in a subprocess. Return the patch data, placing
* its length in *size. Return NULL on failure. We expect the bsdiff
* program to be in the path.
*/
unsigned char* MakePatch(ImageChunk* src, ImageChunk* tgt, size_t* size) {
if (tgt->type == CHUNK_NORMAL) {
if (tgt->len <= 160) {
tgt->type = CHUNK_RAW;
*size = tgt->len;
return tgt->data;
}
}
char ptemp[] = "/tmp/imgdiff-patch-XXXXXX";
mkstemp(ptemp);
int r = bsdiff(src->data, src->len, &(src->I), tgt->data, tgt->len, ptemp);
if (r != 0) {
printf("bsdiff() failed: %d\n", r);
return NULL;
}
struct stat st;
if (stat(ptemp, &st) != 0) {
printf("failed to stat patch file %s: %s\n",
ptemp, strerror(errno));
return NULL;
}
unsigned char* data = malloc(st.st_size);
if (tgt->type == CHUNK_NORMAL && tgt->len <= st.st_size) {
unlink(ptemp);
tgt->type = CHUNK_RAW;
*size = tgt->len;
return tgt->data;
}
*size = st.st_size;
FILE* f = fopen(ptemp, "rb");
if (f == NULL) {
printf("failed to open patch %s: %s\n", ptemp, strerror(errno));
return NULL;
}
if (fread(data, 1, st.st_size, f) != st.st_size) {
printf("failed to read patch %s: %s\n", ptemp, strerror(errno));
return NULL;
}
fclose(f);
unlink(ptemp);
tgt->source_start = src->start;
switch (tgt->type) {
case CHUNK_NORMAL:
tgt->source_len = src->len;
break;
case CHUNK_DEFLATE:
tgt->source_len = src->deflate_len;
tgt->source_uncompressed_len = src->len;
break;
}
return data;
}
/*
* Cause a gzip chunk to be treated as a normal chunk (ie, as a blob
* of uninterpreted data). The resulting patch will likely be about
* as big as the target file, but it lets us handle the case of images
* where some gzip chunks are reconstructible but others aren't (by
* treating the ones that aren't as normal chunks).
*/
void ChangeDeflateChunkToNormal(ImageChunk* ch) {
if (ch->type != CHUNK_DEFLATE) return;
ch->type = CHUNK_NORMAL;
free(ch->data);
ch->data = ch->deflate_data;
ch->len = ch->deflate_len;
}
/*
* Return true if the data in the chunk is identical (including the
* compressed representation, for gzip chunks).
*/
int AreChunksEqual(ImageChunk* a, ImageChunk* b) {
if (a->type != b->type) return 0;
switch (a->type) {
case CHUNK_NORMAL:
return a->len == b->len && memcmp(a->data, b->data, a->len) == 0;
case CHUNK_DEFLATE:
return a->deflate_len == b->deflate_len &&
memcmp(a->deflate_data, b->deflate_data, a->deflate_len) == 0;
default:
printf("unknown chunk type %d\n", a->type);
return 0;
}
}
/*
* Look for runs of adjacent normal chunks and compress them down into
* a single chunk. (Such runs can be produced when deflate chunks are
* changed to normal chunks.)
*/
void MergeAdjacentNormalChunks(ImageChunk* chunks, int* num_chunks) {
int out = 0;
int in_start = 0, in_end;
while (in_start < *num_chunks) {
if (chunks[in_start].type != CHUNK_NORMAL) {
in_end = in_start+1;
} else {
// in_start is a normal chunk. Look for a run of normal chunks
// that constitute a solid block of data (ie, each chunk begins
// where the previous one ended).
for (in_end = in_start+1;
in_end < *num_chunks && chunks[in_end].type == CHUNK_NORMAL &&
(chunks[in_end].start ==
chunks[in_end-1].start + chunks[in_end-1].len &&
chunks[in_end].data ==
chunks[in_end-1].data + chunks[in_end-1].len);
++in_end);
}
if (in_end == in_start+1) {
#if 0
printf("chunk %d is now %d\n", in_start, out);
#endif
if (out != in_start) {
memcpy(chunks+out, chunks+in_start, sizeof(ImageChunk));
}
} else {
#if 0
printf("collapse normal chunks %d-%d into %d\n", in_start, in_end-1, out);
#endif
// Merge chunks [in_start, in_end-1] into one chunk. Since the
// data member of each chunk is just a pointer into an in-memory
// copy of the file, this can be done without recopying (the
// output chunk has the first chunk's start location and data
// pointer, and length equal to the sum of the input chunk
// lengths).
chunks[out].type = CHUNK_NORMAL;
chunks[out].start = chunks[in_start].start;
chunks[out].data = chunks[in_start].data;
chunks[out].len = chunks[in_end-1].len +
(chunks[in_end-1].start - chunks[in_start].start);
}
++out;
in_start = in_end;
}
*num_chunks = out;
}
ImageChunk* FindChunkByName(const char* name,
ImageChunk* chunks, int num_chunks) {
int i;
for (i = 0; i < num_chunks; ++i) {
if (chunks[i].type == CHUNK_DEFLATE && chunks[i].filename &&
strcmp(name, chunks[i].filename) == 0) {
return chunks+i;
}
}
return NULL;
}
void DumpChunks(ImageChunk* chunks, int num_chunks) {
int i;
for (i = 0; i < num_chunks; ++i) {
printf("chunk %d: type %d start %d len %d\n",
i, chunks[i].type, chunks[i].start, chunks[i].len);
}
}
int main(int argc, char** argv) {
if (argc != 4 && argc != 5) {
usage:
printf("usage: %s [-z] <src-img> <tgt-img> <patch-file>\n",
argv[0]);
return 2;
}
int zip_mode = 0;
if (strcmp(argv[1], "-z") == 0) {
zip_mode = 1;
--argc;
++argv;
}
int num_src_chunks;
ImageChunk* src_chunks;
int num_tgt_chunks;
ImageChunk* tgt_chunks;
int i;
if (zip_mode) {
if (ReadZip(argv[1], &num_src_chunks, &src_chunks, 1) == NULL) {
printf("failed to break apart source zip file\n");
return 1;
}
if (ReadZip(argv[2], &num_tgt_chunks, &tgt_chunks, 0) == NULL) {
printf("failed to break apart target zip file\n");
return 1;
}
} else {
if (ReadImage(argv[1], &num_src_chunks, &src_chunks) == NULL) {
printf("failed to break apart source image\n");
return 1;
}
if (ReadImage(argv[2], &num_tgt_chunks, &tgt_chunks) == NULL) {
printf("failed to break apart target image\n");
return 1;
}
// Verify that the source and target images have the same chunk
// structure (ie, the same sequence of deflate and normal chunks).
if (!zip_mode) {
// Merge the gzip header and footer in with any adjacent
// normal chunks.
MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
MergeAdjacentNormalChunks(src_chunks, &num_src_chunks);
}
if (num_src_chunks != num_tgt_chunks) {
printf("source and target don't have same number of chunks!\n");
printf("source chunks:\n");
DumpChunks(src_chunks, num_src_chunks);
printf("target chunks:\n");
DumpChunks(tgt_chunks, num_tgt_chunks);
return 1;
}
for (i = 0; i < num_src_chunks; ++i) {
if (src_chunks[i].type != tgt_chunks[i].type) {
printf("source and target don't have same chunk "
"structure! (chunk %d)\n", i);
printf("source chunks:\n");
DumpChunks(src_chunks, num_src_chunks);
printf("target chunks:\n");
DumpChunks(tgt_chunks, num_tgt_chunks);
return 1;
}
}
}
for (i = 0; i < num_tgt_chunks; ++i) {
if (tgt_chunks[i].type == CHUNK_DEFLATE) {
// Confirm that given the uncompressed chunk data in the target, we
// can recompress it and get exactly the same bits as are in the
// input target image. If this fails, treat the chunk as a normal
// non-deflated chunk.
if (ReconstructDeflateChunk(tgt_chunks+i) < 0) {
printf("failed to reconstruct target deflate chunk %d [%s]; "
"treating as normal\n", i, tgt_chunks[i].filename);
ChangeDeflateChunkToNormal(tgt_chunks+i);
if (zip_mode) {
ImageChunk* src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks);
if (src) {
ChangeDeflateChunkToNormal(src);
}
} else {
ChangeDeflateChunkToNormal(src_chunks+i);
}
continue;
}
// If two deflate chunks are identical (eg, the kernel has not
// changed between two builds), treat them as normal chunks.
// This makes applypatch much faster -- it can apply a trivial
// patch to the compressed data, rather than uncompressing and
// recompressing to apply the trivial patch to the uncompressed
// data.
ImageChunk* src;
if (zip_mode) {
src = FindChunkByName(tgt_chunks[i].filename, src_chunks, num_src_chunks);
} else {
src = src_chunks+i;
}
if (src == NULL || AreChunksEqual(tgt_chunks+i, src)) {
ChangeDeflateChunkToNormal(tgt_chunks+i);
if (src) {
ChangeDeflateChunkToNormal(src);
}
}
}
}
// Merging neighboring normal chunks.
if (zip_mode) {
// For zips, we only need to do this to the target: deflated
// chunks are matched via filename, and normal chunks are patched
// using the entire source file as the source.
MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
} else {
// For images, we need to maintain the parallel structure of the
// chunk lists, so do the merging in both the source and target
// lists.
MergeAdjacentNormalChunks(tgt_chunks, &num_tgt_chunks);
MergeAdjacentNormalChunks(src_chunks, &num_src_chunks);
if (num_src_chunks != num_tgt_chunks) {
// This shouldn't happen.
printf("merging normal chunks went awry\n");
return 1;
}
}
// Compute bsdiff patches for each chunk's data (the uncompressed
// data, in the case of deflate chunks).
printf("Construct patches for %d chunks...\n", num_tgt_chunks);
unsigned char** patch_data = malloc(num_tgt_chunks * sizeof(unsigned char*));
size_t* patch_size = malloc(num_tgt_chunks * sizeof(size_t));
for (i = 0; i < num_tgt_chunks; ++i) {
if (zip_mode) {
ImageChunk* src;
if (tgt_chunks[i].type == CHUNK_DEFLATE &&
(src = FindChunkByName(tgt_chunks[i].filename, src_chunks,
num_src_chunks))) {
patch_data[i] = MakePatch(src, tgt_chunks+i, patch_size+i);
} else {
patch_data[i] = MakePatch(src_chunks, tgt_chunks+i, patch_size+i);
}
} else {
patch_data[i] = MakePatch(src_chunks+i, tgt_chunks+i, patch_size+i);
}
printf("patch %3d is %d bytes (of %d)\n",
i, patch_size[i], tgt_chunks[i].source_len);
}
// Figure out how big the imgdiff file header is going to be, so
// that we can correctly compute the offset of each bsdiff patch
// within the file.
size_t total_header_size = 12;
for (i = 0; i < num_tgt_chunks; ++i) {
total_header_size += 4;
switch (tgt_chunks[i].type) {
case CHUNK_NORMAL:
total_header_size += 8*3;
break;
case CHUNK_DEFLATE:
total_header_size += 8*5 + 4*5;
break;
case CHUNK_RAW:
total_header_size += 4 + patch_size[i];
break;
}
}
size_t offset = total_header_size;
FILE* f = fopen(argv[3], "wb");
// Write out the headers.
fwrite("IMGDIFF2", 1, 8, f);
Write4(num_tgt_chunks, f);
for (i = 0; i < num_tgt_chunks; ++i) {
Write4(tgt_chunks[i].type, f);
switch (tgt_chunks[i].type) {
case CHUNK_NORMAL:
printf("chunk %3d: normal (%10d, %10d) %10d\n", i,
tgt_chunks[i].start, tgt_chunks[i].len, patch_size[i]);
Write8(tgt_chunks[i].source_start, f);
Write8(tgt_chunks[i].source_len, f);
Write8(offset, f);
offset += patch_size[i];
break;
case CHUNK_DEFLATE:
printf("chunk %3d: deflate (%10d, %10d) %10d %s\n", i,
tgt_chunks[i].start, tgt_chunks[i].deflate_len, patch_size[i],
tgt_chunks[i].filename);
Write8(tgt_chunks[i].source_start, f);
Write8(tgt_chunks[i].source_len, f);
Write8(offset, f);
Write8(tgt_chunks[i].source_uncompressed_len, f);
Write8(tgt_chunks[i].len, f);
Write4(tgt_chunks[i].level, f);
Write4(tgt_chunks[i].method, f);
Write4(tgt_chunks[i].windowBits, f);
Write4(tgt_chunks[i].memLevel, f);
Write4(tgt_chunks[i].strategy, f);
offset += patch_size[i];
break;
case CHUNK_RAW:
printf("chunk %3d: raw (%10d, %10d)\n", i,
tgt_chunks[i].start, tgt_chunks[i].len);
Write4(patch_size[i], f);
fwrite(patch_data[i], 1, patch_size[i], f);
break;
}
}
// Append each chunk's bsdiff patch, in order.
for (i = 0; i < num_tgt_chunks; ++i) {
if (tgt_chunks[i].type != CHUNK_RAW) {
fwrite(patch_data[i], 1, patch_size[i], f);
}
}
fclose(f);
return 0;
}