/* * Copyright (c) 2010, Code Aurora Forum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Code Aurora Forum, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include // for _IOW, _IOR, mount() #include "mmcutils.h" unsigned ext3_count = 0; char *ext3_partitions[] = {"system", "userdata", "cache", "NONE"}; unsigned vfat_count = 0; char *vfat_partitions[] = {"modem", "NONE"}; struct MmcPartition { char *device_index; char *filesystem; char *name; unsigned dstatus; unsigned dtype ; unsigned dfirstsec; unsigned dsize; }; typedef struct { MmcPartition *partitions; int partitions_allocd; int partition_count; } MmcState; static MmcState g_mmc_state = { NULL, // partitions 0, // partitions_allocd -1 // partition_count }; #define MMC_DEVICENAME "/dev/block/mmcblk0" static void mmc_partition_name (MmcPartition *mbr, unsigned int type) { switch(type) { char name[64]; case MMC_BOOT_TYPE: sprintf(name,"boot"); mbr->name = strdup(name); break; case MMC_RECOVERY_TYPE: sprintf(name,"recovery"); mbr->name = strdup(name); break; case MMC_EXT3_TYPE: if (strcmp("NONE", ext3_partitions[ext3_count])) { strcpy((char *)name,(const char *)ext3_partitions[ext3_count]); mbr->name = strdup(name); ext3_count++; } mbr->filesystem = strdup("ext3"); break; case MMC_VFAT_TYPE: if (strcmp("NONE", vfat_partitions[vfat_count])) { strcpy((char *)name,(const char *)vfat_partitions[vfat_count]); mbr->name = strdup(name); vfat_count++; } mbr->filesystem = strdup("vfat"); break; }; } static int mmc_read_mbr (const char *device, MmcPartition *mbr) { FILE *fd; unsigned char buffer[512]; int idx, i; unsigned mmc_partition_count = 0; unsigned int dtype; unsigned int dfirstsec; unsigned int EBR_first_sec; unsigned int EBR_current_sec; int ret = -1; fd = fopen(device, "r"); if(fd == NULL) { printf("Can't open device: \"%s\"\n", device); goto ERROR2; } if ((fread(buffer, 512, 1, fd)) != 1) { printf("Can't read device: \"%s\"\n", device); goto ERROR1; } /* Check to see if signature exists */ if ((buffer[TABLE_SIGNATURE] != 0x55) || \ (buffer[TABLE_SIGNATURE + 1] != 0xAA)) { printf("Incorrect mbr signatures!\n"); goto ERROR1; } idx = TABLE_ENTRY_0; for (i = 0; i < 4; i++) { char device_index[128]; mbr[mmc_partition_count].dstatus = \ buffer[idx + i * TABLE_ENTRY_SIZE + OFFSET_STATUS]; mbr[mmc_partition_count].dtype = \ buffer[idx + i * TABLE_ENTRY_SIZE + OFFSET_TYPE]; mbr[mmc_partition_count].dfirstsec = \ GET_LWORD_FROM_BYTE(&buffer[idx + \ i * TABLE_ENTRY_SIZE + \ OFFSET_FIRST_SEC]); mbr[mmc_partition_count].dsize = \ GET_LWORD_FROM_BYTE(&buffer[idx + \ i * TABLE_ENTRY_SIZE + \ OFFSET_SIZE]); dtype = mbr[mmc_partition_count].dtype; dfirstsec = mbr[mmc_partition_count].dfirstsec; mmc_partition_name(&mbr[mmc_partition_count], \ mbr[mmc_partition_count].dtype); sprintf(device_index, "%sp%d", device, (mmc_partition_count+1)); mbr[mmc_partition_count].device_index = strdup(device_index); mmc_partition_count++; if (mmc_partition_count == MAX_PARTITIONS) goto SUCCESS; } /* See if the last partition is EBR, if not, parsing is done */ if (dtype != 0x05) { goto SUCCESS; } EBR_first_sec = dfirstsec; EBR_current_sec = dfirstsec; fseek (fd, (EBR_first_sec * 512), SEEK_SET); if ((fread(buffer, 512, 1, fd)) != 1) goto ERROR1; /* Loop to parse the EBR */ for (i = 0;; i++) { char device_index[128]; if ((buffer[TABLE_SIGNATURE] != 0x55) || (buffer[TABLE_SIGNATURE + 1] != 0xAA)) { break; } mbr[mmc_partition_count].dstatus = \ buffer[TABLE_ENTRY_0 + OFFSET_STATUS]; mbr[mmc_partition_count].dtype = \ buffer[TABLE_ENTRY_0 + OFFSET_TYPE]; mbr[mmc_partition_count].dfirstsec = \ GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_0 + \ OFFSET_FIRST_SEC]) + \ EBR_current_sec; mbr[mmc_partition_count].dsize = \ GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_0 + \ OFFSET_SIZE]); mmc_partition_name(&mbr[mmc_partition_count], \ mbr[mmc_partition_count].dtype); sprintf(device_index, "%sp%d", device, (mmc_partition_count+1)); mbr[mmc_partition_count].device_index = strdup(device_index); mmc_partition_count++; if (mmc_partition_count == MAX_PARTITIONS) goto SUCCESS; dfirstsec = GET_LWORD_FROM_BYTE(&buffer[TABLE_ENTRY_1 + OFFSET_FIRST_SEC]); if(dfirstsec == 0) { /* Getting to the end of the EBR tables */ break; } /* More EBR to follow - read in the next EBR sector */ fseek (fd, ((EBR_first_sec + dfirstsec) * 512), SEEK_SET); if ((fread(buffer, 512, 1, fd)) != 1) goto ERROR1; EBR_current_sec = EBR_first_sec + dfirstsec; } SUCCESS: ret = mmc_partition_count; ERROR1: fclose(fd); ERROR2: return ret; } int mmc_scan_partitions() { int i; ssize_t nbytes; if (g_mmc_state.partitions == NULL) { const int nump = MAX_PARTITIONS; MmcPartition *partitions = malloc(nump * sizeof(*partitions)); if (partitions == NULL) { errno = ENOMEM; return -1; } g_mmc_state.partitions = partitions; g_mmc_state.partitions_allocd = nump; memset(partitions, 0, nump * sizeof(*partitions)); } g_mmc_state.partition_count = 0; ext3_count = 0; vfat_count = 0; /* Initialize all of the entries to make things easier later. * (Lets us handle sparsely-numbered partitions, which * may not even be possible.) */ for (i = 0; i < g_mmc_state.partitions_allocd; i++) { MmcPartition *p = &g_mmc_state.partitions[i]; if (p->device_index != NULL) { free(p->device_index); p->device_index = NULL; } if (p->name != NULL) { free(p->name); p->name = NULL; } if (p->filesystem != NULL) { free(p->filesystem); p->filesystem = NULL; } } g_mmc_state.partition_count = mmc_read_mbr(MMC_DEVICENAME, g_mmc_state.partitions); if(g_mmc_state.partition_count == -1) { printf("Error in reading mbr!\n"); // keep "partitions" around so we can free the names on a rescan. g_mmc_state.partition_count = -1; } return g_mmc_state.partition_count; } static const MmcPartition * mmc_find_partition_by_device_index(const char *device_index) { if (g_mmc_state.partitions != NULL) { int i; for (i = 0; i < g_mmc_state.partitions_allocd; i++) { MmcPartition *p = &g_mmc_state.partitions[i]; if (p->device_index !=NULL && p->name != NULL) { if (strcmp(p->device_index, device_index) == 0) { return p; } } } } return NULL; } const MmcPartition * mmc_find_partition_by_name(const char *name) { if (name[0] == '/') { return mmc_find_partition_by_device_index(name); } if (g_mmc_state.partitions != NULL) { int i; for (i = 0; i < g_mmc_state.partitions_allocd; i++) { MmcPartition *p = &g_mmc_state.partitions[i]; if (p->device_index !=NULL && p->name != NULL) { if (strcmp(p->name, name) == 0) { return p; } } } } return NULL; } #define MKE2FS_BIN "/sbin/mke2fs" #define TUNE2FS_BIN "/sbin/tune2fs" #define E2FSCK_BIN "/sbin/e2fsck" int run_exec_process ( char **argv) { pid_t pid; int status; pid = fork(); if (pid == 0) { execv(argv[0], argv); fprintf(stderr, "E:Can't run (%s)\n",strerror(errno)); _exit(-1); } waitpid(pid, &status, 0); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { return 1; } return 0; } int format_ext3_device (const char *device) { #ifdef BOARD_HAS_LARGE_FILESYSTEM char *const mke2fs[] = {MKE2FS_BIN, "-j", "-q", device, NULL}; char *const tune2fs[] = {TUNE2FS_BIN, "-C", "1", device, NULL}; #else char *const mke2fs[] = {MKE2FS_BIN, "-j", device, NULL}; char *const tune2fs[] = {TUNE2FS_BIN, "-j", "-C", "1", device, NULL}; #endif // Run mke2fs if(run_exec_process(mke2fs)) return -1; // Run tune2fs if(run_exec_process(tune2fs)) return -1; // Run e2fsck char *const e2fsck[] = {E2FSCK_BIN, "-fy", device, NULL}; if(run_exec_process(e2fsck)) return -1; return 0; } int format_ext2_device (const char *device) { // Run mke2fs char *const mke2fs[] = {MKE2FS_BIN, device, NULL}; if(run_exec_process(mke2fs)) return -1; // Run tune2fs char *const tune2fs[] = {TUNE2FS_BIN, "-C", "1", device, NULL}; if(run_exec_process(tune2fs)) return -1; // Run e2fsck char *const e2fsck[] = {E2FSCK_BIN, "-fy", device, NULL}; if(run_exec_process(e2fsck)) return -1; return 0; } int mmc_format_ext3 (MmcPartition *partition) { char device[128]; strcpy(device, partition->device_index); return format_ext3_device(device); } int mmc_mount_partition(const MmcPartition *partition, const char *mount_point, int read_only) { const unsigned long flags = MS_NOATIME | MS_NODEV | MS_NODIRATIME; char devname[128]; int rv = -1; strcpy(devname, partition->device_index); if (partition->filesystem == NULL) { printf("Null filesystem!\n"); return rv; } if (!read_only) { rv = mount(devname, mount_point, partition->filesystem, flags, NULL); } if (read_only || rv < 0) { rv = mount(devname, mount_point, partition->filesystem, flags | MS_RDONLY, 0); if (rv < 0) { printf("Failed to mount %s on %s: %s\n", devname, mount_point, strerror(errno)); } else { printf("Mount %s on %s read-only\n", devname, mount_point); } } return rv; } int mmc_raw_copy (const MmcPartition *partition, char *in_file) { int ch; FILE *in; FILE *out; int val = 0; char buf[512]; unsigned sz = 0; unsigned i; int ret = -1; char *out_file = partition->device_index; in = fopen ( in_file, "r" ); if (in == NULL) goto ERROR3; out = fopen ( out_file, "w" ); if (out == NULL) goto ERROR2; fseek(in, 0L, SEEK_END); sz = ftell(in); fseek(in, 0L, SEEK_SET); if (sz % 512) { while ( ( ch = fgetc ( in ) ) != EOF ) fputc ( ch, out ); } else { for (i=0; i< (sz/512); i++) { if ((fread(buf, 512, 1, in)) != 1) goto ERROR1; if ((fwrite(buf, 512, 1, out)) != 1) goto ERROR1; } } fsync(out); ret = 0; ERROR1: fclose ( out ); ERROR2: fclose ( in ); ERROR3: return ret; } int mmc_raw_dump_internal (const char* in_file, const char *out_file) { int ch; FILE *in; FILE *out; int val = 0; char buf[512]; unsigned sz = 0; unsigned i; int ret = -1; in = fopen ( in_file, "r" ); if (in == NULL) goto ERROR3; out = fopen ( out_file, "w" ); if (out == NULL) goto ERROR2; fseek(in, 0L, SEEK_END); sz = ftell(in); fseek(in, 0L, SEEK_SET); if (sz % 512) { while ( ( ch = fgetc ( in ) ) != EOF ) fputc ( ch, out ); } else { for (i=0; i< (sz/512); i++) { if ((fread(buf, 512, 1, in)) != 1) goto ERROR1; if ((fwrite(buf, 512, 1, out)) != 1) goto ERROR1; } } fsync(out); ret = 0; ERROR1: fclose ( out ); ERROR2: fclose ( in ); ERROR3: return ret; } // TODO: refactor this to not be a giant copy paste mess int mmc_raw_dump (const MmcPartition *partition, char *out_file) { return mmc_raw_dump_internal(partition->device_index, out_file); } int mmc_raw_read (const MmcPartition *partition, char *data, int data_size) { int ch; FILE *in; int val = 0; char buf[512]; unsigned sz = 0; unsigned i; int ret = -1; char *in_file = partition->device_index; in = fopen ( in_file, "r" ); if (in == NULL) goto ERROR3; fseek(in, 0L, SEEK_END); sz = ftell(in); fseek(in, 0L, SEEK_SET); fread(data, data_size, 1, in); ret = 0; ERROR1: ERROR2: fclose ( in ); ERROR3: return ret; } int mmc_raw_write (const MmcPartition *partition, char *data, int data_size) { int ch; FILE *out; int val = 0; char buf[512]; unsigned sz = 0; unsigned i; int ret = -1; char *out_file = partition->device_index; out = fopen ( out_file, "w" ); if (out == NULL) goto ERROR3; fwrite(data, data_size, 1, out); ret = 0; ERROR1: ERROR2: fclose ( out ); ERROR3: return ret; } int cmd_mmc_restore_raw_partition(const char *partition, const char *filename) { if (partition[0] != '/') { mmc_scan_partitions(); const MmcPartition *p; p = mmc_find_partition_by_name(partition); if (p == NULL) return -1; return mmc_raw_copy(p, filename); } else { return mmc_raw_dump_internal(filename, partition); } } int cmd_mmc_backup_raw_partition(const char *partition, const char *filename) { if (partition[0] != '/') { mmc_scan_partitions(); const MmcPartition *p; p = mmc_find_partition_by_name(partition); if (p == NULL) return -1; return mmc_raw_dump(p, filename); } else { return mmc_raw_dump_internal(partition, filename); } } int cmd_mmc_erase_raw_partition(const char *partition) { return 0; } int cmd_mmc_erase_partition(const char *partition, const char *filesystem) { mmc_scan_partitions(); const MmcPartition *p; p = mmc_find_partition_by_name(partition); if (p == NULL) return -1; return mmc_format_ext3 (p); } int cmd_mmc_mount_partition(const char *partition, const char *mount_point, const char *filesystem, int read_only) { mmc_scan_partitions(); const MmcPartition *p; p = mmc_find_partition_by_name(partition); if (p == NULL) return -1; return mmc_mount_partition(p, mount_point, read_only); } int cmd_mmc_get_partition_device(const char *partition, char *device) { mmc_scan_partitions(); const MmcPartition *p; p = mmc_find_partition_by_name(partition); if (p == NULL) return -1; strcpy(device, p->device_index); return 0; }